// SPDX-License-Identifier: GPL-2.0 /* * Sensirion SPS30 particulate matter sensor driver * * Copyright (c) Tomasz Duszynski */ #include #include #include #include #include #include #include #include #include #include #include "sps30.h" /* sensor measures reliably up to 3000 ug / m3 */ #define SPS30_MAX_PM 3000 /* minimum and maximum self cleaning periods in seconds */ #define SPS30_AUTO_CLEANING_PERIOD_MIN 0 #define SPS30_AUTO_CLEANING_PERIOD_MAX 604800 enum { PM1, PM2P5, PM4, PM10, }; enum { RESET, MEASURING, }; static s32 sps30_float_to_int_clamped(__be32 *fp) { int val = be32_to_cpup(fp); int mantissa = val & GENMASK(22, 0); /* this is fine since passed float is always non-negative */ int exp = val >> 23; int fraction, shift; /* special case 0 */ if (!exp && !mantissa) return 0; exp -= 127; if (exp < 0) { /* return values ranging from 1 to 99 */ return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp); } /* return values ranging from 100 to 300000 */ shift = 23 - exp; val = (1 << exp) + (mantissa >> shift); if (val >= SPS30_MAX_PM) return SPS30_MAX_PM * 100; fraction = mantissa & GENMASK(shift - 1, 0); return val * 100 + ((fraction * 100) >> shift); } static int sps30_do_meas(struct sps30_state *state, s32 *data, int size) { int i, ret; if (state->state == RESET) { ret = state->ops->start_meas(state); if (ret) return ret; state->state = MEASURING; } ret = state->ops->read_meas(state, (__be32 *)data, size); if (ret) return ret; for (i = 0; i < size; i++) data[i] = sps30_float_to_int_clamped((__be32 *)&data[i]); return 0; } static int sps30_do_reset(struct sps30_state *state) { int ret; ret = state->ops->reset(state); if (ret) return ret; state->state = RESET; return 0; } static irqreturn_t sps30_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct sps30_state *state = iio_priv(indio_dev); int ret; struct { s32 data[4]; /* PM1, PM2P5, PM4, PM10 */ s64 ts; } scan; mutex_lock(&state->lock); ret = sps30_do_meas(state, scan.data, ARRAY_SIZE(scan.data)); mutex_unlock(&state->lock); if (ret) goto err; iio_push_to_buffers_with_timestamp(indio_dev, &scan, iio_get_time_ns(indio_dev)); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int sps30_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct sps30_state *state = iio_priv(indio_dev); int data[4], ret = -EINVAL; switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_MASSCONCENTRATION: mutex_lock(&state->lock); /* read up to the number of bytes actually needed */ switch (chan->channel2) { case IIO_MOD_PM1: ret = sps30_do_meas(state, data, 1); break; case IIO_MOD_PM2P5: ret = sps30_do_meas(state, data, 2); break; case IIO_MOD_PM4: ret = sps30_do_meas(state, data, 3); break; case IIO_MOD_PM10: ret = sps30_do_meas(state, data, 4); break; } mutex_unlock(&state->lock); if (ret) return ret; *val = data[chan->address] / 100; *val2 = (data[chan->address] % 100) * 10000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_MASSCONCENTRATION: switch (chan->channel2) { case IIO_MOD_PM1: case IIO_MOD_PM2P5: case IIO_MOD_PM4: case IIO_MOD_PM10: *val = 0; *val2 = 10000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } default: return -EINVAL; } } return -EINVAL; } static ssize_t start_cleaning_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct sps30_state *state = iio_priv(indio_dev); int val, ret; if (kstrtoint(buf, 0, &val) || val != 1) return -EINVAL; mutex_lock(&state->lock); ret = state->ops->clean_fan(state); mutex_unlock(&state->lock); if (ret) return ret; return len; } static ssize_t cleaning_period_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct sps30_state *state = iio_priv(indio_dev); __be32 val; int ret; mutex_lock(&state->lock); ret = state->ops->read_cleaning_period(state, &val); mutex_unlock(&state->lock); if (ret) return ret; return sysfs_emit(buf, "%d\n", be32_to_cpu(val)); } static ssize_t cleaning_period_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct sps30_state *state = iio_priv(indio_dev); int val, ret; if (kstrtoint(buf, 0, &val)) return -EINVAL; if ((val < SPS30_AUTO_CLEANING_PERIOD_MIN) || (val > SPS30_AUTO_CLEANING_PERIOD_MAX)) return -EINVAL; mutex_lock(&state->lock); ret = state->ops->write_cleaning_period(state, cpu_to_be32(val)); if (ret) { mutex_unlock(&state->lock); return ret; } msleep(20); /* * sensor requires reset in order to return up to date self cleaning * period */ ret = sps30_do_reset(state); if (ret) dev_warn(dev, "period changed but reads will return the old value\n"); mutex_unlock(&state->lock); return len; } static ssize_t cleaning_period_available_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "[%d %d %d]\n", SPS30_AUTO_CLEANING_PERIOD_MIN, 1, SPS30_AUTO_CLEANING_PERIOD_MAX); } static IIO_DEVICE_ATTR_WO(start_cleaning, 0); static IIO_DEVICE_ATTR_RW(cleaning_period, 0); static IIO_DEVICE_ATTR_RO(cleaning_period_available, 0); static struct attribute *sps30_attrs[] = { &iio_dev_attr_start_cleaning.dev_attr.attr, &iio_dev_attr_cleaning_period.dev_attr.attr, &iio_dev_attr_cleaning_period_available.dev_attr.attr, NULL }; static const struct attribute_group sps30_attr_group = { .attrs = sps30_attrs, }; static const struct iio_info sps30_info = { .attrs = &sps30_attr_group, .read_raw = sps30_read_raw, }; #define SPS30_CHAN(_index, _mod) { \ .type = IIO_MASSCONCENTRATION, \ .modified = 1, \ .channel2 = IIO_MOD_ ## _mod, \ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .address = _mod, \ .scan_index = _index, \ .scan_type = { \ .sign = 'u', \ .realbits = 19, \ .storagebits = 32, \ .endianness = IIO_CPU, \ }, \ } static const struct iio_chan_spec sps30_channels[] = { SPS30_CHAN(0, PM1), SPS30_CHAN(1, PM2P5), SPS30_CHAN(2, PM4), SPS30_CHAN(3, PM10), IIO_CHAN_SOFT_TIMESTAMP(4), }; static void sps30_devm_stop_meas(void *data) { struct sps30_state *state = data; if (state->state == MEASURING) state->ops->stop_meas(state); } static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 }; int sps30_probe(struct device *dev, const char *name, void *priv, const struct sps30_ops *ops) { struct iio_dev *indio_dev; struct sps30_state *state; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*state)); if (!indio_dev) return -ENOMEM; dev_set_drvdata(dev, indio_dev); state = iio_priv(indio_dev); state->dev = dev; state->priv = priv; state->ops = ops; mutex_init(&state->lock); indio_dev->info = &sps30_info; indio_dev->name = name; indio_dev->channels = sps30_channels; indio_dev->num_channels = ARRAY_SIZE(sps30_channels); indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->available_scan_masks = sps30_scan_masks; ret = sps30_do_reset(state); if (ret) { dev_err(dev, "failed to reset device\n"); return ret; } ret = state->ops->show_info(state); if (ret) { dev_err(dev, "failed to read device info\n"); return ret; } ret = devm_add_action_or_reset(dev, sps30_devm_stop_meas, state); if (ret) return ret; ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, sps30_trigger_handler, NULL); if (ret) return ret; return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS_GPL(sps30_probe, IIO_SPS30); MODULE_AUTHOR("Tomasz Duszynski "); MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver"); MODULE_LICENSE("GPL v2");