// SPDX-License-Identifier: GPL-2.0-only /* * ADMV1014 driver * * Copyright 2022 Analog Devices Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* ADMV1014 Register Map */ #define ADMV1014_REG_SPI_CONTROL 0x00 #define ADMV1014_REG_ALARM 0x01 #define ADMV1014_REG_ALARM_MASKS 0x02 #define ADMV1014_REG_ENABLE 0x03 #define ADMV1014_REG_QUAD 0x04 #define ADMV1014_REG_LO_AMP_PHASE_ADJUST1 0x05 #define ADMV1014_REG_MIXER 0x07 #define ADMV1014_REG_IF_AMP 0x08 #define ADMV1014_REG_IF_AMP_BB_AMP 0x09 #define ADMV1014_REG_BB_AMP_AGC 0x0A #define ADMV1014_REG_VVA_TEMP_COMP 0x0B /* ADMV1014_REG_SPI_CONTROL Map */ #define ADMV1014_PARITY_EN_MSK BIT(15) #define ADMV1014_SPI_SOFT_RESET_MSK BIT(14) #define ADMV1014_CHIP_ID_MSK GENMASK(11, 4) #define ADMV1014_CHIP_ID 0x9 #define ADMV1014_REVISION_ID_MSK GENMASK(3, 0) /* ADMV1014_REG_ALARM Map */ #define ADMV1014_PARITY_ERROR_MSK BIT(15) #define ADMV1014_TOO_FEW_ERRORS_MSK BIT(14) #define ADMV1014_TOO_MANY_ERRORS_MSK BIT(13) #define ADMV1014_ADDRESS_RANGE_ERROR_MSK BIT(12) /* ADMV1014_REG_ENABLE Map */ #define ADMV1014_IBIAS_PD_MSK BIT(14) #define ADMV1014_P1DB_COMPENSATION_MSK GENMASK(13, 12) #define ADMV1014_IF_AMP_PD_MSK BIT(11) #define ADMV1014_QUAD_BG_PD_MSK BIT(9) #define ADMV1014_BB_AMP_PD_MSK BIT(8) #define ADMV1014_QUAD_IBIAS_PD_MSK BIT(7) #define ADMV1014_DET_EN_MSK BIT(6) #define ADMV1014_BG_PD_MSK BIT(5) /* ADMV1014_REG_QUAD Map */ #define ADMV1014_QUAD_SE_MODE_MSK GENMASK(9, 6) #define ADMV1014_QUAD_FILTERS_MSK GENMASK(3, 0) /* ADMV1014_REG_LO_AMP_PHASE_ADJUST1 Map */ #define ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK GENMASK(15, 9) #define ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK GENMASK(8, 2) /* ADMV1014_REG_MIXER Map */ #define ADMV1014_MIXER_VGATE_MSK GENMASK(15, 9) #define ADMV1014_DET_PROG_MSK GENMASK(6, 0) /* ADMV1014_REG_IF_AMP Map */ #define ADMV1014_IF_AMP_COARSE_GAIN_I_MSK GENMASK(11, 8) #define ADMV1014_IF_AMP_FINE_GAIN_Q_MSK GENMASK(7, 4) #define ADMV1014_IF_AMP_FINE_GAIN_I_MSK GENMASK(3, 0) /* ADMV1014_REG_IF_AMP_BB_AMP Map */ #define ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK GENMASK(15, 12) #define ADMV1014_BB_AMP_OFFSET_Q_MSK GENMASK(9, 5) #define ADMV1014_BB_AMP_OFFSET_I_MSK GENMASK(4, 0) /* ADMV1014_REG_BB_AMP_AGC Map */ #define ADMV1014_BB_AMP_REF_GEN_MSK GENMASK(6, 3) #define ADMV1014_BB_AMP_GAIN_CTRL_MSK GENMASK(2, 1) #define ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK BIT(0) /* ADMV1014_REG_VVA_TEMP_COMP Map */ #define ADMV1014_VVA_TEMP_COMP_MSK GENMASK(15, 0) /* ADMV1014 Miscellaneous Defines */ #define ADMV1014_READ BIT(7) #define ADMV1014_REG_ADDR_READ_MSK GENMASK(6, 1) #define ADMV1014_REG_ADDR_WRITE_MSK GENMASK(22, 17) #define ADMV1014_REG_DATA_MSK GENMASK(16, 1) #define ADMV1014_NUM_REGULATORS 9 enum { ADMV1014_IQ_MODE, ADMV1014_IF_MODE, }; enum { ADMV1014_SE_MODE_POS = 6, ADMV1014_SE_MODE_NEG = 9, ADMV1014_SE_MODE_DIFF = 12, }; enum { ADMV1014_CALIBSCALE_COARSE, ADMV1014_CALIBSCALE_FINE, }; static const int detector_table[] = {0, 1, 2, 4, 8, 16, 32, 64}; static const char * const input_mode_names[] = { "iq", "if" }; static const char * const quad_se_mode_names[] = { "se-pos", "se-neg", "diff" }; struct admv1014_state { struct spi_device *spi; struct clk *clkin; struct notifier_block nb; /* Protect against concurrent accesses to the device and to data*/ struct mutex lock; struct regulator_bulk_data regulators[ADMV1014_NUM_REGULATORS]; unsigned int input_mode; unsigned int quad_se_mode; unsigned int p1db_comp; bool det_en; u8 data[3] ____cacheline_aligned; }; static const int mixer_vgate_table[] = {106, 107, 108, 110, 111, 112, 113, 114, 117, 118, 119, 120, 122, 123, 44, 45}; static int __admv1014_spi_read(struct admv1014_state *st, unsigned int reg, unsigned int *val) { struct spi_transfer t = {}; int ret; st->data[0] = ADMV1014_READ | FIELD_PREP(ADMV1014_REG_ADDR_READ_MSK, reg); st->data[1] = 0; st->data[2] = 0; t.rx_buf = &st->data[0]; t.tx_buf = &st->data[0]; t.len = sizeof(st->data); ret = spi_sync_transfer(st->spi, &t, 1); if (ret) return ret; *val = FIELD_GET(ADMV1014_REG_DATA_MSK, get_unaligned_be24(&st->data[0])); return ret; } static int admv1014_spi_read(struct admv1014_state *st, unsigned int reg, unsigned int *val) { int ret; mutex_lock(&st->lock); ret = __admv1014_spi_read(st, reg, val); mutex_unlock(&st->lock); return ret; } static int __admv1014_spi_write(struct admv1014_state *st, unsigned int reg, unsigned int val) { put_unaligned_be24(FIELD_PREP(ADMV1014_REG_DATA_MSK, val) | FIELD_PREP(ADMV1014_REG_ADDR_WRITE_MSK, reg), &st->data[0]); return spi_write(st->spi, &st->data[0], 3); } static int admv1014_spi_write(struct admv1014_state *st, unsigned int reg, unsigned int val) { int ret; mutex_lock(&st->lock); ret = __admv1014_spi_write(st, reg, val); mutex_unlock(&st->lock); return ret; } static int __admv1014_spi_update_bits(struct admv1014_state *st, unsigned int reg, unsigned int mask, unsigned int val) { unsigned int data, temp; int ret; ret = __admv1014_spi_read(st, reg, &data); if (ret) return ret; temp = (data & ~mask) | (val & mask); return __admv1014_spi_write(st, reg, temp); } static int admv1014_spi_update_bits(struct admv1014_state *st, unsigned int reg, unsigned int mask, unsigned int val) { int ret; mutex_lock(&st->lock); ret = __admv1014_spi_update_bits(st, reg, mask, val); mutex_unlock(&st->lock); return ret; } static int admv1014_update_quad_filters(struct admv1014_state *st) { unsigned int filt_raw; u64 rate = clk_get_rate(st->clkin); if (rate >= (5400 * HZ_PER_MHZ) && rate <= (7000 * HZ_PER_MHZ)) filt_raw = 15; else if (rate > (7000 * HZ_PER_MHZ) && rate <= (8000 * HZ_PER_MHZ)) filt_raw = 10; else if (rate > (8000 * HZ_PER_MHZ) && rate <= (9200 * HZ_PER_MHZ)) filt_raw = 5; else filt_raw = 0; return __admv1014_spi_update_bits(st, ADMV1014_REG_QUAD, ADMV1014_QUAD_FILTERS_MSK, FIELD_PREP(ADMV1014_QUAD_FILTERS_MSK, filt_raw)); } static int admv1014_update_vcm_settings(struct admv1014_state *st) { unsigned int i, vcm_mv, vcm_comp, bb_sw_hl_cm; int ret; vcm_mv = regulator_get_voltage(st->regulators[0].consumer) / 1000; for (i = 0; i < ARRAY_SIZE(mixer_vgate_table); i++) { vcm_comp = 1050 + mult_frac(i, 450, 8); if (vcm_mv != vcm_comp) continue; ret = __admv1014_spi_update_bits(st, ADMV1014_REG_MIXER, ADMV1014_MIXER_VGATE_MSK, FIELD_PREP(ADMV1014_MIXER_VGATE_MSK, mixer_vgate_table[i])); if (ret) return ret; bb_sw_hl_cm = ~(i / 8); bb_sw_hl_cm = FIELD_PREP(ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK, bb_sw_hl_cm); return __admv1014_spi_update_bits(st, ADMV1014_REG_BB_AMP_AGC, ADMV1014_BB_AMP_REF_GEN_MSK | ADMV1014_BB_SWITCH_HIGH_LOW_CM_MSK, FIELD_PREP(ADMV1014_BB_AMP_REF_GEN_MSK, i) | bb_sw_hl_cm); } return -EINVAL; } static int admv1014_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long info) { struct admv1014_state *st = iio_priv(indio_dev); unsigned int data; int ret; switch (info) { case IIO_CHAN_INFO_OFFSET: ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP_BB_AMP, &data); if (ret) return ret; if (chan->channel2 == IIO_MOD_I) *val = FIELD_GET(ADMV1014_BB_AMP_OFFSET_I_MSK, data); else *val = FIELD_GET(ADMV1014_BB_AMP_OFFSET_Q_MSK, data); return IIO_VAL_INT; case IIO_CHAN_INFO_PHASE: ret = admv1014_spi_read(st, ADMV1014_REG_LO_AMP_PHASE_ADJUST1, &data); if (ret) return ret; if (chan->channel2 == IIO_MOD_I) *val = FIELD_GET(ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK, data); else *val = FIELD_GET(ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK, data); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: ret = admv1014_spi_read(st, ADMV1014_REG_MIXER, &data); if (ret) return ret; *val = FIELD_GET(ADMV1014_DET_PROG_MSK, data); return IIO_VAL_INT; case IIO_CHAN_INFO_CALIBSCALE: ret = admv1014_spi_read(st, ADMV1014_REG_BB_AMP_AGC, &data); if (ret) return ret; *val = FIELD_GET(ADMV1014_BB_AMP_GAIN_CTRL_MSK, data); return IIO_VAL_INT; default: return -EINVAL; } } static int admv1014_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long info) { int data; unsigned int msk; struct admv1014_state *st = iio_priv(indio_dev); switch (info) { case IIO_CHAN_INFO_OFFSET: if (chan->channel2 == IIO_MOD_I) { msk = ADMV1014_BB_AMP_OFFSET_I_MSK; data = FIELD_PREP(ADMV1014_BB_AMP_OFFSET_I_MSK, val); } else { msk = ADMV1014_BB_AMP_OFFSET_Q_MSK; data = FIELD_PREP(ADMV1014_BB_AMP_OFFSET_Q_MSK, val); } return admv1014_spi_update_bits(st, ADMV1014_REG_IF_AMP_BB_AMP, msk, data); case IIO_CHAN_INFO_PHASE: if (chan->channel2 == IIO_MOD_I) { msk = ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK; data = FIELD_PREP(ADMV1014_LOAMP_PH_ADJ_I_FINE_MSK, val); } else { msk = ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK; data = FIELD_PREP(ADMV1014_LOAMP_PH_ADJ_Q_FINE_MSK, val); } return admv1014_spi_update_bits(st, ADMV1014_REG_LO_AMP_PHASE_ADJUST1, msk, data); case IIO_CHAN_INFO_SCALE: return admv1014_spi_update_bits(st, ADMV1014_REG_MIXER, ADMV1014_DET_PROG_MSK, FIELD_PREP(ADMV1014_DET_PROG_MSK, val)); case IIO_CHAN_INFO_CALIBSCALE: return admv1014_spi_update_bits(st, ADMV1014_REG_BB_AMP_AGC, ADMV1014_BB_AMP_GAIN_CTRL_MSK, FIELD_PREP(ADMV1014_BB_AMP_GAIN_CTRL_MSK, val)); default: return -EINVAL; } } static ssize_t admv1014_read(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct admv1014_state *st = iio_priv(indio_dev); unsigned int data; int ret; switch (private) { case ADMV1014_CALIBSCALE_COARSE: if (chan->channel2 == IIO_MOD_I) { ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP, &data); if (ret) return ret; data = FIELD_GET(ADMV1014_IF_AMP_COARSE_GAIN_I_MSK, data); } else { ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP_BB_AMP, &data); if (ret) return ret; data = FIELD_GET(ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK, data); } break; case ADMV1014_CALIBSCALE_FINE: ret = admv1014_spi_read(st, ADMV1014_REG_IF_AMP, &data); if (ret) return ret; if (chan->channel2 == IIO_MOD_I) data = FIELD_GET(ADMV1014_IF_AMP_FINE_GAIN_I_MSK, data); else data = FIELD_GET(ADMV1014_IF_AMP_FINE_GAIN_Q_MSK, data); break; default: return -EINVAL; } return sysfs_emit(buf, "%u\n", data); } static ssize_t admv1014_write(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { struct admv1014_state *st = iio_priv(indio_dev); unsigned int data, addr, msk; int ret; ret = kstrtouint(buf, 10, &data); if (ret) return ret; switch (private) { case ADMV1014_CALIBSCALE_COARSE: if (chan->channel2 == IIO_MOD_I) { addr = ADMV1014_REG_IF_AMP; msk = ADMV1014_IF_AMP_COARSE_GAIN_I_MSK; data = FIELD_PREP(ADMV1014_IF_AMP_COARSE_GAIN_I_MSK, data); } else { addr = ADMV1014_REG_IF_AMP_BB_AMP; msk = ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK; data = FIELD_PREP(ADMV1014_IF_AMP_COARSE_GAIN_Q_MSK, data); } break; case ADMV1014_CALIBSCALE_FINE: addr = ADMV1014_REG_IF_AMP; if (chan->channel2 == IIO_MOD_I) { msk = ADMV1014_IF_AMP_FINE_GAIN_I_MSK; data = FIELD_PREP(ADMV1014_IF_AMP_FINE_GAIN_I_MSK, data); } else { msk = ADMV1014_IF_AMP_FINE_GAIN_Q_MSK; data = FIELD_PREP(ADMV1014_IF_AMP_FINE_GAIN_Q_MSK, data); } break; default: return -EINVAL; } ret = admv1014_spi_update_bits(st, addr, msk, data); return ret ? ret : len; } static int admv1014_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long info) { switch (info) { case IIO_CHAN_INFO_SCALE: *vals = detector_table; *type = IIO_VAL_INT; *length = ARRAY_SIZE(detector_table); return IIO_AVAIL_LIST; default: return -EINVAL; } } static int admv1014_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int write_val, unsigned int *read_val) { struct admv1014_state *st = iio_priv(indio_dev); if (read_val) return admv1014_spi_read(st, reg, read_val); else return admv1014_spi_write(st, reg, write_val); } static const struct iio_info admv1014_info = { .read_raw = admv1014_read_raw, .write_raw = admv1014_write_raw, .read_avail = &admv1014_read_avail, .debugfs_reg_access = &admv1014_reg_access, }; static const char * const admv1014_reg_name[] = { "vcm", "vcc-if-bb", "vcc-vga", "vcc-vva", "vcc-lna-3p3", "vcc-lna-1p5", "vcc-bg", "vcc-quad", "vcc-mixer" }; static int admv1014_freq_change(struct notifier_block *nb, unsigned long action, void *data) { struct admv1014_state *st = container_of(nb, struct admv1014_state, nb); int ret; if (action == POST_RATE_CHANGE) { mutex_lock(&st->lock); ret = notifier_from_errno(admv1014_update_quad_filters(st)); mutex_unlock(&st->lock); return ret; } return NOTIFY_OK; } #define _ADMV1014_EXT_INFO(_name, _shared, _ident) { \ .name = _name, \ .read = admv1014_read, \ .write = admv1014_write, \ .private = _ident, \ .shared = _shared, \ } static const struct iio_chan_spec_ext_info admv1014_ext_info[] = { _ADMV1014_EXT_INFO("calibscale_coarse", IIO_SEPARATE, ADMV1014_CALIBSCALE_COARSE), _ADMV1014_EXT_INFO("calibscale_fine", IIO_SEPARATE, ADMV1014_CALIBSCALE_FINE), { } }; #define ADMV1014_CHAN_IQ(_channel, rf_comp) { \ .type = IIO_ALTVOLTAGE, \ .modified = 1, \ .output = 0, \ .indexed = 1, \ .channel2 = IIO_MOD_##rf_comp, \ .channel = _channel, \ .info_mask_separate = BIT(IIO_CHAN_INFO_PHASE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_CALIBSCALE), \ } #define ADMV1014_CHAN_IF(_channel, rf_comp) { \ .type = IIO_ALTVOLTAGE, \ .modified = 1, \ .output = 0, \ .indexed = 1, \ .channel2 = IIO_MOD_##rf_comp, \ .channel = _channel, \ .info_mask_separate = BIT(IIO_CHAN_INFO_PHASE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ } #define ADMV1014_CHAN_POWER(_channel) { \ .type = IIO_POWER, \ .output = 0, \ .indexed = 1, \ .channel = _channel, \ .info_mask_separate = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE), \ } #define ADMV1014_CHAN_CALIBSCALE(_channel, rf_comp, _admv1014_ext_info) { \ .type = IIO_ALTVOLTAGE, \ .modified = 1, \ .output = 0, \ .indexed = 1, \ .channel2 = IIO_MOD_##rf_comp, \ .channel = _channel, \ .ext_info = _admv1014_ext_info, \ } static const struct iio_chan_spec admv1014_channels_iq[] = { ADMV1014_CHAN_IQ(0, I), ADMV1014_CHAN_IQ(0, Q), ADMV1014_CHAN_POWER(0), }; static const struct iio_chan_spec admv1014_channels_if[] = { ADMV1014_CHAN_IF(0, I), ADMV1014_CHAN_IF(0, Q), ADMV1014_CHAN_CALIBSCALE(0, I, admv1014_ext_info), ADMV1014_CHAN_CALIBSCALE(0, Q, admv1014_ext_info), ADMV1014_CHAN_POWER(0), }; static void admv1014_clk_disable(void *data) { clk_disable_unprepare(data); } static void admv1014_reg_disable(void *data) { regulator_bulk_disable(ADMV1014_NUM_REGULATORS, data); } static void admv1014_powerdown(void *data) { unsigned int enable_reg, enable_reg_msk; /* Disable all components in the Enable Register */ enable_reg_msk = ADMV1014_IBIAS_PD_MSK | ADMV1014_IF_AMP_PD_MSK | ADMV1014_QUAD_BG_PD_MSK | ADMV1014_BB_AMP_PD_MSK | ADMV1014_QUAD_IBIAS_PD_MSK | ADMV1014_BG_PD_MSK; enable_reg = FIELD_PREP(ADMV1014_IBIAS_PD_MSK, 1) | FIELD_PREP(ADMV1014_IF_AMP_PD_MSK, 1) | FIELD_PREP(ADMV1014_QUAD_BG_PD_MSK, 1) | FIELD_PREP(ADMV1014_BB_AMP_PD_MSK, 1) | FIELD_PREP(ADMV1014_QUAD_IBIAS_PD_MSK, 1) | FIELD_PREP(ADMV1014_BG_PD_MSK, 1); admv1014_spi_update_bits(data, ADMV1014_REG_ENABLE, enable_reg_msk, enable_reg); } static int admv1014_init(struct admv1014_state *st) { unsigned int chip_id, enable_reg, enable_reg_msk; struct spi_device *spi = st->spi; int ret; ret = regulator_bulk_enable(ADMV1014_NUM_REGULATORS, st->regulators); if (ret) { dev_err(&spi->dev, "Failed to enable regulators"); return ret; } ret = devm_add_action_or_reset(&spi->dev, admv1014_reg_disable, st->regulators); if (ret) return ret; ret = clk_prepare_enable(st->clkin); if (ret) return ret; ret = devm_add_action_or_reset(&spi->dev, admv1014_clk_disable, st->clkin); if (ret) return ret; st->nb.notifier_call = admv1014_freq_change; ret = devm_clk_notifier_register(&spi->dev, st->clkin, &st->nb); if (ret) return ret; ret = devm_add_action_or_reset(&spi->dev, admv1014_powerdown, st); if (ret) return ret; /* Perform a software reset */ ret = __admv1014_spi_update_bits(st, ADMV1014_REG_SPI_CONTROL, ADMV1014_SPI_SOFT_RESET_MSK, FIELD_PREP(ADMV1014_SPI_SOFT_RESET_MSK, 1)); if (ret) { dev_err(&spi->dev, "ADMV1014 SPI software reset failed.\n"); return ret; } ret = __admv1014_spi_update_bits(st, ADMV1014_REG_SPI_CONTROL, ADMV1014_SPI_SOFT_RESET_MSK, FIELD_PREP(ADMV1014_SPI_SOFT_RESET_MSK, 0)); if (ret) { dev_err(&spi->dev, "ADMV1014 SPI software reset disable failed.\n"); return ret; } ret = __admv1014_spi_write(st, ADMV1014_REG_VVA_TEMP_COMP, 0x727C); if (ret) { dev_err(&spi->dev, "Writing default Temperature Compensation value failed.\n"); return ret; } ret = __admv1014_spi_read(st, ADMV1014_REG_SPI_CONTROL, &chip_id); if (ret) return ret; chip_id = FIELD_GET(ADMV1014_CHIP_ID_MSK, chip_id); if (chip_id != ADMV1014_CHIP_ID) { dev_err(&spi->dev, "Invalid Chip ID.\n"); ret = -EINVAL; return ret; } ret = __admv1014_spi_update_bits(st, ADMV1014_REG_QUAD, ADMV1014_QUAD_SE_MODE_MSK, FIELD_PREP(ADMV1014_QUAD_SE_MODE_MSK, st->quad_se_mode)); if (ret) { dev_err(&spi->dev, "Writing Quad SE Mode failed.\n"); return ret; } ret = admv1014_update_quad_filters(st); if (ret) { dev_err(&spi->dev, "Update Quad Filters failed.\n"); return ret; } ret = admv1014_update_vcm_settings(st); if (ret) { dev_err(&spi->dev, "Update VCM Settings failed.\n"); return ret; } enable_reg_msk = ADMV1014_P1DB_COMPENSATION_MSK | ADMV1014_IF_AMP_PD_MSK | ADMV1014_BB_AMP_PD_MSK | ADMV1014_DET_EN_MSK; enable_reg = FIELD_PREP(ADMV1014_P1DB_COMPENSATION_MSK, st->p1db_comp ? 3 : 0) | FIELD_PREP(ADMV1014_IF_AMP_PD_MSK, (st->input_mode == ADMV1014_IF_MODE) ? 0 : 1) | FIELD_PREP(ADMV1014_BB_AMP_PD_MSK, (st->input_mode == ADMV1014_IF_MODE) ? 1 : 0) | FIELD_PREP(ADMV1014_DET_EN_MSK, st->det_en); return __admv1014_spi_update_bits(st, ADMV1014_REG_ENABLE, enable_reg_msk, enable_reg); } static int admv1014_properties_parse(struct admv1014_state *st) { const char *str; unsigned int i; struct spi_device *spi = st->spi; int ret; st->det_en = device_property_read_bool(&spi->dev, "adi,detector-enable"); st->p1db_comp = device_property_read_bool(&spi->dev, "adi,p1db-compensation-enable"); ret = device_property_read_string(&spi->dev, "adi,input-mode", &str); if (ret) { st->input_mode = ADMV1014_IQ_MODE; } else { ret = match_string(input_mode_names, ARRAY_SIZE(input_mode_names), str); if (ret < 0) return ret; st->input_mode = ret; } ret = device_property_read_string(&spi->dev, "adi,quad-se-mode", &str); if (ret) { st->quad_se_mode = ADMV1014_SE_MODE_POS; } else { ret = match_string(quad_se_mode_names, ARRAY_SIZE(quad_se_mode_names), str); if (ret < 0) return ret; st->quad_se_mode = ADMV1014_SE_MODE_POS + (ret * 3); } for (i = 0; i < ADMV1014_NUM_REGULATORS; ++i) st->regulators[i].supply = admv1014_reg_name[i]; ret = devm_regulator_bulk_get(&st->spi->dev, ADMV1014_NUM_REGULATORS, st->regulators); if (ret) { dev_err(&spi->dev, "Failed to request regulators"); return ret; } st->clkin = devm_clk_get(&spi->dev, "lo_in"); if (IS_ERR(st->clkin)) return dev_err_probe(&spi->dev, PTR_ERR(st->clkin), "failed to get the LO input clock\n"); return 0; } static int admv1014_probe(struct spi_device *spi) { struct iio_dev *indio_dev; struct admv1014_state *st; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); ret = admv1014_properties_parse(st); if (ret) return ret; indio_dev->info = &admv1014_info; indio_dev->name = "admv1014"; if (st->input_mode == ADMV1014_IQ_MODE) { indio_dev->channels = admv1014_channels_iq; indio_dev->num_channels = ARRAY_SIZE(admv1014_channels_iq); } else { indio_dev->channels = admv1014_channels_if; indio_dev->num_channels = ARRAY_SIZE(admv1014_channels_if); } st->spi = spi; mutex_init(&st->lock); ret = admv1014_init(st); if (ret) return ret; return devm_iio_device_register(&spi->dev, indio_dev); } static const struct spi_device_id admv1014_id[] = { { "admv1014", 0 }, {} }; MODULE_DEVICE_TABLE(spi, admv1014_id); static const struct of_device_id admv1014_of_match[] = { { .compatible = "adi,admv1014" }, {} }; MODULE_DEVICE_TABLE(of, admv1014_of_match); static struct spi_driver admv1014_driver = { .driver = { .name = "admv1014", .of_match_table = admv1014_of_match, }, .probe = admv1014_probe, .id_table = admv1014_id, }; module_spi_driver(admv1014_driver); MODULE_AUTHOR("Antoniu Miclaus