/* * Broadcom NetXtreme-E RoCE driver. * * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term * Broadcom refers to Broadcom Limited and/or its subsidiaries. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * BSD license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Description: QPLib resource manager */ #include #include #include #include #include #include #include "roce_hsi.h" #include "qplib_res.h" #include "qplib_sp.h" #include "qplib_rcfw.h" static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev, struct bnxt_qplib_stats *stats); static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev, struct bnxt_qplib_stats *stats); /* PBL */ static void __free_pbl(struct pci_dev *pdev, struct bnxt_qplib_pbl *pbl, bool is_umem) { int i; if (!is_umem) { for (i = 0; i < pbl->pg_count; i++) { if (pbl->pg_arr[i]) dma_free_coherent(&pdev->dev, pbl->pg_size, (void *)((unsigned long) pbl->pg_arr[i] & PAGE_MASK), pbl->pg_map_arr[i]); else dev_warn(&pdev->dev, "QPLIB: PBL free pg_arr[%d] empty?!", i); pbl->pg_arr[i] = NULL; } } kfree(pbl->pg_arr); pbl->pg_arr = NULL; kfree(pbl->pg_map_arr); pbl->pg_map_arr = NULL; pbl->pg_count = 0; pbl->pg_size = 0; } static int __alloc_pbl(struct pci_dev *pdev, struct bnxt_qplib_pbl *pbl, struct scatterlist *sghead, u32 pages, u32 pg_size) { struct scatterlist *sg; bool is_umem = false; int i; /* page ptr arrays */ pbl->pg_arr = kcalloc(pages, sizeof(void *), GFP_KERNEL); if (!pbl->pg_arr) return -ENOMEM; pbl->pg_map_arr = kcalloc(pages, sizeof(dma_addr_t), GFP_KERNEL); if (!pbl->pg_map_arr) { kfree(pbl->pg_arr); pbl->pg_arr = NULL; return -ENOMEM; } pbl->pg_count = 0; pbl->pg_size = pg_size; if (!sghead) { for (i = 0; i < pages; i++) { pbl->pg_arr[i] = dma_zalloc_coherent(&pdev->dev, pbl->pg_size, &pbl->pg_map_arr[i], GFP_KERNEL); if (!pbl->pg_arr[i]) goto fail; pbl->pg_count++; } } else { i = 0; is_umem = true; for_each_sg(sghead, sg, pages, i) { pbl->pg_map_arr[i] = sg_dma_address(sg); pbl->pg_arr[i] = sg_virt(sg); if (!pbl->pg_arr[i]) goto fail; pbl->pg_count++; } } return 0; fail: __free_pbl(pdev, pbl, is_umem); return -ENOMEM; } /* HWQ */ void bnxt_qplib_free_hwq(struct pci_dev *pdev, struct bnxt_qplib_hwq *hwq) { int i; if (!hwq->max_elements) return; if (hwq->level >= PBL_LVL_MAX) return; for (i = 0; i < hwq->level + 1; i++) { if (i == hwq->level) __free_pbl(pdev, &hwq->pbl[i], hwq->is_user); else __free_pbl(pdev, &hwq->pbl[i], false); } hwq->level = PBL_LVL_MAX; hwq->max_elements = 0; hwq->element_size = 0; hwq->prod = 0; hwq->cons = 0; hwq->cp_bit = 0; } /* All HWQs are power of 2 in size */ int bnxt_qplib_alloc_init_hwq(struct pci_dev *pdev, struct bnxt_qplib_hwq *hwq, struct scatterlist *sghead, int nmap, u32 *elements, u32 element_size, u32 aux, u32 pg_size, enum bnxt_qplib_hwq_type hwq_type) { u32 pages, slots, size, aux_pages = 0, aux_size = 0; dma_addr_t *src_phys_ptr, **dst_virt_ptr; int i, rc; hwq->level = PBL_LVL_MAX; slots = roundup_pow_of_two(*elements); if (aux) { aux_size = roundup_pow_of_two(aux); aux_pages = (slots * aux_size) / pg_size; if ((slots * aux_size) % pg_size) aux_pages++; } size = roundup_pow_of_two(element_size); if (!sghead) { hwq->is_user = false; pages = (slots * size) / pg_size + aux_pages; if ((slots * size) % pg_size) pages++; if (!pages) return -EINVAL; } else { hwq->is_user = true; pages = nmap; } /* Alloc the 1st memory block; can be a PDL/PTL/PBL */ if (sghead && (pages == MAX_PBL_LVL_0_PGS)) rc = __alloc_pbl(pdev, &hwq->pbl[PBL_LVL_0], sghead, pages, pg_size); else rc = __alloc_pbl(pdev, &hwq->pbl[PBL_LVL_0], NULL, 1, pg_size); if (rc) goto fail; hwq->level = PBL_LVL_0; if (pages > MAX_PBL_LVL_0_PGS) { if (pages > MAX_PBL_LVL_1_PGS) { /* 2 levels of indirection */ rc = __alloc_pbl(pdev, &hwq->pbl[PBL_LVL_1], NULL, MAX_PBL_LVL_1_PGS_FOR_LVL_2, pg_size); if (rc) goto fail; /* Fill in lvl0 PBL */ dst_virt_ptr = (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr; src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr; for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++) dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = src_phys_ptr[i] | PTU_PDE_VALID; hwq->level = PBL_LVL_1; rc = __alloc_pbl(pdev, &hwq->pbl[PBL_LVL_2], sghead, pages, pg_size); if (rc) goto fail; /* Fill in lvl1 PBL */ dst_virt_ptr = (dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr; src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr; for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) { dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = src_phys_ptr[i] | PTU_PTE_VALID; } if (hwq_type == HWQ_TYPE_QUEUE) { /* Find the last pg of the size */ i = hwq->pbl[PBL_LVL_2].pg_count; dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |= PTU_PTE_LAST; if (i > 1) dst_virt_ptr[PTR_PG(i - 2)] [PTR_IDX(i - 2)] |= PTU_PTE_NEXT_TO_LAST; } hwq->level = PBL_LVL_2; } else { u32 flag = hwq_type == HWQ_TYPE_L2_CMPL ? 0 : PTU_PTE_VALID; /* 1 level of indirection */ rc = __alloc_pbl(pdev, &hwq->pbl[PBL_LVL_1], sghead, pages, pg_size); if (rc) goto fail; /* Fill in lvl0 PBL */ dst_virt_ptr = (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr; src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr; for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++) { dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = src_phys_ptr[i] | flag; } if (hwq_type == HWQ_TYPE_QUEUE) { /* Find the last pg of the size */ i = hwq->pbl[PBL_LVL_1].pg_count; dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |= PTU_PTE_LAST; if (i > 1) dst_virt_ptr[PTR_PG(i - 2)] [PTR_IDX(i - 2)] |= PTU_PTE_NEXT_TO_LAST; } hwq->level = PBL_LVL_1; } } hwq->pdev = pdev; spin_lock_init(&hwq->lock); hwq->prod = 0; hwq->cons = 0; *elements = hwq->max_elements = slots; hwq->element_size = size; /* For direct access to the elements */ hwq->pbl_ptr = hwq->pbl[hwq->level].pg_arr; hwq->pbl_dma_ptr = hwq->pbl[hwq->level].pg_map_arr; return 0; fail: bnxt_qplib_free_hwq(pdev, hwq); return -ENOMEM; } /* Context Tables */ void bnxt_qplib_free_ctx(struct pci_dev *pdev, struct bnxt_qplib_ctx *ctx) { int i; bnxt_qplib_free_hwq(pdev, &ctx->qpc_tbl); bnxt_qplib_free_hwq(pdev, &ctx->mrw_tbl); bnxt_qplib_free_hwq(pdev, &ctx->srqc_tbl); bnxt_qplib_free_hwq(pdev, &ctx->cq_tbl); bnxt_qplib_free_hwq(pdev, &ctx->tim_tbl); for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) bnxt_qplib_free_hwq(pdev, &ctx->tqm_tbl[i]); bnxt_qplib_free_hwq(pdev, &ctx->tqm_pde); bnxt_qplib_free_stats_ctx(pdev, &ctx->stats); } /* * Routine: bnxt_qplib_alloc_ctx * Description: * Context tables are memories which are used by the chip fw. * The 6 tables defined are: * QPC ctx - holds QP states * MRW ctx - holds memory region and window * SRQ ctx - holds shared RQ states * CQ ctx - holds completion queue states * TQM ctx - holds Tx Queue Manager context * TIM ctx - holds timer context * Depending on the size of the tbl requested, either a 1 Page Buffer List * or a 1-to-2-stage indirection Page Directory List + 1 PBL is used * instead. * Table might be employed as follows: * For 0 < ctx size <= 1 PAGE, 0 level of ind is used * For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used * For 512 < ctx size <= MAX, 2 levels of ind is used * Returns: * 0 if success, else -ERRORS */ int bnxt_qplib_alloc_ctx(struct pci_dev *pdev, struct bnxt_qplib_ctx *ctx, bool virt_fn) { int i, j, k, rc = 0; int fnz_idx = -1; __le64 **pbl_ptr; if (virt_fn) goto stats_alloc; /* QPC Tables */ ctx->qpc_tbl.max_elements = ctx->qpc_count; rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->qpc_tbl, NULL, 0, &ctx->qpc_tbl.max_elements, BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE, 0, PAGE_SIZE, HWQ_TYPE_CTX); if (rc) goto fail; /* MRW Tables */ ctx->mrw_tbl.max_elements = ctx->mrw_count; rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->mrw_tbl, NULL, 0, &ctx->mrw_tbl.max_elements, BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE, 0, PAGE_SIZE, HWQ_TYPE_CTX); if (rc) goto fail; /* SRQ Tables */ ctx->srqc_tbl.max_elements = ctx->srqc_count; rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->srqc_tbl, NULL, 0, &ctx->srqc_tbl.max_elements, BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE, 0, PAGE_SIZE, HWQ_TYPE_CTX); if (rc) goto fail; /* CQ Tables */ ctx->cq_tbl.max_elements = ctx->cq_count; rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->cq_tbl, NULL, 0, &ctx->cq_tbl.max_elements, BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE, 0, PAGE_SIZE, HWQ_TYPE_CTX); if (rc) goto fail; /* TQM Buffer */ ctx->tqm_pde.max_elements = 512; rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->tqm_pde, NULL, 0, &ctx->tqm_pde.max_elements, sizeof(u64), 0, PAGE_SIZE, HWQ_TYPE_CTX); if (rc) goto fail; for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) { if (!ctx->tqm_count[i]) continue; ctx->tqm_tbl[i].max_elements = ctx->qpc_count * ctx->tqm_count[i]; rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->tqm_tbl[i], NULL, 0, &ctx->tqm_tbl[i].max_elements, 1, 0, PAGE_SIZE, HWQ_TYPE_CTX); if (rc) goto fail; } pbl_ptr = (__le64 **)ctx->tqm_pde.pbl_ptr; for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ; i++, j += MAX_TQM_ALLOC_BLK_SIZE) { if (!ctx->tqm_tbl[i].max_elements) continue; if (fnz_idx == -1) fnz_idx = i; switch (ctx->tqm_tbl[i].level) { case PBL_LVL_2: for (k = 0; k < ctx->tqm_tbl[i].pbl[PBL_LVL_1].pg_count; k++) pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)] = cpu_to_le64( ctx->tqm_tbl[i].pbl[PBL_LVL_1].pg_map_arr[k] | PTU_PTE_VALID); break; case PBL_LVL_1: case PBL_LVL_0: default: pbl_ptr[PTR_PG(j)][PTR_IDX(j)] = cpu_to_le64( ctx->tqm_tbl[i].pbl[PBL_LVL_0].pg_map_arr[0] | PTU_PTE_VALID); break; } } if (fnz_idx == -1) fnz_idx = 0; ctx->tqm_pde_level = ctx->tqm_tbl[fnz_idx].level == PBL_LVL_2 ? PBL_LVL_2 : ctx->tqm_tbl[fnz_idx].level + 1; /* TIM Buffer */ ctx->tim_tbl.max_elements = ctx->qpc_count * 16; rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->tim_tbl, NULL, 0, &ctx->tim_tbl.max_elements, 1, 0, PAGE_SIZE, HWQ_TYPE_CTX); if (rc) goto fail; stats_alloc: /* Stats */ rc = bnxt_qplib_alloc_stats_ctx(pdev, &ctx->stats); if (rc) goto fail; return 0; fail: bnxt_qplib_free_ctx(pdev, ctx); return rc; } /* GUID */ void bnxt_qplib_get_guid(u8 *dev_addr, u8 *guid) { u8 mac[ETH_ALEN]; /* MAC-48 to EUI-64 mapping */ memcpy(mac, dev_addr, ETH_ALEN); guid[0] = mac[0] ^ 2; guid[1] = mac[1]; guid[2] = mac[2]; guid[3] = 0xff; guid[4] = 0xfe; guid[5] = mac[3]; guid[6] = mac[4]; guid[7] = mac[5]; } static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_sgid_tbl *sgid_tbl) { kfree(sgid_tbl->tbl); kfree(sgid_tbl->hw_id); kfree(sgid_tbl->ctx); kfree(sgid_tbl->vlan); sgid_tbl->tbl = NULL; sgid_tbl->hw_id = NULL; sgid_tbl->ctx = NULL; sgid_tbl->vlan = NULL; sgid_tbl->max = 0; sgid_tbl->active = 0; } static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_sgid_tbl *sgid_tbl, u16 max) { sgid_tbl->tbl = kcalloc(max, sizeof(struct bnxt_qplib_gid), GFP_KERNEL); if (!sgid_tbl->tbl) return -ENOMEM; sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL); if (!sgid_tbl->hw_id) goto out_free1; sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL); if (!sgid_tbl->ctx) goto out_free2; sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL); if (!sgid_tbl->vlan) goto out_free3; sgid_tbl->max = max; return 0; out_free3: kfree(sgid_tbl->ctx); sgid_tbl->ctx = NULL; out_free2: kfree(sgid_tbl->hw_id); sgid_tbl->hw_id = NULL; out_free1: kfree(sgid_tbl->tbl); sgid_tbl->tbl = NULL; return -ENOMEM; }; static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_sgid_tbl *sgid_tbl) { int i; for (i = 0; i < sgid_tbl->max; i++) { if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero, sizeof(bnxt_qplib_gid_zero))) bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i], true); } memset(sgid_tbl->tbl, 0, sizeof(struct bnxt_qplib_gid) * sgid_tbl->max); memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max); memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max); sgid_tbl->active = 0; } static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl, struct net_device *netdev) { memset(sgid_tbl->tbl, 0, sizeof(struct bnxt_qplib_gid) * sgid_tbl->max); memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max); } static void bnxt_qplib_free_pkey_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pkey_tbl *pkey_tbl) { if (!pkey_tbl->tbl) dev_dbg(&res->pdev->dev, "QPLIB: PKEY tbl not present"); else kfree(pkey_tbl->tbl); pkey_tbl->tbl = NULL; pkey_tbl->max = 0; pkey_tbl->active = 0; } static int bnxt_qplib_alloc_pkey_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pkey_tbl *pkey_tbl, u16 max) { pkey_tbl->tbl = kcalloc(max, sizeof(u16), GFP_KERNEL); if (!pkey_tbl->tbl) return -ENOMEM; pkey_tbl->max = max; return 0; }; /* PDs */ int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd) { u32 bit_num; bit_num = find_first_bit(pdt->tbl, pdt->max); if (bit_num == pdt->max) return -ENOMEM; /* Found unused PD */ clear_bit(bit_num, pdt->tbl); pd->id = bit_num; return 0; } int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res, struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd) { if (test_and_set_bit(pd->id, pdt->tbl)) { dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d", pd->id); return -EINVAL; } pd->id = 0; return 0; } static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt) { kfree(pdt->tbl); pdt->tbl = NULL; pdt->max = 0; } static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pd_tbl *pdt, u32 max) { u32 bytes; bytes = max >> 3; if (!bytes) bytes = 1; pdt->tbl = kmalloc(bytes, GFP_KERNEL); if (!pdt->tbl) return -ENOMEM; pdt->max = max; memset((u8 *)pdt->tbl, 0xFF, bytes); return 0; } /* DPIs */ int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit, struct bnxt_qplib_dpi *dpi, void *app) { u32 bit_num; bit_num = find_first_bit(dpit->tbl, dpit->max); if (bit_num == dpit->max) return -ENOMEM; /* Found unused DPI */ clear_bit(bit_num, dpit->tbl); dpit->app_tbl[bit_num] = app; dpi->dpi = bit_num; dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE); dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE); return 0; } int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res, struct bnxt_qplib_dpi_tbl *dpit, struct bnxt_qplib_dpi *dpi) { if (dpi->dpi >= dpit->max) { dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d", dpi->dpi); return -EINVAL; } if (test_and_set_bit(dpi->dpi, dpit->tbl)) { dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d", dpi->dpi); return -EINVAL; } if (dpit->app_tbl) dpit->app_tbl[dpi->dpi] = NULL; memset(dpi, 0, sizeof(*dpi)); return 0; } static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_dpi_tbl *dpit) { kfree(dpit->tbl); kfree(dpit->app_tbl); if (dpit->dbr_bar_reg_iomem) pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem); memset(dpit, 0, sizeof(*dpit)); } static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_dpi_tbl *dpit, u32 dbr_offset) { u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION; resource_size_t bar_reg_base; u32 dbr_len, bytes; if (dpit->dbr_bar_reg_iomem) { dev_err(&res->pdev->dev, "QPLIB: DBR BAR region %d already mapped", dbr_bar_reg); return -EALREADY; } bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg); if (!bar_reg_base) { dev_err(&res->pdev->dev, "QPLIB: BAR region %d resc start failed", dbr_bar_reg); return -ENOMEM; } dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset; if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) { dev_err(&res->pdev->dev, "QPLIB: Invalid DBR length %d", dbr_len); return -ENOMEM; } dpit->dbr_bar_reg_iomem = ioremap_nocache(bar_reg_base + dbr_offset, dbr_len); if (!dpit->dbr_bar_reg_iomem) { dev_err(&res->pdev->dev, "QPLIB: FP: DBR BAR region %d mapping failed", dbr_bar_reg); return -ENOMEM; } dpit->unmapped_dbr = bar_reg_base + dbr_offset; dpit->max = dbr_len / PAGE_SIZE; dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL); if (!dpit->app_tbl) goto unmap_io; bytes = dpit->max >> 3; if (!bytes) bytes = 1; dpit->tbl = kmalloc(bytes, GFP_KERNEL); if (!dpit->tbl) { kfree(dpit->app_tbl); dpit->app_tbl = NULL; goto unmap_io; } memset((u8 *)dpit->tbl, 0xFF, bytes); return 0; unmap_io: pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem); dpit->dbr_bar_reg_iomem = NULL; return -ENOMEM; } /* PKEYs */ static void bnxt_qplib_cleanup_pkey_tbl(struct bnxt_qplib_pkey_tbl *pkey_tbl) { memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max); pkey_tbl->active = 0; } static void bnxt_qplib_init_pkey_tbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pkey_tbl *pkey_tbl) { u16 pkey = 0xFFFF; memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max); /* pkey default = 0xFFFF */ bnxt_qplib_add_pkey(res, pkey_tbl, &pkey, false); } /* Stats */ static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev, struct bnxt_qplib_stats *stats) { if (stats->dma) { dma_free_coherent(&pdev->dev, stats->size, stats->dma, stats->dma_map); } memset(stats, 0, sizeof(*stats)); stats->fw_id = -1; } static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev, struct bnxt_qplib_stats *stats) { memset(stats, 0, sizeof(*stats)); stats->fw_id = -1; stats->size = sizeof(struct ctx_hw_stats); stats->dma = dma_alloc_coherent(&pdev->dev, stats->size, &stats->dma_map, GFP_KERNEL); if (!stats->dma) { dev_err(&pdev->dev, "QPLIB: Stats DMA allocation failed"); return -ENOMEM; } return 0; } void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res) { bnxt_qplib_cleanup_pkey_tbl(&res->pkey_tbl); bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl); } int bnxt_qplib_init_res(struct bnxt_qplib_res *res) { bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev); bnxt_qplib_init_pkey_tbl(res, &res->pkey_tbl); return 0; } void bnxt_qplib_free_res(struct bnxt_qplib_res *res) { bnxt_qplib_free_pkey_tbl(res, &res->pkey_tbl); bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl); bnxt_qplib_free_pd_tbl(&res->pd_tbl); bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl); res->netdev = NULL; res->pdev = NULL; } int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev, struct net_device *netdev, struct bnxt_qplib_dev_attr *dev_attr) { int rc = 0; res->pdev = pdev; res->netdev = netdev; rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid); if (rc) goto fail; rc = bnxt_qplib_alloc_pkey_tbl(res, &res->pkey_tbl, dev_attr->max_pkey); if (rc) goto fail; rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd); if (rc) goto fail; rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size); if (rc) goto fail; return 0; fail: bnxt_qplib_free_res(res); return rc; }