// SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2018 Intel Corporation. * * Authors: Gayatri Kammela * Sohil Mehta * Jacob Pan * Lu Baolu */ #include #include #include #include #include "iommu.h" #include "pasid.h" #include "perf.h" struct tbl_walk { u16 bus; u16 devfn; u32 pasid; struct root_entry *rt_entry; struct context_entry *ctx_entry; struct pasid_entry *pasid_tbl_entry; }; struct iommu_regset { int offset; const char *regs; }; #define DEBUG_BUFFER_SIZE 1024 static char debug_buf[DEBUG_BUFFER_SIZE]; #define IOMMU_REGSET_ENTRY(_reg_) \ { DMAR_##_reg_##_REG, __stringify(_reg_) } static const struct iommu_regset iommu_regs_32[] = { IOMMU_REGSET_ENTRY(VER), IOMMU_REGSET_ENTRY(GCMD), IOMMU_REGSET_ENTRY(GSTS), IOMMU_REGSET_ENTRY(FSTS), IOMMU_REGSET_ENTRY(FECTL), IOMMU_REGSET_ENTRY(FEDATA), IOMMU_REGSET_ENTRY(FEADDR), IOMMU_REGSET_ENTRY(FEUADDR), IOMMU_REGSET_ENTRY(PMEN), IOMMU_REGSET_ENTRY(PLMBASE), IOMMU_REGSET_ENTRY(PLMLIMIT), IOMMU_REGSET_ENTRY(ICS), IOMMU_REGSET_ENTRY(PRS), IOMMU_REGSET_ENTRY(PECTL), IOMMU_REGSET_ENTRY(PEDATA), IOMMU_REGSET_ENTRY(PEADDR), IOMMU_REGSET_ENTRY(PEUADDR), }; static const struct iommu_regset iommu_regs_64[] = { IOMMU_REGSET_ENTRY(CAP), IOMMU_REGSET_ENTRY(ECAP), IOMMU_REGSET_ENTRY(RTADDR), IOMMU_REGSET_ENTRY(CCMD), IOMMU_REGSET_ENTRY(AFLOG), IOMMU_REGSET_ENTRY(PHMBASE), IOMMU_REGSET_ENTRY(PHMLIMIT), IOMMU_REGSET_ENTRY(IQH), IOMMU_REGSET_ENTRY(IQT), IOMMU_REGSET_ENTRY(IQA), IOMMU_REGSET_ENTRY(IRTA), IOMMU_REGSET_ENTRY(PQH), IOMMU_REGSET_ENTRY(PQT), IOMMU_REGSET_ENTRY(PQA), IOMMU_REGSET_ENTRY(MTRRCAP), IOMMU_REGSET_ENTRY(MTRRDEF), IOMMU_REGSET_ENTRY(MTRR_FIX64K_00000), IOMMU_REGSET_ENTRY(MTRR_FIX16K_80000), IOMMU_REGSET_ENTRY(MTRR_FIX16K_A0000), IOMMU_REGSET_ENTRY(MTRR_FIX4K_C0000), IOMMU_REGSET_ENTRY(MTRR_FIX4K_C8000), IOMMU_REGSET_ENTRY(MTRR_FIX4K_D0000), IOMMU_REGSET_ENTRY(MTRR_FIX4K_D8000), IOMMU_REGSET_ENTRY(MTRR_FIX4K_E0000), IOMMU_REGSET_ENTRY(MTRR_FIX4K_E8000), IOMMU_REGSET_ENTRY(MTRR_FIX4K_F0000), IOMMU_REGSET_ENTRY(MTRR_FIX4K_F8000), IOMMU_REGSET_ENTRY(MTRR_PHYSBASE0), IOMMU_REGSET_ENTRY(MTRR_PHYSMASK0), IOMMU_REGSET_ENTRY(MTRR_PHYSBASE1), IOMMU_REGSET_ENTRY(MTRR_PHYSMASK1), IOMMU_REGSET_ENTRY(MTRR_PHYSBASE2), IOMMU_REGSET_ENTRY(MTRR_PHYSMASK2), IOMMU_REGSET_ENTRY(MTRR_PHYSBASE3), IOMMU_REGSET_ENTRY(MTRR_PHYSMASK3), IOMMU_REGSET_ENTRY(MTRR_PHYSBASE4), IOMMU_REGSET_ENTRY(MTRR_PHYSMASK4), IOMMU_REGSET_ENTRY(MTRR_PHYSBASE5), IOMMU_REGSET_ENTRY(MTRR_PHYSMASK5), IOMMU_REGSET_ENTRY(MTRR_PHYSBASE6), IOMMU_REGSET_ENTRY(MTRR_PHYSMASK6), IOMMU_REGSET_ENTRY(MTRR_PHYSBASE7), IOMMU_REGSET_ENTRY(MTRR_PHYSMASK7), IOMMU_REGSET_ENTRY(MTRR_PHYSBASE8), IOMMU_REGSET_ENTRY(MTRR_PHYSMASK8), IOMMU_REGSET_ENTRY(MTRR_PHYSBASE9), IOMMU_REGSET_ENTRY(MTRR_PHYSMASK9), }; static struct dentry *intel_iommu_debug; static int iommu_regset_show(struct seq_file *m, void *unused) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; unsigned long flag; int i, ret = 0; u64 value; rcu_read_lock(); for_each_active_iommu(iommu, drhd) { if (!drhd->reg_base_addr) { seq_puts(m, "IOMMU: Invalid base address\n"); ret = -EINVAL; goto out; } seq_printf(m, "IOMMU: %s Register Base Address: %llx\n", iommu->name, drhd->reg_base_addr); seq_puts(m, "Name\t\t\tOffset\t\tContents\n"); /* * Publish the contents of the 64-bit hardware registers * by adding the offset to the pointer (virtual address). */ raw_spin_lock_irqsave(&iommu->register_lock, flag); for (i = 0 ; i < ARRAY_SIZE(iommu_regs_32); i++) { value = dmar_readl(iommu->reg + iommu_regs_32[i].offset); seq_printf(m, "%-16s\t0x%02x\t\t0x%016llx\n", iommu_regs_32[i].regs, iommu_regs_32[i].offset, value); } for (i = 0 ; i < ARRAY_SIZE(iommu_regs_64); i++) { value = dmar_readq(iommu->reg + iommu_regs_64[i].offset); seq_printf(m, "%-16s\t0x%02x\t\t0x%016llx\n", iommu_regs_64[i].regs, iommu_regs_64[i].offset, value); } raw_spin_unlock_irqrestore(&iommu->register_lock, flag); seq_putc(m, '\n'); } out: rcu_read_unlock(); return ret; } DEFINE_SHOW_ATTRIBUTE(iommu_regset); static inline void print_tbl_walk(struct seq_file *m) { struct tbl_walk *tbl_wlk = m->private; seq_printf(m, "%02x:%02x.%x\t0x%016llx:0x%016llx\t0x%016llx:0x%016llx\t", tbl_wlk->bus, PCI_SLOT(tbl_wlk->devfn), PCI_FUNC(tbl_wlk->devfn), tbl_wlk->rt_entry->hi, tbl_wlk->rt_entry->lo, tbl_wlk->ctx_entry->hi, tbl_wlk->ctx_entry->lo); /* * A legacy mode DMAR doesn't support PASID, hence default it to -1 * indicating that it's invalid. Also, default all PASID related fields * to 0. */ if (!tbl_wlk->pasid_tbl_entry) seq_printf(m, "%-6d\t0x%016llx:0x%016llx:0x%016llx\n", -1, (u64)0, (u64)0, (u64)0); else seq_printf(m, "%-6d\t0x%016llx:0x%016llx:0x%016llx\n", tbl_wlk->pasid, tbl_wlk->pasid_tbl_entry->val[2], tbl_wlk->pasid_tbl_entry->val[1], tbl_wlk->pasid_tbl_entry->val[0]); } static void pasid_tbl_walk(struct seq_file *m, struct pasid_entry *tbl_entry, u16 dir_idx) { struct tbl_walk *tbl_wlk = m->private; u8 tbl_idx; for (tbl_idx = 0; tbl_idx < PASID_TBL_ENTRIES; tbl_idx++) { if (pasid_pte_is_present(tbl_entry)) { tbl_wlk->pasid_tbl_entry = tbl_entry; tbl_wlk->pasid = (dir_idx << PASID_PDE_SHIFT) + tbl_idx; print_tbl_walk(m); } tbl_entry++; } } static void pasid_dir_walk(struct seq_file *m, u64 pasid_dir_ptr, u16 pasid_dir_size) { struct pasid_dir_entry *dir_entry = phys_to_virt(pasid_dir_ptr); struct pasid_entry *pasid_tbl; u16 dir_idx; for (dir_idx = 0; dir_idx < pasid_dir_size; dir_idx++) { pasid_tbl = get_pasid_table_from_pde(dir_entry); if (pasid_tbl) pasid_tbl_walk(m, pasid_tbl, dir_idx); dir_entry++; } } static void ctx_tbl_walk(struct seq_file *m, struct intel_iommu *iommu, u16 bus) { struct context_entry *context; u16 devfn, pasid_dir_size; u64 pasid_dir_ptr; for (devfn = 0; devfn < 256; devfn++) { struct tbl_walk tbl_wlk = {0}; /* * Scalable mode root entry points to upper scalable mode * context table and lower scalable mode context table. Each * scalable mode context table has 128 context entries where as * legacy mode context table has 256 context entries. So in * scalable mode, the context entries for former 128 devices are * in the lower scalable mode context table, while the latter * 128 devices are in the upper scalable mode context table. * In scalable mode, when devfn > 127, iommu_context_addr() * automatically refers to upper scalable mode context table and * hence the caller doesn't have to worry about differences * between scalable mode and non scalable mode. */ context = iommu_context_addr(iommu, bus, devfn, 0); if (!context) return; if (!context_present(context)) continue; tbl_wlk.bus = bus; tbl_wlk.devfn = devfn; tbl_wlk.rt_entry = &iommu->root_entry[bus]; tbl_wlk.ctx_entry = context; m->private = &tbl_wlk; if (dmar_readq(iommu->reg + DMAR_RTADDR_REG) & DMA_RTADDR_SMT) { pasid_dir_ptr = context->lo & VTD_PAGE_MASK; pasid_dir_size = get_pasid_dir_size(context); pasid_dir_walk(m, pasid_dir_ptr, pasid_dir_size); continue; } print_tbl_walk(m); } } static void root_tbl_walk(struct seq_file *m, struct intel_iommu *iommu) { u16 bus; spin_lock(&iommu->lock); seq_printf(m, "IOMMU %s: Root Table Address: 0x%llx\n", iommu->name, (u64)virt_to_phys(iommu->root_entry)); seq_puts(m, "B.D.F\tRoot_entry\t\t\t\tContext_entry\t\t\t\tPASID\tPASID_table_entry\n"); /* * No need to check if the root entry is present or not because * iommu_context_addr() performs the same check before returning * context entry. */ for (bus = 0; bus < 256; bus++) ctx_tbl_walk(m, iommu, bus); spin_unlock(&iommu->lock); } static int dmar_translation_struct_show(struct seq_file *m, void *unused) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; u32 sts; rcu_read_lock(); for_each_active_iommu(iommu, drhd) { sts = dmar_readl(iommu->reg + DMAR_GSTS_REG); if (!(sts & DMA_GSTS_TES)) { seq_printf(m, "DMA Remapping is not enabled on %s\n", iommu->name); continue; } root_tbl_walk(m, iommu); seq_putc(m, '\n'); } rcu_read_unlock(); return 0; } DEFINE_SHOW_ATTRIBUTE(dmar_translation_struct); static inline unsigned long level_to_directory_size(int level) { return BIT_ULL(VTD_PAGE_SHIFT + VTD_STRIDE_SHIFT * (level - 1)); } static inline void dump_page_info(struct seq_file *m, unsigned long iova, u64 *path) { seq_printf(m, "0x%013lx |\t0x%016llx\t0x%016llx\t0x%016llx", iova >> VTD_PAGE_SHIFT, path[5], path[4], path[3]); if (path[2]) { seq_printf(m, "\t0x%016llx", path[2]); if (path[1]) seq_printf(m, "\t0x%016llx", path[1]); } seq_putc(m, '\n'); } static void pgtable_walk_level(struct seq_file *m, struct dma_pte *pde, int level, unsigned long start, u64 *path) { int i; if (level > 5 || level < 1) return; for (i = 0; i < BIT_ULL(VTD_STRIDE_SHIFT); i++, pde++, start += level_to_directory_size(level)) { if (!dma_pte_present(pde)) continue; path[level] = pde->val; if (dma_pte_superpage(pde) || level == 1) dump_page_info(m, start, path); else pgtable_walk_level(m, phys_to_virt(dma_pte_addr(pde)), level - 1, start, path); path[level] = 0; } } static int domain_translation_struct_show(struct seq_file *m, struct device_domain_info *info, ioasid_t pasid) { bool scalable, found = false; struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; u16 devfn, bus, seg; bus = info->bus; devfn = info->devfn; seg = info->segment; rcu_read_lock(); for_each_active_iommu(iommu, drhd) { struct context_entry *context; u64 pgd, path[6] = { 0 }; u32 sts, agaw; if (seg != iommu->segment) continue; sts = dmar_readl(iommu->reg + DMAR_GSTS_REG); if (!(sts & DMA_GSTS_TES)) { seq_printf(m, "DMA Remapping is not enabled on %s\n", iommu->name); continue; } if (dmar_readq(iommu->reg + DMAR_RTADDR_REG) & DMA_RTADDR_SMT) scalable = true; else scalable = false; /* * The iommu->lock is held across the callback, which will * block calls to domain_attach/domain_detach. Hence, * the domain of the device will not change during traversal. * * Traversing page table possibly races with the iommu_unmap() * interface. This could be solved by RCU-freeing the page * table pages in the iommu_unmap() path. */ spin_lock(&iommu->lock); context = iommu_context_addr(iommu, bus, devfn, 0); if (!context || !context_present(context)) goto iommu_unlock; if (scalable) { /* scalable mode */ struct pasid_entry *pasid_tbl, *pasid_tbl_entry; struct pasid_dir_entry *dir_tbl, *dir_entry; u16 dir_idx, tbl_idx, pgtt; u64 pasid_dir_ptr; pasid_dir_ptr = context->lo & VTD_PAGE_MASK; /* Dump specified device domain mappings with PASID. */ dir_idx = pasid >> PASID_PDE_SHIFT; tbl_idx = pasid & PASID_PTE_MASK; dir_tbl = phys_to_virt(pasid_dir_ptr); dir_entry = &dir_tbl[dir_idx]; pasid_tbl = get_pasid_table_from_pde(dir_entry); if (!pasid_tbl) goto iommu_unlock; pasid_tbl_entry = &pasid_tbl[tbl_idx]; if (!pasid_pte_is_present(pasid_tbl_entry)) goto iommu_unlock; /* * According to PASID Granular Translation Type(PGTT), * get the page table pointer. */ pgtt = (u16)(pasid_tbl_entry->val[0] & GENMASK_ULL(8, 6)) >> 6; agaw = (u8)(pasid_tbl_entry->val[0] & GENMASK_ULL(4, 2)) >> 2; switch (pgtt) { case PASID_ENTRY_PGTT_FL_ONLY: pgd = pasid_tbl_entry->val[2]; break; case PASID_ENTRY_PGTT_SL_ONLY: case PASID_ENTRY_PGTT_NESTED: pgd = pasid_tbl_entry->val[0]; break; default: goto iommu_unlock; } pgd &= VTD_PAGE_MASK; } else { /* legacy mode */ pgd = context->lo & VTD_PAGE_MASK; agaw = context->hi & 7; } seq_printf(m, "Device %04x:%02x:%02x.%x ", iommu->segment, bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); if (scalable) seq_printf(m, "with pasid %x @0x%llx\n", pasid, pgd); else seq_printf(m, "@0x%llx\n", pgd); seq_printf(m, "%-17s\t%-18s\t%-18s\t%-18s\t%-18s\t%-s\n", "IOVA_PFN", "PML5E", "PML4E", "PDPE", "PDE", "PTE"); pgtable_walk_level(m, phys_to_virt(pgd), agaw + 2, 0, path); found = true; iommu_unlock: spin_unlock(&iommu->lock); if (found) break; } rcu_read_unlock(); return 0; } static int dev_domain_translation_struct_show(struct seq_file *m, void *unused) { struct device_domain_info *info = (struct device_domain_info *)m->private; return domain_translation_struct_show(m, info, IOMMU_NO_PASID); } DEFINE_SHOW_ATTRIBUTE(dev_domain_translation_struct); static int pasid_domain_translation_struct_show(struct seq_file *m, void *unused) { struct dev_pasid_info *dev_pasid = (struct dev_pasid_info *)m->private; struct device_domain_info *info = dev_iommu_priv_get(dev_pasid->dev); return domain_translation_struct_show(m, info, dev_pasid->pasid); } DEFINE_SHOW_ATTRIBUTE(pasid_domain_translation_struct); static void invalidation_queue_entry_show(struct seq_file *m, struct intel_iommu *iommu) { int index, shift = qi_shift(iommu); struct qi_desc *desc; int offset; if (ecap_smts(iommu->ecap)) seq_puts(m, "Index\t\tqw0\t\t\tqw1\t\t\tqw2\t\t\tqw3\t\t\tstatus\n"); else seq_puts(m, "Index\t\tqw0\t\t\tqw1\t\t\tstatus\n"); for (index = 0; index < QI_LENGTH; index++) { offset = index << shift; desc = iommu->qi->desc + offset; if (ecap_smts(iommu->ecap)) seq_printf(m, "%5d\t%016llx\t%016llx\t%016llx\t%016llx\t%016x\n", index, desc->qw0, desc->qw1, desc->qw2, desc->qw3, iommu->qi->desc_status[index]); else seq_printf(m, "%5d\t%016llx\t%016llx\t%016x\n", index, desc->qw0, desc->qw1, iommu->qi->desc_status[index]); } } static int invalidation_queue_show(struct seq_file *m, void *unused) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; unsigned long flags; struct q_inval *qi; int shift; rcu_read_lock(); for_each_active_iommu(iommu, drhd) { qi = iommu->qi; shift = qi_shift(iommu); if (!qi || !ecap_qis(iommu->ecap)) continue; seq_printf(m, "Invalidation queue on IOMMU: %s\n", iommu->name); raw_spin_lock_irqsave(&qi->q_lock, flags); seq_printf(m, " Base: 0x%llx\tHead: %lld\tTail: %lld\n", (u64)virt_to_phys(qi->desc), dmar_readq(iommu->reg + DMAR_IQH_REG) >> shift, dmar_readq(iommu->reg + DMAR_IQT_REG) >> shift); invalidation_queue_entry_show(m, iommu); raw_spin_unlock_irqrestore(&qi->q_lock, flags); seq_putc(m, '\n'); } rcu_read_unlock(); return 0; } DEFINE_SHOW_ATTRIBUTE(invalidation_queue); #ifdef CONFIG_IRQ_REMAP static void ir_tbl_remap_entry_show(struct seq_file *m, struct intel_iommu *iommu) { struct irte *ri_entry; unsigned long flags; int idx; seq_puts(m, " Entry SrcID DstID Vct IRTE_high\t\tIRTE_low\n"); raw_spin_lock_irqsave(&irq_2_ir_lock, flags); for (idx = 0; idx < INTR_REMAP_TABLE_ENTRIES; idx++) { ri_entry = &iommu->ir_table->base[idx]; if (!ri_entry->present || ri_entry->p_pst) continue; seq_printf(m, " %-5d %02x:%02x.%01x %08x %02x %016llx\t%016llx\n", idx, PCI_BUS_NUM(ri_entry->sid), PCI_SLOT(ri_entry->sid), PCI_FUNC(ri_entry->sid), ri_entry->dest_id, ri_entry->vector, ri_entry->high, ri_entry->low); } raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); } static void ir_tbl_posted_entry_show(struct seq_file *m, struct intel_iommu *iommu) { struct irte *pi_entry; unsigned long flags; int idx; seq_puts(m, " Entry SrcID PDA_high PDA_low Vct IRTE_high\t\tIRTE_low\n"); raw_spin_lock_irqsave(&irq_2_ir_lock, flags); for (idx = 0; idx < INTR_REMAP_TABLE_ENTRIES; idx++) { pi_entry = &iommu->ir_table->base[idx]; if (!pi_entry->present || !pi_entry->p_pst) continue; seq_printf(m, " %-5d %02x:%02x.%01x %08x %08x %02x %016llx\t%016llx\n", idx, PCI_BUS_NUM(pi_entry->sid), PCI_SLOT(pi_entry->sid), PCI_FUNC(pi_entry->sid), pi_entry->pda_h, pi_entry->pda_l << 6, pi_entry->vector, pi_entry->high, pi_entry->low); } raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); } /* * For active IOMMUs go through the Interrupt remapping * table and print valid entries in a table format for * Remapped and Posted Interrupts. */ static int ir_translation_struct_show(struct seq_file *m, void *unused) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; u64 irta; u32 sts; rcu_read_lock(); for_each_active_iommu(iommu, drhd) { if (!ecap_ir_support(iommu->ecap)) continue; seq_printf(m, "Remapped Interrupt supported on IOMMU: %s\n", iommu->name); sts = dmar_readl(iommu->reg + DMAR_GSTS_REG); if (iommu->ir_table && (sts & DMA_GSTS_IRES)) { irta = virt_to_phys(iommu->ir_table->base); seq_printf(m, " IR table address:%llx\n", irta); ir_tbl_remap_entry_show(m, iommu); } else { seq_puts(m, "Interrupt Remapping is not enabled\n"); } seq_putc(m, '\n'); } seq_puts(m, "****\n\n"); for_each_active_iommu(iommu, drhd) { if (!cap_pi_support(iommu->cap)) continue; seq_printf(m, "Posted Interrupt supported on IOMMU: %s\n", iommu->name); if (iommu->ir_table) { irta = virt_to_phys(iommu->ir_table->base); seq_printf(m, " IR table address:%llx\n", irta); ir_tbl_posted_entry_show(m, iommu); } else { seq_puts(m, "Interrupt Remapping is not enabled\n"); } seq_putc(m, '\n'); } rcu_read_unlock(); return 0; } DEFINE_SHOW_ATTRIBUTE(ir_translation_struct); #endif static void latency_show_one(struct seq_file *m, struct intel_iommu *iommu, struct dmar_drhd_unit *drhd) { int ret; seq_printf(m, "IOMMU: %s Register Base Address: %llx\n", iommu->name, drhd->reg_base_addr); ret = dmar_latency_snapshot(iommu, debug_buf, DEBUG_BUFFER_SIZE); if (ret < 0) seq_puts(m, "Failed to get latency snapshot"); else seq_puts(m, debug_buf); seq_puts(m, "\n"); } static int latency_show(struct seq_file *m, void *v) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; rcu_read_lock(); for_each_active_iommu(iommu, drhd) latency_show_one(m, iommu, drhd); rcu_read_unlock(); return 0; } static int dmar_perf_latency_open(struct inode *inode, struct file *filp) { return single_open(filp, latency_show, NULL); } static ssize_t dmar_perf_latency_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; int counting; char buf[64]; if (cnt > 63) cnt = 63; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; if (kstrtoint(buf, 0, &counting)) return -EINVAL; switch (counting) { case 0: rcu_read_lock(); for_each_active_iommu(iommu, drhd) { dmar_latency_disable(iommu, DMAR_LATENCY_INV_IOTLB); dmar_latency_disable(iommu, DMAR_LATENCY_INV_DEVTLB); dmar_latency_disable(iommu, DMAR_LATENCY_INV_IEC); } rcu_read_unlock(); break; case 1: rcu_read_lock(); for_each_active_iommu(iommu, drhd) dmar_latency_enable(iommu, DMAR_LATENCY_INV_IOTLB); rcu_read_unlock(); break; case 2: rcu_read_lock(); for_each_active_iommu(iommu, drhd) dmar_latency_enable(iommu, DMAR_LATENCY_INV_DEVTLB); rcu_read_unlock(); break; case 3: rcu_read_lock(); for_each_active_iommu(iommu, drhd) dmar_latency_enable(iommu, DMAR_LATENCY_INV_IEC); rcu_read_unlock(); break; default: return -EINVAL; } *ppos += cnt; return cnt; } static const struct file_operations dmar_perf_latency_fops = { .open = dmar_perf_latency_open, .write = dmar_perf_latency_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; void __init intel_iommu_debugfs_init(void) { intel_iommu_debug = debugfs_create_dir("intel", iommu_debugfs_dir); debugfs_create_file("iommu_regset", 0444, intel_iommu_debug, NULL, &iommu_regset_fops); debugfs_create_file("dmar_translation_struct", 0444, intel_iommu_debug, NULL, &dmar_translation_struct_fops); debugfs_create_file("invalidation_queue", 0444, intel_iommu_debug, NULL, &invalidation_queue_fops); #ifdef CONFIG_IRQ_REMAP debugfs_create_file("ir_translation_struct", 0444, intel_iommu_debug, NULL, &ir_translation_struct_fops); #endif debugfs_create_file("dmar_perf_latency", 0644, intel_iommu_debug, NULL, &dmar_perf_latency_fops); } /* * Create a debugfs directory for each device, and then create a * debugfs file in this directory for users to dump the page table * of the default domain. e.g. * /sys/kernel/debug/iommu/intel/0000:00:01.0/domain_translation_struct */ void intel_iommu_debugfs_create_dev(struct device_domain_info *info) { info->debugfs_dentry = debugfs_create_dir(dev_name(info->dev), intel_iommu_debug); debugfs_create_file("domain_translation_struct", 0444, info->debugfs_dentry, info, &dev_domain_translation_struct_fops); } /* Remove the device debugfs directory. */ void intel_iommu_debugfs_remove_dev(struct device_domain_info *info) { debugfs_remove_recursive(info->debugfs_dentry); } /* * Create a debugfs directory per pair of {device, pasid}, then create the * corresponding debugfs file in this directory for users to dump its page * table. e.g. * /sys/kernel/debug/iommu/intel/0000:00:01.0/1/domain_translation_struct * * The debugfs only dumps the page tables whose mappings are created and * destroyed by the iommu_map/unmap() interfaces. Check the mapping type * of the domain before creating debugfs directory. */ void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid) { struct device_domain_info *info = dev_iommu_priv_get(dev_pasid->dev); char dir_name[10]; sprintf(dir_name, "%x", dev_pasid->pasid); dev_pasid->debugfs_dentry = debugfs_create_dir(dir_name, info->debugfs_dentry); debugfs_create_file("domain_translation_struct", 0444, dev_pasid->debugfs_dentry, dev_pasid, &pasid_domain_translation_struct_fops); } /* Remove the device pasid debugfs directory. */ void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid) { debugfs_remove_recursive(dev_pasid->debugfs_dentry); }