// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "io-submitter.h" #include #include #include #include "memory-alloc.h" #include "permassert.h" #include "data-vio.h" #include "logger.h" #include "types.h" #include "vdo.h" #include "vio.h" /* * Submission of bio operations to the underlying storage device will go through a separate work * queue thread (or more than one) to prevent blocking in other threads if the storage device has a * full queue. The plug structure allows that thread to do better batching of requests to make the * I/O more efficient. * * When multiple worker threads are used, a thread is chosen for a I/O operation submission based * on the PBN, so a given PBN will consistently wind up on the same thread. Flush operations are * assigned round-robin. * * The map (protected by the mutex) collects pending I/O operations so that the worker thread can * reorder them to try to encourage I/O request merging in the request queue underneath. */ struct bio_queue_data { struct vdo_work_queue *queue; struct blk_plug plug; struct int_map *map; struct mutex lock; unsigned int queue_number; }; struct io_submitter { unsigned int num_bio_queues_used; unsigned int bio_queue_rotation_interval; struct bio_queue_data bio_queue_data[]; }; static void start_bio_queue(void *ptr) { struct bio_queue_data *bio_queue_data = ptr; blk_start_plug(&bio_queue_data->plug); } static void finish_bio_queue(void *ptr) { struct bio_queue_data *bio_queue_data = ptr; blk_finish_plug(&bio_queue_data->plug); } static const struct vdo_work_queue_type bio_queue_type = { .start = start_bio_queue, .finish = finish_bio_queue, .max_priority = BIO_Q_MAX_PRIORITY, .default_priority = BIO_Q_DATA_PRIORITY, }; /** * count_all_bios() - Determine which bio counter to use. * @vio: The vio associated with the bio. * @bio: The bio to count. */ static void count_all_bios(struct vio *vio, struct bio *bio) { struct atomic_statistics *stats = &vio->completion.vdo->stats; if (is_data_vio(vio)) { vdo_count_bios(&stats->bios_out, bio); return; } vdo_count_bios(&stats->bios_meta, bio); if (vio->type == VIO_TYPE_RECOVERY_JOURNAL) vdo_count_bios(&stats->bios_journal, bio); else if (vio->type == VIO_TYPE_BLOCK_MAP) vdo_count_bios(&stats->bios_page_cache, bio); } /** * assert_in_bio_zone() - Assert that a vio is in the correct bio zone and not in interrupt * context. * @vio: The vio to check. */ static void assert_in_bio_zone(struct vio *vio) { VDO_ASSERT_LOG_ONLY(!in_interrupt(), "not in interrupt context"); assert_vio_in_bio_zone(vio); } /** * send_bio_to_device() - Update stats and tracing info, then submit the supplied bio to the OS for * processing. * @vio: The vio associated with the bio. * @bio: The bio to submit to the OS. */ static void send_bio_to_device(struct vio *vio, struct bio *bio) { struct vdo *vdo = vio->completion.vdo; assert_in_bio_zone(vio); atomic64_inc(&vdo->stats.bios_submitted); count_all_bios(vio, bio); bio_set_dev(bio, vdo_get_backing_device(vdo)); submit_bio_noacct(bio); } /** * vdo_submit_vio() - Submits a vio's bio to the underlying block device. May block if the device * is busy. This callback should be used by vios which did not attempt to merge. */ void vdo_submit_vio(struct vdo_completion *completion) { struct vio *vio = as_vio(completion); send_bio_to_device(vio, vio->bio); } /** * get_bio_list() - Extract the list of bios to submit from a vio. * @vio: The vio submitting I/O. * * The list will always contain at least one entry (the bio for the vio on which it is called), but * other bios may have been merged with it as well. * * Return: bio The head of the bio list to submit. */ static struct bio *get_bio_list(struct vio *vio) { struct bio *bio; struct io_submitter *submitter = vio->completion.vdo->io_submitter; struct bio_queue_data *bio_queue_data = &(submitter->bio_queue_data[vio->bio_zone]); assert_in_bio_zone(vio); mutex_lock(&bio_queue_data->lock); vdo_int_map_remove(bio_queue_data->map, vio->bios_merged.head->bi_iter.bi_sector); vdo_int_map_remove(bio_queue_data->map, vio->bios_merged.tail->bi_iter.bi_sector); bio = vio->bios_merged.head; bio_list_init(&vio->bios_merged); mutex_unlock(&bio_queue_data->lock); return bio; } /** * submit_data_vio() - Submit a data_vio's bio to the storage below along with * any bios that have been merged with it. * * Context: This call may block and so should only be called from a bio thread. */ static void submit_data_vio(struct vdo_completion *completion) { struct bio *bio, *next; struct vio *vio = as_vio(completion); assert_in_bio_zone(vio); for (bio = get_bio_list(vio); bio != NULL; bio = next) { next = bio->bi_next; bio->bi_next = NULL; send_bio_to_device((struct vio *) bio->bi_private, bio); } } /** * get_mergeable_locked() - Attempt to find an already queued bio that the current bio can be * merged with. * @map: The bio map to use for merging. * @vio: The vio we want to merge. * @back_merge: Set to true for a back merge, false for a front merge. * * There are two types of merging possible, forward and backward, which are distinguished by a flag * that uses kernel elevator terminology. * * Return: the vio to merge to, NULL if no merging is possible. */ static struct vio *get_mergeable_locked(struct int_map *map, struct vio *vio, bool back_merge) { struct bio *bio = vio->bio; sector_t merge_sector = bio->bi_iter.bi_sector; struct vio *vio_merge; if (back_merge) merge_sector -= VDO_SECTORS_PER_BLOCK; else merge_sector += VDO_SECTORS_PER_BLOCK; vio_merge = vdo_int_map_get(map, merge_sector); if (vio_merge == NULL) return NULL; if (vio->completion.priority != vio_merge->completion.priority) return NULL; if (bio_data_dir(bio) != bio_data_dir(vio_merge->bio)) return NULL; if (bio_list_empty(&vio_merge->bios_merged)) return NULL; if (back_merge) { return (vio_merge->bios_merged.tail->bi_iter.bi_sector == merge_sector ? vio_merge : NULL); } return (vio_merge->bios_merged.head->bi_iter.bi_sector == merge_sector ? vio_merge : NULL); } static int map_merged_vio(struct int_map *bio_map, struct vio *vio) { int result; sector_t bio_sector; bio_sector = vio->bios_merged.head->bi_iter.bi_sector; result = vdo_int_map_put(bio_map, bio_sector, vio, true, NULL); if (result != VDO_SUCCESS) return result; bio_sector = vio->bios_merged.tail->bi_iter.bi_sector; return vdo_int_map_put(bio_map, bio_sector, vio, true, NULL); } static int merge_to_prev_tail(struct int_map *bio_map, struct vio *vio, struct vio *prev_vio) { vdo_int_map_remove(bio_map, prev_vio->bios_merged.tail->bi_iter.bi_sector); bio_list_merge(&prev_vio->bios_merged, &vio->bios_merged); return map_merged_vio(bio_map, prev_vio); } static int merge_to_next_head(struct int_map *bio_map, struct vio *vio, struct vio *next_vio) { /* * Handle "next merge" and "gap fill" cases the same way so as to reorder bios in a way * that's compatible with using funnel queues in work queues. This avoids removing an * existing completion. */ vdo_int_map_remove(bio_map, next_vio->bios_merged.head->bi_iter.bi_sector); bio_list_merge_head(&next_vio->bios_merged, &vio->bios_merged); return map_merged_vio(bio_map, next_vio); } /** * try_bio_map_merge() - Attempt to merge a vio's bio with other pending I/Os. * @vio: The vio to merge. * * Currently this is only used for data_vios, but is broken out for future use with metadata vios. * * Return: whether or not the vio was merged. */ static bool try_bio_map_merge(struct vio *vio) { int result; bool merged = true; struct bio *bio = vio->bio; struct vio *prev_vio, *next_vio; struct vdo *vdo = vio->completion.vdo; struct bio_queue_data *bio_queue_data = &vdo->io_submitter->bio_queue_data[vio->bio_zone]; bio->bi_next = NULL; bio_list_init(&vio->bios_merged); bio_list_add(&vio->bios_merged, bio); mutex_lock(&bio_queue_data->lock); prev_vio = get_mergeable_locked(bio_queue_data->map, vio, true); next_vio = get_mergeable_locked(bio_queue_data->map, vio, false); if (prev_vio == next_vio) next_vio = NULL; if ((prev_vio == NULL) && (next_vio == NULL)) { /* no merge. just add to bio_queue */ merged = false; result = vdo_int_map_put(bio_queue_data->map, bio->bi_iter.bi_sector, vio, true, NULL); } else if (next_vio == NULL) { /* Only prev. merge to prev's tail */ result = merge_to_prev_tail(bio_queue_data->map, vio, prev_vio); } else { /* Only next. merge to next's head */ result = merge_to_next_head(bio_queue_data->map, vio, next_vio); } mutex_unlock(&bio_queue_data->lock); /* We don't care about failure of int_map_put in this case. */ VDO_ASSERT_LOG_ONLY(result == VDO_SUCCESS, "bio map insertion succeeds"); return merged; } /** * vdo_submit_data_vio() - Submit I/O for a data_vio. * @data_vio: the data_vio for which to issue I/O. * * If possible, this I/O will be merged other pending I/Os. Otherwise, the data_vio will be sent to * the appropriate bio zone directly. */ void vdo_submit_data_vio(struct data_vio *data_vio) { if (try_bio_map_merge(&data_vio->vio)) return; launch_data_vio_bio_zone_callback(data_vio, submit_data_vio); } /** * __submit_metadata_vio() - Submit I/O for a metadata vio. * @vio: the vio for which to issue I/O * @physical: the physical block number to read or write * @callback: the bio endio function which will be called after the I/O completes * @error_handler: the handler for submission or I/O errors (may be NULL) * @operation: the type of I/O to perform * @data: the buffer to read or write (may be NULL) * * The vio is enqueued on a vdo bio queue so that bio submission (which may block) does not block * other vdo threads. * * That the error handler will run on the correct thread is only true so long as the thread calling * this function, and the thread set in the endio callback are the same, as well as the fact that * no error can occur on the bio queue. Currently this is true for all callers, but additional care * will be needed if this ever changes. */ void __submit_metadata_vio(struct vio *vio, physical_block_number_t physical, bio_end_io_t callback, vdo_action_fn error_handler, blk_opf_t operation, char *data) { int result; struct vdo_completion *completion = &vio->completion; const struct admin_state_code *code = vdo_get_admin_state(completion->vdo); VDO_ASSERT_LOG_ONLY(!code->quiescent, "I/O not allowed in state %s", code->name); vdo_reset_completion(completion); completion->error_handler = error_handler; result = vio_reset_bio(vio, data, callback, operation | REQ_META, physical); if (result != VDO_SUCCESS) { continue_vio(vio, result); return; } vdo_set_completion_callback(completion, vdo_submit_vio, get_vio_bio_zone_thread_id(vio)); vdo_launch_completion_with_priority(completion, get_metadata_priority(vio)); } /** * vdo_make_io_submitter() - Create an io_submitter structure. * @thread_count: Number of bio-submission threads to set up. * @rotation_interval: Interval to use when rotating between bio-submission threads when enqueuing * completions. * @max_requests_active: Number of bios for merge tracking. * @vdo: The vdo which will use this submitter. * @io_submitter: pointer to the new data structure. * * Return: VDO_SUCCESS or an error. */ int vdo_make_io_submitter(unsigned int thread_count, unsigned int rotation_interval, unsigned int max_requests_active, struct vdo *vdo, struct io_submitter **io_submitter_ptr) { unsigned int i; struct io_submitter *io_submitter; int result; result = vdo_allocate_extended(struct io_submitter, thread_count, struct bio_queue_data, "bio submission data", &io_submitter); if (result != VDO_SUCCESS) return result; io_submitter->bio_queue_rotation_interval = rotation_interval; /* Setup for each bio-submission work queue */ for (i = 0; i < thread_count; i++) { struct bio_queue_data *bio_queue_data = &io_submitter->bio_queue_data[i]; mutex_init(&bio_queue_data->lock); /* * One I/O operation per request, but both first & last sector numbers. * * If requests are assigned to threads round-robin, they should be distributed * quite evenly. But if they're assigned based on PBN, things can sometimes be very * uneven. So for now, we'll assume that all requests *may* wind up on one thread, * and thus all in the same map. */ result = vdo_int_map_create(max_requests_active * 2, &bio_queue_data->map); if (result != VDO_SUCCESS) { /* * Clean up the partially initialized bio-queue entirely and indicate that * initialization failed. */ vdo_log_error("bio map initialization failed %d", result); vdo_cleanup_io_submitter(io_submitter); vdo_free_io_submitter(io_submitter); return result; } bio_queue_data->queue_number = i; result = vdo_make_thread(vdo, vdo->thread_config.bio_threads[i], &bio_queue_type, 1, (void **) &bio_queue_data); if (result != VDO_SUCCESS) { /* * Clean up the partially initialized bio-queue entirely and indicate that * initialization failed. */ vdo_int_map_free(vdo_forget(bio_queue_data->map)); vdo_log_error("bio queue initialization failed %d", result); vdo_cleanup_io_submitter(io_submitter); vdo_free_io_submitter(io_submitter); return result; } bio_queue_data->queue = vdo->threads[vdo->thread_config.bio_threads[i]].queue; io_submitter->num_bio_queues_used++; } *io_submitter_ptr = io_submitter; return VDO_SUCCESS; } /** * vdo_cleanup_io_submitter() - Tear down the io_submitter fields as needed for a physical layer. * @io_submitter: The I/O submitter data to tear down (may be NULL). */ void vdo_cleanup_io_submitter(struct io_submitter *io_submitter) { int i; if (io_submitter == NULL) return; for (i = io_submitter->num_bio_queues_used - 1; i >= 0; i--) vdo_finish_work_queue(io_submitter->bio_queue_data[i].queue); } /** * vdo_free_io_submitter() - Free the io_submitter fields and structure as needed. * @io_submitter: The I/O submitter data to destroy. * * This must be called after vdo_cleanup_io_submitter(). It is used to release resources late in * the shutdown process to avoid or reduce the chance of race conditions. */ void vdo_free_io_submitter(struct io_submitter *io_submitter) { int i; if (io_submitter == NULL) return; for (i = io_submitter->num_bio_queues_used - 1; i >= 0; i--) { io_submitter->num_bio_queues_used--; /* vdo_destroy() will free the work queue, so just give up our reference to it. */ vdo_forget(io_submitter->bio_queue_data[i].queue); vdo_int_map_free(vdo_forget(io_submitter->bio_queue_data[i].map)); } vdo_free(io_submitter); }