// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) /* * Wave5 series multi-standard codec IP - helper functions * * Copyright (C) 2021-2023 CHIPS&MEDIA INC */ #include #include "wave5-vpuapi.h" #include "wave5-regdefine.h" #include "wave5.h" #define DECODE_ALL_TEMPORAL_LAYERS 0 #define DECODE_ALL_SPATIAL_LAYERS 0 static int wave5_initialize_vpu(struct device *dev, u8 *code, size_t size) { int ret; struct vpu_device *vpu_dev = dev_get_drvdata(dev); ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; if (wave5_vpu_is_init(vpu_dev)) { wave5_vpu_re_init(dev, (void *)code, size); ret = -EBUSY; goto err_out; } ret = wave5_vpu_reset(dev, SW_RESET_ON_BOOT); if (ret) goto err_out; ret = wave5_vpu_init(dev, (void *)code, size); err_out: mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_init_with_bitcode(struct device *dev, u8 *bitcode, size_t size) { if (!bitcode || size == 0) return -EINVAL; return wave5_initialize_vpu(dev, bitcode, size); } int wave5_vpu_flush_instance(struct vpu_instance *inst) { int ret = 0; int retry = 0; ret = mutex_lock_interruptible(&inst->dev->hw_lock); if (ret) return ret; do { /* * Repeat the FLUSH command until the firmware reports that the * VPU isn't running anymore */ ret = wave5_vpu_hw_flush_instance(inst); if (ret < 0 && ret != -EBUSY) { dev_warn(inst->dev->dev, "Flush of %s instance with id: %d fail: %d\n", inst->type == VPU_INST_TYPE_DEC ? "DECODER" : "ENCODER", inst->id, ret); mutex_unlock(&inst->dev->hw_lock); return ret; } if (ret == -EBUSY && retry++ >= MAX_FIRMWARE_CALL_RETRY) { dev_warn(inst->dev->dev, "Flush of %s instance with id: %d timed out!\n", inst->type == VPU_INST_TYPE_DEC ? "DECODER" : "ENCODER", inst->id); mutex_unlock(&inst->dev->hw_lock); return -ETIMEDOUT; } } while (ret != 0); mutex_unlock(&inst->dev->hw_lock); return ret; } int wave5_vpu_get_version_info(struct device *dev, u32 *revision, unsigned int *product_id) { int ret; struct vpu_device *vpu_dev = dev_get_drvdata(dev); ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; if (!wave5_vpu_is_init(vpu_dev)) { ret = -EINVAL; goto err_out; } if (product_id) *product_id = vpu_dev->product; ret = wave5_vpu_get_version(vpu_dev, revision); err_out: mutex_unlock(&vpu_dev->hw_lock); return ret; } static int wave5_check_dec_open_param(struct vpu_instance *inst, struct dec_open_param *param) { if (inst->id >= MAX_NUM_INSTANCE) { dev_err(inst->dev->dev, "Too many simultaneous instances: %d (max: %u)\n", inst->id, MAX_NUM_INSTANCE); return -EOPNOTSUPP; } if (param->bitstream_buffer % 8) { dev_err(inst->dev->dev, "Bitstream buffer must be aligned to a multiple of 8\n"); return -EINVAL; } if (param->bitstream_buffer_size % 1024 || param->bitstream_buffer_size < MIN_BITSTREAM_BUFFER_SIZE) { dev_err(inst->dev->dev, "Bitstream buffer size must be aligned to a multiple of 1024 and have a minimum size of %d\n", MIN_BITSTREAM_BUFFER_SIZE); return -EINVAL; } return 0; } int wave5_vpu_dec_open(struct vpu_instance *inst, struct dec_open_param *open_param) { struct dec_info *p_dec_info; int ret; struct vpu_device *vpu_dev = inst->dev; dma_addr_t buffer_addr; size_t buffer_size; ret = wave5_check_dec_open_param(inst, open_param); if (ret) return ret; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; if (!wave5_vpu_is_init(vpu_dev)) { mutex_unlock(&vpu_dev->hw_lock); return -ENODEV; } p_dec_info = &inst->codec_info->dec_info; memcpy(&p_dec_info->open_param, open_param, sizeof(struct dec_open_param)); buffer_addr = open_param->bitstream_buffer; buffer_size = open_param->bitstream_buffer_size; p_dec_info->stream_wr_ptr = buffer_addr; p_dec_info->stream_rd_ptr = buffer_addr; p_dec_info->stream_buf_start_addr = buffer_addr; p_dec_info->stream_buf_size = buffer_size; p_dec_info->stream_buf_end_addr = buffer_addr + buffer_size; p_dec_info->reorder_enable = TRUE; p_dec_info->temp_id_select_mode = TEMPORAL_ID_MODE_ABSOLUTE; p_dec_info->target_temp_id = DECODE_ALL_TEMPORAL_LAYERS; p_dec_info->target_spatial_id = DECODE_ALL_SPATIAL_LAYERS; ret = wave5_vpu_build_up_dec_param(inst, open_param); mutex_unlock(&vpu_dev->hw_lock); return ret; } static int reset_auxiliary_buffers(struct vpu_instance *inst, unsigned int index) { struct dec_info *p_dec_info = &inst->codec_info->dec_info; if (index >= MAX_REG_FRAME) return 1; if (p_dec_info->vb_mv[index].size == 0 && p_dec_info->vb_fbc_y_tbl[index].size == 0 && p_dec_info->vb_fbc_c_tbl[index].size == 0) return 1; wave5_vdi_free_dma_memory(inst->dev, &p_dec_info->vb_mv[index]); wave5_vdi_free_dma_memory(inst->dev, &p_dec_info->vb_fbc_y_tbl[index]); wave5_vdi_free_dma_memory(inst->dev, &p_dec_info->vb_fbc_c_tbl[index]); return 0; } int wave5_vpu_dec_close(struct vpu_instance *inst, u32 *fail_res) { struct dec_info *p_dec_info = &inst->codec_info->dec_info; int ret; int retry = 0; struct vpu_device *vpu_dev = inst->dev; int i; *fail_res = 0; if (!inst->codec_info) return -EINVAL; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; do { ret = wave5_vpu_dec_finish_seq(inst, fail_res); if (ret < 0 && *fail_res != WAVE5_SYSERR_VPU_STILL_RUNNING) { dev_warn(inst->dev->dev, "dec_finish_seq timed out\n"); goto unlock_and_return; } if (*fail_res == WAVE5_SYSERR_VPU_STILL_RUNNING && retry++ >= MAX_FIRMWARE_CALL_RETRY) { ret = -ETIMEDOUT; goto unlock_and_return; } } while (ret != 0); dev_dbg(inst->dev->dev, "%s: dec_finish_seq complete\n", __func__); wave5_vdi_free_dma_memory(vpu_dev, &p_dec_info->vb_work); for (i = 0 ; i < MAX_REG_FRAME; i++) { ret = reset_auxiliary_buffers(inst, i); if (ret) { ret = 0; break; } } wave5_vdi_free_dma_memory(vpu_dev, &p_dec_info->vb_task); unlock_and_return: mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_dec_issue_seq_init(struct vpu_instance *inst) { int ret; struct vpu_device *vpu_dev = inst->dev; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; ret = wave5_vpu_dec_init_seq(inst); mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_dec_complete_seq_init(struct vpu_instance *inst, struct dec_initial_info *info) { struct dec_info *p_dec_info = &inst->codec_info->dec_info; int ret; struct vpu_device *vpu_dev = inst->dev; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; ret = wave5_vpu_dec_get_seq_info(inst, info); if (!ret) p_dec_info->initial_info_obtained = true; info->rd_ptr = wave5_dec_get_rd_ptr(inst); info->wr_ptr = p_dec_info->stream_wr_ptr; p_dec_info->initial_info = *info; mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_dec_register_frame_buffer_ex(struct vpu_instance *inst, int num_of_decoding_fbs, int num_of_display_fbs, int stride, int height) { struct dec_info *p_dec_info; int ret; struct vpu_device *vpu_dev = inst->dev; struct frame_buffer *fb; if (num_of_decoding_fbs >= WAVE5_MAX_FBS || num_of_display_fbs >= WAVE5_MAX_FBS) return -EINVAL; p_dec_info = &inst->codec_info->dec_info; p_dec_info->num_of_decoding_fbs = num_of_decoding_fbs; p_dec_info->num_of_display_fbs = num_of_display_fbs; p_dec_info->stride = stride; if (!p_dec_info->initial_info_obtained) return -EINVAL; if (stride < p_dec_info->initial_info.pic_width || (stride % 8 != 0) || height < p_dec_info->initial_info.pic_height) return -EINVAL; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; fb = inst->frame_buf; ret = wave5_vpu_dec_register_framebuffer(inst, &fb[p_dec_info->num_of_decoding_fbs], LINEAR_FRAME_MAP, p_dec_info->num_of_display_fbs); if (ret) goto err_out; ret = wave5_vpu_dec_register_framebuffer(inst, &fb[0], COMPRESSED_FRAME_MAP, p_dec_info->num_of_decoding_fbs); err_out: mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_dec_get_bitstream_buffer(struct vpu_instance *inst, dma_addr_t *prd_ptr, dma_addr_t *pwr_ptr, size_t *size) { struct dec_info *p_dec_info; dma_addr_t rd_ptr; dma_addr_t wr_ptr; int room; struct vpu_device *vpu_dev = inst->dev; int ret; p_dec_info = &inst->codec_info->dec_info; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; rd_ptr = wave5_dec_get_rd_ptr(inst); mutex_unlock(&vpu_dev->hw_lock); wr_ptr = p_dec_info->stream_wr_ptr; if (wr_ptr < rd_ptr) room = rd_ptr - wr_ptr; else room = (p_dec_info->stream_buf_end_addr - wr_ptr) + (rd_ptr - p_dec_info->stream_buf_start_addr); room--; if (prd_ptr) *prd_ptr = rd_ptr; if (pwr_ptr) *pwr_ptr = wr_ptr; if (size) *size = room; return 0; } int wave5_vpu_dec_update_bitstream_buffer(struct vpu_instance *inst, size_t size) { struct dec_info *p_dec_info; dma_addr_t wr_ptr; dma_addr_t rd_ptr; int ret; struct vpu_device *vpu_dev = inst->dev; if (!inst->codec_info) return -EINVAL; p_dec_info = &inst->codec_info->dec_info; wr_ptr = p_dec_info->stream_wr_ptr; rd_ptr = p_dec_info->stream_rd_ptr; if (size > 0) { if (wr_ptr < rd_ptr && rd_ptr <= wr_ptr + size) return -EINVAL; wr_ptr += size; if (wr_ptr > p_dec_info->stream_buf_end_addr) { u32 room = wr_ptr - p_dec_info->stream_buf_end_addr; wr_ptr = p_dec_info->stream_buf_start_addr; wr_ptr += room; } else if (wr_ptr == p_dec_info->stream_buf_end_addr) { wr_ptr = p_dec_info->stream_buf_start_addr; } p_dec_info->stream_wr_ptr = wr_ptr; p_dec_info->stream_rd_ptr = rd_ptr; } ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; ret = wave5_vpu_dec_set_bitstream_flag(inst, (size == 0)); mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_dec_start_one_frame(struct vpu_instance *inst, u32 *res_fail) { struct dec_info *p_dec_info = &inst->codec_info->dec_info; int ret; struct vpu_device *vpu_dev = inst->dev; if (p_dec_info->stride == 0) /* this means frame buffers have not been registered. */ return -EINVAL; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; ret = wave5_vpu_decode(inst, res_fail); mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_dec_set_rd_ptr(struct vpu_instance *inst, dma_addr_t addr, int update_wr_ptr) { struct dec_info *p_dec_info = &inst->codec_info->dec_info; int ret; struct vpu_device *vpu_dev = inst->dev; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; ret = wave5_dec_set_rd_ptr(inst, addr); p_dec_info->stream_rd_ptr = addr; if (update_wr_ptr) p_dec_info->stream_wr_ptr = addr; mutex_unlock(&vpu_dev->hw_lock); return ret; } dma_addr_t wave5_vpu_dec_get_rd_ptr(struct vpu_instance *inst) { int ret; dma_addr_t rd_ptr; ret = mutex_lock_interruptible(&inst->dev->hw_lock); if (ret) return ret; rd_ptr = wave5_dec_get_rd_ptr(inst); mutex_unlock(&inst->dev->hw_lock); return rd_ptr; } int wave5_vpu_dec_get_output_info(struct vpu_instance *inst, struct dec_output_info *info) { struct dec_info *p_dec_info; int ret; struct vpu_rect rect_info; u32 val; u32 decoded_index; u32 disp_idx; u32 max_dec_index; struct vpu_device *vpu_dev = inst->dev; struct dec_output_info *disp_info; if (!info) return -EINVAL; p_dec_info = &inst->codec_info->dec_info; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; memset(info, 0, sizeof(*info)); ret = wave5_vpu_dec_get_result(inst, info); if (ret) { info->rd_ptr = p_dec_info->stream_rd_ptr; info->wr_ptr = p_dec_info->stream_wr_ptr; goto err_out; } decoded_index = info->index_frame_decoded; /* calculate display frame region */ val = 0; rect_info.left = 0; rect_info.right = 0; rect_info.top = 0; rect_info.bottom = 0; if (decoded_index < WAVE5_MAX_FBS) { if (inst->std == W_HEVC_DEC || inst->std == W_AVC_DEC) rect_info = p_dec_info->initial_info.pic_crop_rect; if (inst->std == W_HEVC_DEC) p_dec_info->dec_out_info[decoded_index].decoded_poc = info->decoded_poc; p_dec_info->dec_out_info[decoded_index].rc_decoded = rect_info; } info->rc_decoded = rect_info; disp_idx = info->index_frame_display; if (info->index_frame_display >= 0 && info->index_frame_display < WAVE5_MAX_FBS) { disp_info = &p_dec_info->dec_out_info[disp_idx]; if (info->index_frame_display != info->index_frame_decoded) { /* * when index_frame_decoded < 0, and index_frame_display >= 0 * info->dec_pic_width and info->dec_pic_height are still valid * but those of p_dec_info->dec_out_info[disp_idx] are invalid in VP9 */ info->disp_pic_width = disp_info->dec_pic_width; info->disp_pic_height = disp_info->dec_pic_height; } else { info->disp_pic_width = info->dec_pic_width; info->disp_pic_height = info->dec_pic_height; } info->rc_display = disp_info->rc_decoded; } else { info->rc_display.left = 0; info->rc_display.right = 0; info->rc_display.top = 0; info->rc_display.bottom = 0; info->disp_pic_width = 0; info->disp_pic_height = 0; } p_dec_info->stream_rd_ptr = wave5_dec_get_rd_ptr(inst); p_dec_info->frame_display_flag = vpu_read_reg(vpu_dev, W5_RET_DEC_DISP_IDC); val = p_dec_info->num_of_decoding_fbs; //fb_offset max_dec_index = (p_dec_info->num_of_decoding_fbs > p_dec_info->num_of_display_fbs) ? p_dec_info->num_of_decoding_fbs : p_dec_info->num_of_display_fbs; if (info->index_frame_display >= 0 && info->index_frame_display < (int)max_dec_index) info->disp_frame = inst->frame_buf[val + info->index_frame_display]; info->rd_ptr = p_dec_info->stream_rd_ptr; info->wr_ptr = p_dec_info->stream_wr_ptr; info->frame_display_flag = p_dec_info->frame_display_flag; info->sequence_no = p_dec_info->initial_info.sequence_no; if (decoded_index < WAVE5_MAX_FBS) p_dec_info->dec_out_info[decoded_index] = *info; if (disp_idx < WAVE5_MAX_FBS) info->disp_frame.sequence_no = info->sequence_no; if (info->sequence_changed) { memcpy((void *)&p_dec_info->initial_info, (void *)&p_dec_info->new_seq_info, sizeof(struct dec_initial_info)); p_dec_info->initial_info.sequence_no++; } err_out: mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_dec_clr_disp_flag(struct vpu_instance *inst, int index) { struct dec_info *p_dec_info = &inst->codec_info->dec_info; int ret; struct vpu_device *vpu_dev = inst->dev; if (index >= p_dec_info->num_of_display_fbs) return -EINVAL; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; ret = wave5_dec_clr_disp_flag(inst, index); mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_dec_set_disp_flag(struct vpu_instance *inst, int index) { struct dec_info *p_dec_info = &inst->codec_info->dec_info; int ret = 0; struct vpu_device *vpu_dev = inst->dev; if (index >= p_dec_info->num_of_display_fbs) return -EINVAL; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; ret = wave5_dec_set_disp_flag(inst, index); mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_dec_reset_framebuffer(struct vpu_instance *inst, unsigned int index) { if (index >= MAX_REG_FRAME) return -EINVAL; if (inst->frame_vbuf[index].size == 0) return -EINVAL; wave5_vdi_free_dma_memory(inst->dev, &inst->frame_vbuf[index]); return 0; } int wave5_vpu_dec_give_command(struct vpu_instance *inst, enum codec_command cmd, void *parameter) { struct dec_info *p_dec_info = &inst->codec_info->dec_info; int ret = 0; switch (cmd) { case DEC_GET_QUEUE_STATUS: { struct queue_status_info *queue_info = parameter; queue_info->instance_queue_count = p_dec_info->instance_queue_count; queue_info->report_queue_count = p_dec_info->report_queue_count; break; } case DEC_RESET_FRAMEBUF_INFO: { int i; for (i = 0; i < MAX_REG_FRAME; i++) { ret = wave5_vpu_dec_reset_framebuffer(inst, i); if (ret) break; } for (i = 0; i < MAX_REG_FRAME; i++) { ret = reset_auxiliary_buffers(inst, i); if (ret) break; } wave5_vdi_free_dma_memory(inst->dev, &p_dec_info->vb_task); break; } case DEC_GET_SEQ_INFO: { struct dec_initial_info *seq_info = parameter; *seq_info = p_dec_info->initial_info; break; } default: return -EINVAL; } return ret; } int wave5_vpu_enc_open(struct vpu_instance *inst, struct enc_open_param *open_param) { struct enc_info *p_enc_info; int ret; struct vpu_device *vpu_dev = inst->dev; ret = wave5_vpu_enc_check_open_param(inst, open_param); if (ret) return ret; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; if (!wave5_vpu_is_init(vpu_dev)) { mutex_unlock(&vpu_dev->hw_lock); return -ENODEV; } p_enc_info = &inst->codec_info->enc_info; p_enc_info->open_param = *open_param; ret = wave5_vpu_build_up_enc_param(vpu_dev->dev, inst, open_param); mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_enc_close(struct vpu_instance *inst, u32 *fail_res) { struct enc_info *p_enc_info = &inst->codec_info->enc_info; int ret; int retry = 0; struct vpu_device *vpu_dev = inst->dev; *fail_res = 0; if (!inst->codec_info) return -EINVAL; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; do { ret = wave5_vpu_enc_finish_seq(inst, fail_res); if (ret < 0 && *fail_res != WAVE5_SYSERR_VPU_STILL_RUNNING) { dev_warn(inst->dev->dev, "enc_finish_seq timed out\n"); mutex_unlock(&vpu_dev->hw_lock); return ret; } if (*fail_res == WAVE5_SYSERR_VPU_STILL_RUNNING && retry++ >= MAX_FIRMWARE_CALL_RETRY) { mutex_unlock(&vpu_dev->hw_lock); return -ETIMEDOUT; } } while (ret != 0); dev_dbg(inst->dev->dev, "%s: enc_finish_seq complete\n", __func__); wave5_vdi_free_dma_memory(vpu_dev, &p_enc_info->vb_work); if (inst->std == W_HEVC_ENC || inst->std == W_AVC_ENC) { wave5_vdi_free_dma_memory(vpu_dev, &p_enc_info->vb_sub_sam_buf); wave5_vdi_free_dma_memory(vpu_dev, &p_enc_info->vb_mv); wave5_vdi_free_dma_memory(vpu_dev, &p_enc_info->vb_fbc_y_tbl); wave5_vdi_free_dma_memory(vpu_dev, &p_enc_info->vb_fbc_c_tbl); } wave5_vdi_free_dma_memory(vpu_dev, &p_enc_info->vb_task); mutex_unlock(&vpu_dev->hw_lock); return 0; } int wave5_vpu_enc_register_frame_buffer(struct vpu_instance *inst, unsigned int num, unsigned int stride, int height, enum tiled_map_type map_type) { struct enc_info *p_enc_info = &inst->codec_info->enc_info; int ret; struct vpu_device *vpu_dev = inst->dev; unsigned int size_luma, size_chroma; int i; if (p_enc_info->stride) return -EINVAL; if (!p_enc_info->initial_info_obtained) return -EINVAL; if (num < p_enc_info->initial_info.min_frame_buffer_count) return -EINVAL; if (stride == 0 || stride % 8 != 0) return -EINVAL; if (height <= 0) return -EINVAL; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; p_enc_info->num_frame_buffers = num; p_enc_info->stride = stride; size_luma = stride * height; size_chroma = ALIGN(stride / 2, 16) * height; for (i = 0; i < num; i++) { if (!inst->frame_buf[i].update_fb_info) continue; inst->frame_buf[i].update_fb_info = false; inst->frame_buf[i].stride = stride; inst->frame_buf[i].height = height; inst->frame_buf[i].map_type = COMPRESSED_FRAME_MAP; inst->frame_buf[i].buf_y_size = size_luma; inst->frame_buf[i].buf_cb = inst->frame_buf[i].buf_y + size_luma; inst->frame_buf[i].buf_cb_size = size_chroma; inst->frame_buf[i].buf_cr_size = 0; } ret = wave5_vpu_enc_register_framebuffer(inst->dev->dev, inst, &inst->frame_buf[0], COMPRESSED_FRAME_MAP, p_enc_info->num_frame_buffers); mutex_unlock(&vpu_dev->hw_lock); return ret; } static int wave5_check_enc_param(struct vpu_instance *inst, struct enc_param *param) { struct enc_info *p_enc_info = &inst->codec_info->enc_info; if (!param) return -EINVAL; if (!param->source_frame) return -EINVAL; if (p_enc_info->open_param.bit_rate == 0 && inst->std == W_HEVC_ENC) { if (param->pic_stream_buffer_addr % 16 || param->pic_stream_buffer_size == 0) return -EINVAL; } if (param->pic_stream_buffer_addr % 8 || param->pic_stream_buffer_size == 0) return -EINVAL; return 0; } int wave5_vpu_enc_start_one_frame(struct vpu_instance *inst, struct enc_param *param, u32 *fail_res) { struct enc_info *p_enc_info = &inst->codec_info->enc_info; int ret; struct vpu_device *vpu_dev = inst->dev; *fail_res = 0; if (p_enc_info->stride == 0) /* this means frame buffers have not been registered. */ return -EINVAL; ret = wave5_check_enc_param(inst, param); if (ret) return ret; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; p_enc_info->pts_map[param->src_idx] = param->pts; ret = wave5_vpu_encode(inst, param, fail_res); mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_enc_get_output_info(struct vpu_instance *inst, struct enc_output_info *info) { struct enc_info *p_enc_info = &inst->codec_info->enc_info; int ret; struct vpu_device *vpu_dev = inst->dev; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; ret = wave5_vpu_enc_get_result(inst, info); if (ret) { info->pts = 0; goto unlock; } if (info->recon_frame_index >= 0) info->pts = p_enc_info->pts_map[info->enc_src_idx]; unlock: mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_enc_give_command(struct vpu_instance *inst, enum codec_command cmd, void *parameter) { struct enc_info *p_enc_info = &inst->codec_info->enc_info; switch (cmd) { case ENABLE_ROTATION: p_enc_info->rotation_enable = true; break; case ENABLE_MIRRORING: p_enc_info->mirror_enable = true; break; case SET_MIRROR_DIRECTION: { enum mirror_direction mir_dir; mir_dir = *(enum mirror_direction *)parameter; if (mir_dir != MIRDIR_NONE && mir_dir != MIRDIR_HOR && mir_dir != MIRDIR_VER && mir_dir != MIRDIR_HOR_VER) return -EINVAL; p_enc_info->mirror_direction = mir_dir; break; } case SET_ROTATION_ANGLE: { int angle; angle = *(int *)parameter; if (angle && angle != 90 && angle != 180 && angle != 270) return -EINVAL; if (p_enc_info->initial_info_obtained && (angle == 90 || angle == 270)) return -EINVAL; p_enc_info->rotation_angle = angle; break; } case ENC_GET_QUEUE_STATUS: { struct queue_status_info *queue_info = parameter; queue_info->instance_queue_count = p_enc_info->instance_queue_count; queue_info->report_queue_count = p_enc_info->report_queue_count; break; } default: return -EINVAL; } return 0; } int wave5_vpu_enc_issue_seq_init(struct vpu_instance *inst) { int ret; struct vpu_device *vpu_dev = inst->dev; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; ret = wave5_vpu_enc_init_seq(inst); mutex_unlock(&vpu_dev->hw_lock); return ret; } int wave5_vpu_enc_complete_seq_init(struct vpu_instance *inst, struct enc_initial_info *info) { struct enc_info *p_enc_info = &inst->codec_info->enc_info; int ret; struct vpu_device *vpu_dev = inst->dev; if (!info) return -EINVAL; ret = mutex_lock_interruptible(&vpu_dev->hw_lock); if (ret) return ret; ret = wave5_vpu_enc_get_seq_info(inst, info); if (ret) { p_enc_info->initial_info_obtained = false; mutex_unlock(&vpu_dev->hw_lock); return ret; } p_enc_info->initial_info_obtained = true; p_enc_info->initial_info = *info; mutex_unlock(&vpu_dev->hw_lock); return 0; }