/****************************************************************************** * * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ #include #include #include #include #include #include #include #include #include "rs.h" #include "fw-api.h" #include "sta.h" #include "iwl-op-mode.h" #include "mvm.h" #define RS_NAME "iwl-mvm-rs" #define NUM_TRY_BEFORE_ANT_TOGGLE 1 #define RS_LEGACY_RETRIES_PER_RATE 1 #define RS_HT_VHT_RETRIES_PER_RATE 2 #define RS_HT_VHT_RETRIES_PER_RATE_TW 1 #define RS_INITIAL_MIMO_NUM_RATES 3 #define RS_INITIAL_SISO_NUM_RATES 3 #define RS_INITIAL_LEGACY_NUM_RATES LINK_QUAL_MAX_RETRY_NUM #define RS_SECONDARY_LEGACY_NUM_RATES LINK_QUAL_MAX_RETRY_NUM #define RS_SECONDARY_SISO_NUM_RATES 3 #define RS_SECONDARY_SISO_RETRIES 1 #define IWL_RATE_MAX_WINDOW 62 /* # tx in history window */ #define IWL_RATE_MIN_FAILURE_TH 3 /* min failures to calc tpt */ #define IWL_RATE_MIN_SUCCESS_TH 8 /* min successes to calc tpt */ /* max allowed rate miss before sync LQ cmd */ #define IWL_MISSED_RATE_MAX 15 #define RS_STAY_IN_COLUMN_TIMEOUT (5*HZ) static u8 rs_ht_to_legacy[] = { [IWL_RATE_MCS_0_INDEX] = IWL_RATE_6M_INDEX, [IWL_RATE_MCS_1_INDEX] = IWL_RATE_9M_INDEX, [IWL_RATE_MCS_2_INDEX] = IWL_RATE_12M_INDEX, [IWL_RATE_MCS_3_INDEX] = IWL_RATE_18M_INDEX, [IWL_RATE_MCS_4_INDEX] = IWL_RATE_24M_INDEX, [IWL_RATE_MCS_5_INDEX] = IWL_RATE_36M_INDEX, [IWL_RATE_MCS_6_INDEX] = IWL_RATE_48M_INDEX, [IWL_RATE_MCS_7_INDEX] = IWL_RATE_54M_INDEX, [IWL_RATE_MCS_8_INDEX] = IWL_RATE_54M_INDEX, [IWL_RATE_MCS_9_INDEX] = IWL_RATE_54M_INDEX, }; static const u8 ant_toggle_lookup[] = { [ANT_NONE] = ANT_NONE, [ANT_A] = ANT_B, [ANT_B] = ANT_C, [ANT_AB] = ANT_BC, [ANT_C] = ANT_A, [ANT_AC] = ANT_AB, [ANT_BC] = ANT_AC, [ANT_ABC] = ANT_ABC, }; #define IWL_DECLARE_RATE_INFO(r, s, rp, rn) \ [IWL_RATE_##r##M_INDEX] = { IWL_RATE_##r##M_PLCP, \ IWL_RATE_HT_SISO_MCS_##s##_PLCP, \ IWL_RATE_HT_MIMO2_MCS_##s##_PLCP, \ IWL_RATE_VHT_SISO_MCS_##s##_PLCP, \ IWL_RATE_VHT_MIMO2_MCS_##s##_PLCP,\ IWL_RATE_##rp##M_INDEX, \ IWL_RATE_##rn##M_INDEX } #define IWL_DECLARE_MCS_RATE(s) \ [IWL_RATE_MCS_##s##_INDEX] = { IWL_RATE_INVM_PLCP, \ IWL_RATE_HT_SISO_MCS_##s##_PLCP, \ IWL_RATE_HT_MIMO2_MCS_##s##_PLCP, \ IWL_RATE_VHT_SISO_MCS_##s##_PLCP, \ IWL_RATE_VHT_MIMO2_MCS_##s##_PLCP, \ IWL_RATE_INVM_INDEX, \ IWL_RATE_INVM_INDEX } /* * Parameter order: * rate, ht rate, prev rate, next rate * * If there isn't a valid next or previous rate then INV is used which * maps to IWL_RATE_INVALID * */ static const struct iwl_rs_rate_info iwl_rates[IWL_RATE_COUNT] = { IWL_DECLARE_RATE_INFO(1, INV, INV, 2), /* 1mbps */ IWL_DECLARE_RATE_INFO(2, INV, 1, 5), /* 2mbps */ IWL_DECLARE_RATE_INFO(5, INV, 2, 11), /*5.5mbps */ IWL_DECLARE_RATE_INFO(11, INV, 9, 12), /* 11mbps */ IWL_DECLARE_RATE_INFO(6, 0, 5, 11), /* 6mbps ; MCS 0 */ IWL_DECLARE_RATE_INFO(9, INV, 6, 11), /* 9mbps */ IWL_DECLARE_RATE_INFO(12, 1, 11, 18), /* 12mbps ; MCS 1 */ IWL_DECLARE_RATE_INFO(18, 2, 12, 24), /* 18mbps ; MCS 2 */ IWL_DECLARE_RATE_INFO(24, 3, 18, 36), /* 24mbps ; MCS 3 */ IWL_DECLARE_RATE_INFO(36, 4, 24, 48), /* 36mbps ; MCS 4 */ IWL_DECLARE_RATE_INFO(48, 5, 36, 54), /* 48mbps ; MCS 5 */ IWL_DECLARE_RATE_INFO(54, 6, 48, INV), /* 54mbps ; MCS 6 */ IWL_DECLARE_MCS_RATE(7), /* MCS 7 */ IWL_DECLARE_MCS_RATE(8), /* MCS 8 */ IWL_DECLARE_MCS_RATE(9), /* MCS 9 */ }; enum rs_action { RS_ACTION_STAY = 0, RS_ACTION_DOWNSCALE = -1, RS_ACTION_UPSCALE = 1, }; enum rs_column_mode { RS_INVALID = 0, RS_LEGACY, RS_SISO, RS_MIMO2, }; #define MAX_NEXT_COLUMNS 5 #define MAX_COLUMN_CHECKS 3 typedef bool (*allow_column_func_t) (struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_scale_tbl_info *tbl); struct rs_tx_column { enum rs_column_mode mode; u8 ant; bool sgi; enum rs_column next_columns[MAX_NEXT_COLUMNS]; allow_column_func_t checks[MAX_COLUMN_CHECKS]; }; static bool rs_mimo_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_scale_tbl_info *tbl) { if (!sta->ht_cap.ht_supported) return false; if (sta->smps_mode == IEEE80211_SMPS_STATIC) return false; if (num_of_ant(iwl_fw_valid_tx_ant(mvm->fw)) < 2) return false; if (!iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta)) return false; return true; } static bool rs_siso_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_scale_tbl_info *tbl) { if (!sta->ht_cap.ht_supported) return false; return true; } static bool rs_sgi_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_scale_tbl_info *tbl) { struct rs_rate *rate = &tbl->rate; struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap; struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap; if (is_ht20(rate) && (ht_cap->cap & IEEE80211_HT_CAP_SGI_20)) return true; if (is_ht40(rate) && (ht_cap->cap & IEEE80211_HT_CAP_SGI_40)) return true; if (is_ht80(rate) && (vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80)) return true; return false; } static const struct rs_tx_column rs_tx_columns[] = { [RS_COLUMN_LEGACY_ANT_A] = { .mode = RS_LEGACY, .ant = ANT_A, .next_columns = { RS_COLUMN_LEGACY_ANT_B, RS_COLUMN_SISO_ANT_A, RS_COLUMN_MIMO2, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, }, [RS_COLUMN_LEGACY_ANT_B] = { .mode = RS_LEGACY, .ant = ANT_B, .next_columns = { RS_COLUMN_LEGACY_ANT_A, RS_COLUMN_SISO_ANT_B, RS_COLUMN_MIMO2, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, }, [RS_COLUMN_SISO_ANT_A] = { .mode = RS_SISO, .ant = ANT_A, .next_columns = { RS_COLUMN_SISO_ANT_B, RS_COLUMN_MIMO2, RS_COLUMN_SISO_ANT_A_SGI, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_siso_allow, }, }, [RS_COLUMN_SISO_ANT_B] = { .mode = RS_SISO, .ant = ANT_B, .next_columns = { RS_COLUMN_SISO_ANT_A, RS_COLUMN_MIMO2, RS_COLUMN_SISO_ANT_B_SGI, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_siso_allow, }, }, [RS_COLUMN_SISO_ANT_A_SGI] = { .mode = RS_SISO, .ant = ANT_A, .sgi = true, .next_columns = { RS_COLUMN_SISO_ANT_B_SGI, RS_COLUMN_MIMO2_SGI, RS_COLUMN_SISO_ANT_A, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_siso_allow, rs_sgi_allow, }, }, [RS_COLUMN_SISO_ANT_B_SGI] = { .mode = RS_SISO, .ant = ANT_B, .sgi = true, .next_columns = { RS_COLUMN_SISO_ANT_A_SGI, RS_COLUMN_MIMO2_SGI, RS_COLUMN_SISO_ANT_B, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_siso_allow, rs_sgi_allow, }, }, [RS_COLUMN_MIMO2] = { .mode = RS_MIMO2, .ant = ANT_AB, .next_columns = { RS_COLUMN_SISO_ANT_A, RS_COLUMN_MIMO2_SGI, RS_COLUMN_INVALID, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_mimo_allow, }, }, [RS_COLUMN_MIMO2_SGI] = { .mode = RS_MIMO2, .ant = ANT_AB, .sgi = true, .next_columns = { RS_COLUMN_SISO_ANT_A_SGI, RS_COLUMN_MIMO2, RS_COLUMN_INVALID, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_mimo_allow, rs_sgi_allow, }, }, }; static inline u8 rs_extract_rate(u32 rate_n_flags) { /* also works for HT because bits 7:6 are zero there */ return (u8)(rate_n_flags & RATE_LEGACY_RATE_MSK); } static int iwl_hwrate_to_plcp_idx(u32 rate_n_flags) { int idx = 0; if (rate_n_flags & RATE_MCS_HT_MSK) { idx = rate_n_flags & RATE_HT_MCS_RATE_CODE_MSK; idx += IWL_RATE_MCS_0_INDEX; /* skip 9M not supported in HT*/ if (idx >= IWL_RATE_9M_INDEX) idx += 1; if ((idx >= IWL_FIRST_HT_RATE) && (idx <= IWL_LAST_HT_RATE)) return idx; } else if (rate_n_flags & RATE_MCS_VHT_MSK) { idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; idx += IWL_RATE_MCS_0_INDEX; /* skip 9M not supported in VHT*/ if (idx >= IWL_RATE_9M_INDEX) idx++; if ((idx >= IWL_FIRST_VHT_RATE) && (idx <= IWL_LAST_VHT_RATE)) return idx; } else { /* legacy rate format, search for match in table */ u8 legacy_rate = rs_extract_rate(rate_n_flags); for (idx = 0; idx < ARRAY_SIZE(iwl_rates); idx++) if (iwl_rates[idx].plcp == legacy_rate) return idx; } return IWL_RATE_INVALID; } static void rs_rate_scale_perform(struct iwl_mvm *mvm, struct sk_buff *skb, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta); static void rs_fill_lq_cmd(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, const struct rs_rate *initial_rate); static void rs_stay_in_table(struct iwl_lq_sta *lq_sta, bool force_search); /** * The following tables contain the expected throughput metrics for all rates * * 1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, 54, 60 MBits * * where invalid entries are zeros. * * CCK rates are only valid in legacy table and will only be used in G * (2.4 GHz) band. */ static const u16 expected_tpt_legacy[IWL_RATE_COUNT] = { 7, 13, 35, 58, 40, 57, 72, 98, 121, 154, 177, 186, 0, 0, 0 }; /* Expected TpT tables. 4 indexes: * 0 - NGI, 1 - SGI, 2 - AGG+NGI, 3 - AGG+SGI */ static const u16 expected_tpt_siso_20MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 42, 0, 76, 102, 124, 159, 183, 193, 202, 216, 0}, {0, 0, 0, 0, 46, 0, 82, 110, 132, 168, 192, 202, 210, 225, 0}, {0, 0, 0, 0, 49, 0, 97, 145, 192, 285, 375, 420, 464, 551, 0}, {0, 0, 0, 0, 54, 0, 108, 160, 213, 315, 415, 465, 513, 608, 0}, }; static const u16 expected_tpt_siso_40MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 77, 0, 127, 160, 184, 220, 242, 250, 257, 269, 275}, {0, 0, 0, 0, 83, 0, 135, 169, 193, 229, 250, 257, 264, 275, 280}, {0, 0, 0, 0, 101, 0, 199, 295, 389, 570, 744, 828, 911, 1070, 1173}, {0, 0, 0, 0, 112, 0, 220, 326, 429, 629, 819, 912, 1000, 1173, 1284}, }; static const u16 expected_tpt_siso_80MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 130, 0, 191, 223, 244, 273, 288, 294, 298, 305, 308}, {0, 0, 0, 0, 138, 0, 200, 231, 251, 279, 293, 298, 302, 308, 312}, {0, 0, 0, 0, 217, 0, 429, 634, 834, 1220, 1585, 1760, 1931, 2258, 2466}, {0, 0, 0, 0, 241, 0, 475, 701, 921, 1343, 1741, 1931, 2117, 2468, 2691}, }; static const u16 expected_tpt_mimo2_20MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 74, 0, 123, 155, 179, 213, 235, 243, 250, 261, 0}, {0, 0, 0, 0, 81, 0, 131, 164, 187, 221, 242, 250, 256, 267, 0}, {0, 0, 0, 0, 98, 0, 193, 286, 375, 550, 718, 799, 878, 1032, 0}, {0, 0, 0, 0, 109, 0, 214, 316, 414, 607, 790, 879, 965, 1132, 0}, }; static const u16 expected_tpt_mimo2_40MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 123, 0, 182, 214, 235, 264, 279, 285, 289, 296, 300}, {0, 0, 0, 0, 131, 0, 191, 222, 242, 270, 284, 289, 293, 300, 303}, {0, 0, 0, 0, 200, 0, 390, 571, 741, 1067, 1365, 1505, 1640, 1894, 2053}, {0, 0, 0, 0, 221, 0, 430, 630, 816, 1169, 1490, 1641, 1784, 2053, 2221}, }; static const u16 expected_tpt_mimo2_80MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 182, 0, 240, 264, 278, 299, 308, 311, 313, 317, 319}, {0, 0, 0, 0, 190, 0, 247, 269, 282, 302, 310, 313, 315, 319, 320}, {0, 0, 0, 0, 428, 0, 833, 1215, 1577, 2254, 2863, 3147, 3418, 3913, 4219}, {0, 0, 0, 0, 474, 0, 920, 1338, 1732, 2464, 3116, 3418, 3705, 4225, 4545}, }; /* mbps, mcs */ static const struct iwl_rate_mcs_info iwl_rate_mcs[IWL_RATE_COUNT] = { { "1", "BPSK DSSS"}, { "2", "QPSK DSSS"}, {"5.5", "BPSK CCK"}, { "11", "QPSK CCK"}, { "6", "BPSK 1/2"}, { "9", "BPSK 1/2"}, { "12", "QPSK 1/2"}, { "18", "QPSK 3/4"}, { "24", "16QAM 1/2"}, { "36", "16QAM 3/4"}, { "48", "64QAM 2/3"}, { "54", "64QAM 3/4"}, { "60", "64QAM 5/6"}, }; #define MCS_INDEX_PER_STREAM (8) static const char *rs_pretty_ant(u8 ant) { static const char * const ant_name[] = { [ANT_NONE] = "None", [ANT_A] = "A", [ANT_B] = "B", [ANT_AB] = "AB", [ANT_C] = "C", [ANT_AC] = "AC", [ANT_BC] = "BC", [ANT_ABC] = "ABC", }; if (ant > ANT_ABC) return "UNKNOWN"; return ant_name[ant]; } static const char *rs_pretty_lq_type(enum iwl_table_type type) { static const char * const lq_types[] = { [LQ_NONE] = "NONE", [LQ_LEGACY_A] = "LEGACY_A", [LQ_LEGACY_G] = "LEGACY_G", [LQ_HT_SISO] = "HT SISO", [LQ_HT_MIMO2] = "HT MIMO", [LQ_VHT_SISO] = "VHT SISO", [LQ_VHT_MIMO2] = "VHT MIMO", }; if (type < LQ_NONE || type >= LQ_MAX) return "UNKNOWN"; return lq_types[type]; } static inline void rs_dump_rate(struct iwl_mvm *mvm, const struct rs_rate *rate, const char *prefix) { IWL_DEBUG_RATE(mvm, "%s: (%s: %d) ANT: %s BW: %d SGI: %d\n", prefix, rs_pretty_lq_type(rate->type), rate->index, rs_pretty_ant(rate->ant), rate->bw, rate->sgi); } static void rs_rate_scale_clear_window(struct iwl_rate_scale_data *window) { window->data = 0; window->success_counter = 0; window->success_ratio = IWL_INVALID_VALUE; window->counter = 0; window->average_tpt = IWL_INVALID_VALUE; } static inline u8 rs_is_valid_ant(u8 valid_antenna, u8 ant_type) { return (ant_type & valid_antenna) == ant_type; } static int rs_tl_turn_on_agg_for_tid(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_data, u8 tid, struct ieee80211_sta *sta) { int ret = -EAGAIN; IWL_DEBUG_HT(mvm, "Starting Tx agg: STA: %pM tid: %d\n", sta->addr, tid); ret = ieee80211_start_tx_ba_session(sta, tid, 5000); if (ret == -EAGAIN) { /* * driver and mac80211 is out of sync * this might be cause by reloading firmware * stop the tx ba session here */ IWL_ERR(mvm, "Fail start Tx agg on tid: %d\n", tid); ieee80211_stop_tx_ba_session(sta, tid); } return ret; } static void rs_tl_turn_on_agg(struct iwl_mvm *mvm, u8 tid, struct iwl_lq_sta *lq_data, struct ieee80211_sta *sta) { if (tid < IWL_MAX_TID_COUNT) rs_tl_turn_on_agg_for_tid(mvm, lq_data, tid, sta); else IWL_ERR(mvm, "tid exceeds max TID count: %d/%d\n", tid, IWL_MAX_TID_COUNT); } static inline int get_num_of_ant_from_rate(u32 rate_n_flags) { return !!(rate_n_flags & RATE_MCS_ANT_A_MSK) + !!(rate_n_flags & RATE_MCS_ANT_B_MSK) + !!(rate_n_flags & RATE_MCS_ANT_C_MSK); } /* * Static function to get the expected throughput from an iwl_scale_tbl_info * that wraps a NULL pointer check */ static s32 get_expected_tpt(struct iwl_scale_tbl_info *tbl, int rs_index) { if (tbl->expected_tpt) return tbl->expected_tpt[rs_index]; return 0; } /** * rs_collect_tx_data - Update the success/failure sliding window * * We keep a sliding window of the last 62 packets transmitted * at this rate. window->data contains the bitmask of successful * packets. */ static int rs_collect_tx_data(struct iwl_scale_tbl_info *tbl, int scale_index, int attempts, int successes) { struct iwl_rate_scale_data *window = NULL; static const u64 mask = (((u64)1) << (IWL_RATE_MAX_WINDOW - 1)); s32 fail_count, tpt; if (scale_index < 0 || scale_index >= IWL_RATE_COUNT) return -EINVAL; /* Select window for current tx bit rate */ window = &(tbl->win[scale_index]); /* Get expected throughput */ tpt = get_expected_tpt(tbl, scale_index); /* * Keep track of only the latest 62 tx frame attempts in this rate's * history window; anything older isn't really relevant any more. * If we have filled up the sliding window, drop the oldest attempt; * if the oldest attempt (highest bit in bitmap) shows "success", * subtract "1" from the success counter (this is the main reason * we keep these bitmaps!). */ while (attempts > 0) { if (window->counter >= IWL_RATE_MAX_WINDOW) { /* remove earliest */ window->counter = IWL_RATE_MAX_WINDOW - 1; if (window->data & mask) { window->data &= ~mask; window->success_counter--; } } /* Increment frames-attempted counter */ window->counter++; /* Shift bitmap by one frame to throw away oldest history */ window->data <<= 1; /* Mark the most recent #successes attempts as successful */ if (successes > 0) { window->success_counter++; window->data |= 0x1; successes--; } attempts--; } /* Calculate current success ratio, avoid divide-by-0! */ if (window->counter > 0) window->success_ratio = 128 * (100 * window->success_counter) / window->counter; else window->success_ratio = IWL_INVALID_VALUE; fail_count = window->counter - window->success_counter; /* Calculate average throughput, if we have enough history. */ if ((fail_count >= IWL_RATE_MIN_FAILURE_TH) || (window->success_counter >= IWL_RATE_MIN_SUCCESS_TH)) window->average_tpt = (window->success_ratio * tpt + 64) / 128; else window->average_tpt = IWL_INVALID_VALUE; return 0; } /* Convert rs_rate object into ucode rate bitmask */ static u32 ucode_rate_from_rs_rate(struct iwl_mvm *mvm, struct rs_rate *rate) { u32 ucode_rate = 0; int index = rate->index; ucode_rate |= ((rate->ant << RATE_MCS_ANT_POS) & RATE_MCS_ANT_ABC_MSK); if (is_legacy(rate)) { ucode_rate |= iwl_rates[index].plcp; if (index >= IWL_FIRST_CCK_RATE && index <= IWL_LAST_CCK_RATE) ucode_rate |= RATE_MCS_CCK_MSK; return ucode_rate; } if (is_ht(rate)) { if (index < IWL_FIRST_HT_RATE || index > IWL_LAST_HT_RATE) { IWL_ERR(mvm, "Invalid HT rate index %d\n", index); index = IWL_LAST_HT_RATE; } ucode_rate |= RATE_MCS_HT_MSK; if (is_ht_siso(rate)) ucode_rate |= iwl_rates[index].plcp_ht_siso; else if (is_ht_mimo2(rate)) ucode_rate |= iwl_rates[index].plcp_ht_mimo2; else WARN_ON_ONCE(1); } else if (is_vht(rate)) { if (index < IWL_FIRST_VHT_RATE || index > IWL_LAST_VHT_RATE) { IWL_ERR(mvm, "Invalid VHT rate index %d\n", index); index = IWL_LAST_VHT_RATE; } ucode_rate |= RATE_MCS_VHT_MSK; if (is_vht_siso(rate)) ucode_rate |= iwl_rates[index].plcp_vht_siso; else if (is_vht_mimo2(rate)) ucode_rate |= iwl_rates[index].plcp_vht_mimo2; else WARN_ON_ONCE(1); } else { IWL_ERR(mvm, "Invalid rate->type %d\n", rate->type); } ucode_rate |= rate->bw; if (rate->sgi) ucode_rate |= RATE_MCS_SGI_MSK; return ucode_rate; } /* Convert a ucode rate into an rs_rate object */ static int rs_rate_from_ucode_rate(const u32 ucode_rate, enum ieee80211_band band, struct rs_rate *rate) { u32 ant_msk = ucode_rate & RATE_MCS_ANT_ABC_MSK; u8 num_of_ant = get_num_of_ant_from_rate(ucode_rate); u8 nss; memset(rate, 0, sizeof(*rate)); rate->index = iwl_hwrate_to_plcp_idx(ucode_rate); if (rate->index == IWL_RATE_INVALID) return -EINVAL; rate->ant = (ant_msk >> RATE_MCS_ANT_POS); /* Legacy */ if (!(ucode_rate & RATE_MCS_HT_MSK) && !(ucode_rate & RATE_MCS_VHT_MSK)) { if (num_of_ant == 1) { if (band == IEEE80211_BAND_5GHZ) rate->type = LQ_LEGACY_A; else rate->type = LQ_LEGACY_G; } return 0; } /* HT or VHT */ if (ucode_rate & RATE_MCS_SGI_MSK) rate->sgi = true; rate->bw = ucode_rate & RATE_MCS_CHAN_WIDTH_MSK; if (ucode_rate & RATE_MCS_HT_MSK) { nss = ((ucode_rate & RATE_HT_MCS_NSS_MSK) >> RATE_HT_MCS_NSS_POS) + 1; if (nss == 1) { rate->type = LQ_HT_SISO; WARN_ON_ONCE(num_of_ant != 1); } else if (nss == 2) { rate->type = LQ_HT_MIMO2; WARN_ON_ONCE(num_of_ant != 2); } else { WARN_ON_ONCE(1); } } else if (ucode_rate & RATE_MCS_VHT_MSK) { nss = ((ucode_rate & RATE_VHT_MCS_NSS_MSK) >> RATE_VHT_MCS_NSS_POS) + 1; if (nss == 1) { rate->type = LQ_VHT_SISO; WARN_ON_ONCE(num_of_ant != 1); } else if (nss == 2) { rate->type = LQ_VHT_MIMO2; WARN_ON_ONCE(num_of_ant != 2); } else { WARN_ON_ONCE(1); } } WARN_ON_ONCE(rate->bw == RATE_MCS_CHAN_WIDTH_160); WARN_ON_ONCE(rate->bw == RATE_MCS_CHAN_WIDTH_80 && !is_vht(rate)); return 0; } /* switch to another antenna/antennas and return 1 */ /* if no other valid antenna found, return 0 */ static int rs_toggle_antenna(u32 valid_ant, struct rs_rate *rate) { u8 new_ant_type; if (!rate->ant || rate->ant > ANT_ABC) return 0; if (!rs_is_valid_ant(valid_ant, rate->ant)) return 0; new_ant_type = ant_toggle_lookup[rate->ant]; while ((new_ant_type != rate->ant) && !rs_is_valid_ant(valid_ant, new_ant_type)) new_ant_type = ant_toggle_lookup[new_ant_type]; if (new_ant_type == rate->ant) return 0; rate->ant = new_ant_type; return 1; } static u16 rs_get_supported_rates(struct iwl_lq_sta *lq_sta, struct rs_rate *rate) { if (is_legacy(rate)) return lq_sta->active_legacy_rate; else if (is_siso(rate)) return lq_sta->active_siso_rate; else if (is_mimo2(rate)) return lq_sta->active_mimo2_rate; WARN_ON_ONCE(1); return 0; } static u16 rs_get_adjacent_rate(struct iwl_mvm *mvm, u8 index, u16 rate_mask, int rate_type) { u8 high = IWL_RATE_INVALID; u8 low = IWL_RATE_INVALID; /* 802.11A or ht walks to the next literal adjacent rate in * the rate table */ if (is_type_a_band(rate_type) || !is_type_legacy(rate_type)) { int i; u32 mask; /* Find the previous rate that is in the rate mask */ i = index - 1; for (mask = (1 << i); i >= 0; i--, mask >>= 1) { if (rate_mask & mask) { low = i; break; } } /* Find the next rate that is in the rate mask */ i = index + 1; for (mask = (1 << i); i < IWL_RATE_COUNT; i++, mask <<= 1) { if (rate_mask & mask) { high = i; break; } } return (high << 8) | low; } low = index; while (low != IWL_RATE_INVALID) { low = iwl_rates[low].prev_rs; if (low == IWL_RATE_INVALID) break; if (rate_mask & (1 << low)) break; IWL_DEBUG_RATE(mvm, "Skipping masked lower rate: %d\n", low); } high = index; while (high != IWL_RATE_INVALID) { high = iwl_rates[high].next_rs; if (high == IWL_RATE_INVALID) break; if (rate_mask & (1 << high)) break; IWL_DEBUG_RATE(mvm, "Skipping masked higher rate: %d\n", high); } return (high << 8) | low; } static inline bool rs_rate_supported(struct iwl_lq_sta *lq_sta, struct rs_rate *rate) { return BIT(rate->index) & rs_get_supported_rates(lq_sta, rate); } /* Get the next supported lower rate in the current column. * Return true if bottom rate in the current column was reached */ static bool rs_get_lower_rate_in_column(struct iwl_lq_sta *lq_sta, struct rs_rate *rate) { u8 low; u16 high_low; u16 rate_mask; struct iwl_mvm *mvm = lq_sta->drv; rate_mask = rs_get_supported_rates(lq_sta, rate); high_low = rs_get_adjacent_rate(mvm, rate->index, rate_mask, rate->type); low = high_low & 0xff; /* Bottom rate of column reached */ if (low == IWL_RATE_INVALID) return true; rate->index = low; return false; } /* Get the next rate to use following a column downgrade */ static void rs_get_lower_rate_down_column(struct iwl_lq_sta *lq_sta, struct rs_rate *rate) { struct iwl_mvm *mvm = lq_sta->drv; if (is_legacy(rate)) { /* No column to downgrade from Legacy */ return; } else if (is_siso(rate)) { /* Downgrade to Legacy if we were in SISO */ if (lq_sta->band == IEEE80211_BAND_5GHZ) rate->type = LQ_LEGACY_A; else rate->type = LQ_LEGACY_G; rate->bw = RATE_MCS_CHAN_WIDTH_20; WARN_ON_ONCE(rate->index < IWL_RATE_MCS_0_INDEX && rate->index > IWL_RATE_MCS_9_INDEX); rate->index = rs_ht_to_legacy[rate->index]; } else { /* Downgrade to SISO with same MCS if in MIMO */ rate->type = is_vht_mimo2(rate) ? LQ_VHT_SISO : LQ_HT_SISO; } if (num_of_ant(rate->ant) > 1) rate->ant = first_antenna(iwl_fw_valid_tx_ant(mvm->fw)); /* Relevant in both switching to SISO or Legacy */ rate->sgi = false; if (!rs_rate_supported(lq_sta, rate)) rs_get_lower_rate_in_column(lq_sta, rate); } /* Simple function to compare two rate scale table types */ static inline bool rs_rate_match(struct rs_rate *a, struct rs_rate *b) { return (a->type == b->type) && (a->ant == b->ant) && (a->sgi == b->sgi); } static u32 rs_ch_width_from_mac_flags(enum mac80211_rate_control_flags flags) { if (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) return RATE_MCS_CHAN_WIDTH_40; else if (flags & IEEE80211_TX_RC_80_MHZ_WIDTH) return RATE_MCS_CHAN_WIDTH_80; else if (flags & IEEE80211_TX_RC_160_MHZ_WIDTH) return RATE_MCS_CHAN_WIDTH_160; return RATE_MCS_CHAN_WIDTH_20; } /* * mac80211 sends us Tx status */ static void rs_tx_status(void *mvm_r, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta, struct sk_buff *skb) { int legacy_success; int retries; int mac_index, i; struct iwl_lq_sta *lq_sta = priv_sta; struct iwl_lq_cmd *table; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct iwl_op_mode *op_mode = (struct iwl_op_mode *)mvm_r; struct iwl_mvm *mvm = IWL_OP_MODE_GET_MVM(op_mode); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); enum mac80211_rate_control_flags mac_flags; u32 ucode_rate; struct rs_rate rate; struct iwl_scale_tbl_info *curr_tbl, *other_tbl, *tmp_tbl; /* Treat uninitialized rate scaling data same as non-existing. */ if (!lq_sta) { IWL_DEBUG_RATE(mvm, "Station rate scaling not created yet.\n"); return; } else if (!lq_sta->drv) { IWL_DEBUG_RATE(mvm, "Rate scaling not initialized yet.\n"); return; } if (!ieee80211_is_data(hdr->frame_control) || info->flags & IEEE80211_TX_CTL_NO_ACK) return; /* This packet was aggregated but doesn't carry status info */ if ((info->flags & IEEE80211_TX_CTL_AMPDU) && !(info->flags & IEEE80211_TX_STAT_AMPDU)) return; /* * Ignore this Tx frame response if its initial rate doesn't match * that of latest Link Quality command. There may be stragglers * from a previous Link Quality command, but we're no longer interested * in those; they're either from the "active" mode while we're trying * to check "search" mode, or a prior "search" mode after we've moved * to a new "search" mode (which might become the new "active" mode). */ table = &lq_sta->lq; ucode_rate = le32_to_cpu(table->rs_table[0]); rs_rate_from_ucode_rate(ucode_rate, info->band, &rate); if (info->band == IEEE80211_BAND_5GHZ) rate.index -= IWL_FIRST_OFDM_RATE; mac_flags = info->status.rates[0].flags; mac_index = info->status.rates[0].idx; /* For HT packets, map MCS to PLCP */ if (mac_flags & IEEE80211_TX_RC_MCS) { /* Remove # of streams */ mac_index &= RATE_HT_MCS_RATE_CODE_MSK; if (mac_index >= (IWL_RATE_9M_INDEX - IWL_FIRST_OFDM_RATE)) mac_index++; /* * mac80211 HT index is always zero-indexed; we need to move * HT OFDM rates after CCK rates in 2.4 GHz band */ if (info->band == IEEE80211_BAND_2GHZ) mac_index += IWL_FIRST_OFDM_RATE; } else if (mac_flags & IEEE80211_TX_RC_VHT_MCS) { mac_index &= RATE_VHT_MCS_RATE_CODE_MSK; if (mac_index >= (IWL_RATE_9M_INDEX - IWL_FIRST_OFDM_RATE)) mac_index++; } /* Here we actually compare this rate to the latest LQ command */ if ((mac_index < 0) || (rate.sgi != !!(mac_flags & IEEE80211_TX_RC_SHORT_GI)) || (rate.bw != rs_ch_width_from_mac_flags(mac_flags)) || (rate.ant != info->status.antenna) || (!!(ucode_rate & RATE_MCS_HT_MSK) != !!(mac_flags & IEEE80211_TX_RC_MCS)) || (!!(ucode_rate & RATE_MCS_VHT_MSK) != !!(mac_flags & IEEE80211_TX_RC_VHT_MCS)) || (!!(ucode_rate & RATE_HT_MCS_GF_MSK) != !!(mac_flags & IEEE80211_TX_RC_GREEN_FIELD)) || (rate.index != mac_index)) { IWL_DEBUG_RATE(mvm, "initial rate %d does not match %d (0x%x)\n", mac_index, rate.index, ucode_rate); /* * Since rates mis-match, the last LQ command may have failed. * After IWL_MISSED_RATE_MAX mis-matches, resync the uCode with * ... driver. */ lq_sta->missed_rate_counter++; if (lq_sta->missed_rate_counter > IWL_MISSED_RATE_MAX) { lq_sta->missed_rate_counter = 0; IWL_DEBUG_RATE(mvm, "Too many rates mismatch. Send sync LQ. rs_state %d\n", lq_sta->rs_state); iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, false); } /* Regardless, ignore this status info for outdated rate */ return; } else /* Rate did match, so reset the missed_rate_counter */ lq_sta->missed_rate_counter = 0; /* Figure out if rate scale algorithm is in active or search table */ if (rs_rate_match(&rate, &(lq_sta->lq_info[lq_sta->active_tbl].rate))) { curr_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); other_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]); } else if (rs_rate_match(&rate, &lq_sta->lq_info[1 - lq_sta->active_tbl].rate)) { curr_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]); other_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); } else { IWL_DEBUG_RATE(mvm, "Neither active nor search matches tx rate\n"); tmp_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); rs_dump_rate(mvm, &tmp_tbl->rate, "ACTIVE"); tmp_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]); rs_dump_rate(mvm, &tmp_tbl->rate, "SEARCH"); rs_dump_rate(mvm, &rate, "ACTUAL"); /* * no matching table found, let's by-pass the data collection * and continue to perform rate scale to find the rate table */ rs_stay_in_table(lq_sta, true); goto done; } /* * Updating the frame history depends on whether packets were * aggregated. * * For aggregation, all packets were transmitted at the same rate, the * first index into rate scale table. */ if (info->flags & IEEE80211_TX_STAT_AMPDU) { ucode_rate = le32_to_cpu(table->rs_table[0]); rs_rate_from_ucode_rate(ucode_rate, info->band, &rate); rs_collect_tx_data(curr_tbl, rate.index, info->status.ampdu_len, info->status.ampdu_ack_len); /* Update success/fail counts if not searching for new mode */ if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) { lq_sta->total_success += info->status.ampdu_ack_len; lq_sta->total_failed += (info->status.ampdu_len - info->status.ampdu_ack_len); } } else { /* * For legacy, update frame history with for each Tx retry. */ retries = info->status.rates[0].count - 1; /* HW doesn't send more than 15 retries */ retries = min(retries, 15); /* The last transmission may have been successful */ legacy_success = !!(info->flags & IEEE80211_TX_STAT_ACK); /* Collect data for each rate used during failed TX attempts */ for (i = 0; i <= retries; ++i) { ucode_rate = le32_to_cpu(table->rs_table[i]); rs_rate_from_ucode_rate(ucode_rate, info->band, &rate); /* * Only collect stats if retried rate is in the same RS * table as active/search. */ if (rs_rate_match(&rate, &curr_tbl->rate)) tmp_tbl = curr_tbl; else if (rs_rate_match(&rate, &other_tbl->rate)) tmp_tbl = other_tbl; else continue; rs_collect_tx_data(tmp_tbl, rate.index, 1, i < retries ? 0 : legacy_success); } /* Update success/fail counts if not searching for new mode */ if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) { lq_sta->total_success += legacy_success; lq_sta->total_failed += retries + (1 - legacy_success); } } /* The last TX rate is cached in lq_sta; it's set in if/else above */ lq_sta->last_rate_n_flags = ucode_rate; done: /* See if there's a better rate or modulation mode to try. */ if (sta && sta->supp_rates[sband->band]) rs_rate_scale_perform(mvm, skb, sta, lq_sta); } /* * Begin a period of staying with a selected modulation mode. * Set "stay_in_tbl" flag to prevent any mode switches. * Set frame tx success limits according to legacy vs. high-throughput, * and reset overall (spanning all rates) tx success history statistics. * These control how long we stay using same modulation mode before * searching for a new mode. */ static void rs_set_stay_in_table(struct iwl_mvm *mvm, u8 is_legacy, struct iwl_lq_sta *lq_sta) { IWL_DEBUG_RATE(mvm, "Moving to RS_STATE_STAY_IN_COLUMN\n"); lq_sta->rs_state = RS_STATE_STAY_IN_COLUMN; if (is_legacy) { lq_sta->table_count_limit = IWL_LEGACY_TABLE_COUNT; lq_sta->max_failure_limit = IWL_LEGACY_FAILURE_LIMIT; lq_sta->max_success_limit = IWL_LEGACY_SUCCESS_LIMIT; } else { lq_sta->table_count_limit = IWL_NONE_LEGACY_TABLE_COUNT; lq_sta->max_failure_limit = IWL_NONE_LEGACY_FAILURE_LIMIT; lq_sta->max_success_limit = IWL_NONE_LEGACY_SUCCESS_LIMIT; } lq_sta->table_count = 0; lq_sta->total_failed = 0; lq_sta->total_success = 0; lq_sta->flush_timer = jiffies; lq_sta->visited_columns = 0; } static const u16 *rs_get_expected_tpt_table(struct iwl_lq_sta *lq_sta, const struct rs_tx_column *column, u32 bw) { /* Used to choose among HT tables */ const u16 (*ht_tbl_pointer)[IWL_RATE_COUNT]; if (WARN_ON_ONCE(column->mode != RS_LEGACY && column->mode != RS_SISO && column->mode != RS_MIMO2)) return expected_tpt_legacy; /* Legacy rates have only one table */ if (column->mode == RS_LEGACY) return expected_tpt_legacy; ht_tbl_pointer = expected_tpt_mimo2_20MHz; /* Choose among many HT tables depending on number of streams * (SISO/MIMO2), channel width (20/40/80), SGI, and aggregation * status */ if (column->mode == RS_SISO) { switch (bw) { case RATE_MCS_CHAN_WIDTH_20: ht_tbl_pointer = expected_tpt_siso_20MHz; break; case RATE_MCS_CHAN_WIDTH_40: ht_tbl_pointer = expected_tpt_siso_40MHz; break; case RATE_MCS_CHAN_WIDTH_80: ht_tbl_pointer = expected_tpt_siso_80MHz; break; default: WARN_ON_ONCE(1); } } else if (column->mode == RS_MIMO2) { switch (bw) { case RATE_MCS_CHAN_WIDTH_20: ht_tbl_pointer = expected_tpt_mimo2_20MHz; break; case RATE_MCS_CHAN_WIDTH_40: ht_tbl_pointer = expected_tpt_mimo2_40MHz; break; case RATE_MCS_CHAN_WIDTH_80: ht_tbl_pointer = expected_tpt_mimo2_80MHz; break; default: WARN_ON_ONCE(1); } } else { WARN_ON_ONCE(1); } if (!column->sgi && !lq_sta->is_agg) /* Normal */ return ht_tbl_pointer[0]; else if (column->sgi && !lq_sta->is_agg) /* SGI */ return ht_tbl_pointer[1]; else if (!column->sgi && lq_sta->is_agg) /* AGG */ return ht_tbl_pointer[2]; else /* AGG+SGI */ return ht_tbl_pointer[3]; } static void rs_set_expected_tpt_table(struct iwl_lq_sta *lq_sta, struct iwl_scale_tbl_info *tbl) { struct rs_rate *rate = &tbl->rate; const struct rs_tx_column *column = &rs_tx_columns[tbl->column]; tbl->expected_tpt = rs_get_expected_tpt_table(lq_sta, column, rate->bw); } /* * Find starting rate for new "search" high-throughput mode of modulation. * Goal is to find lowest expected rate (under perfect conditions) that is * above the current measured throughput of "active" mode, to give new mode * a fair chance to prove itself without too many challenges. * * This gets called when transitioning to more aggressive modulation * (i.e. legacy to SISO or MIMO, or SISO to MIMO), as well as less aggressive * (i.e. MIMO to SISO). When moving to MIMO, bit rate will typically need * to decrease to match "active" throughput. When moving from MIMO to SISO, * bit rate will typically need to increase, but not if performance was bad. */ static s32 rs_get_best_rate(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, struct iwl_scale_tbl_info *tbl, /* "search" */ u16 rate_mask, s8 index) { /* "active" values */ struct iwl_scale_tbl_info *active_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); s32 active_sr = active_tbl->win[index].success_ratio; s32 active_tpt = active_tbl->expected_tpt[index]; /* expected "search" throughput */ const u16 *tpt_tbl = tbl->expected_tpt; s32 new_rate, high, low, start_hi; u16 high_low; s8 rate = index; new_rate = high = low = start_hi = IWL_RATE_INVALID; while (1) { high_low = rs_get_adjacent_rate(mvm, rate, rate_mask, tbl->rate.type); low = high_low & 0xff; high = (high_low >> 8) & 0xff; /* * Lower the "search" bit rate, to give new "search" mode * approximately the same throughput as "active" if: * * 1) "Active" mode has been working modestly well (but not * great), and expected "search" throughput (under perfect * conditions) at candidate rate is above the actual * measured "active" throughput (but less than expected * "active" throughput under perfect conditions). * OR * 2) "Active" mode has been working perfectly or very well * and expected "search" throughput (under perfect * conditions) at candidate rate is above expected * "active" throughput (under perfect conditions). */ if ((((100 * tpt_tbl[rate]) > lq_sta->last_tpt) && ((active_sr > RS_SR_FORCE_DECREASE) && (active_sr <= IWL_RATE_HIGH_TH) && (tpt_tbl[rate] <= active_tpt))) || ((active_sr >= IWL_RATE_SCALE_SWITCH) && (tpt_tbl[rate] > active_tpt))) { /* (2nd or later pass) * If we've already tried to raise the rate, and are * now trying to lower it, use the higher rate. */ if (start_hi != IWL_RATE_INVALID) { new_rate = start_hi; break; } new_rate = rate; /* Loop again with lower rate */ if (low != IWL_RATE_INVALID) rate = low; /* Lower rate not available, use the original */ else break; /* Else try to raise the "search" rate to match "active" */ } else { /* (2nd or later pass) * If we've already tried to lower the rate, and are * now trying to raise it, use the lower rate. */ if (new_rate != IWL_RATE_INVALID) break; /* Loop again with higher rate */ else if (high != IWL_RATE_INVALID) { start_hi = high; rate = high; /* Higher rate not available, use the original */ } else { new_rate = rate; break; } } } return new_rate; } static u32 rs_bw_from_sta_bw(struct ieee80211_sta *sta) { if (sta->bandwidth >= IEEE80211_STA_RX_BW_80) return RATE_MCS_CHAN_WIDTH_80; else if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) return RATE_MCS_CHAN_WIDTH_40; return RATE_MCS_CHAN_WIDTH_20; } /* * Check whether we should continue using same modulation mode, or * begin search for a new mode, based on: * 1) # tx successes or failures while using this mode * 2) # times calling this function * 3) elapsed time in this mode (not used, for now) */ static void rs_stay_in_table(struct iwl_lq_sta *lq_sta, bool force_search) { struct iwl_scale_tbl_info *tbl; int i; int active_tbl; int flush_interval_passed = 0; struct iwl_mvm *mvm; mvm = lq_sta->drv; active_tbl = lq_sta->active_tbl; tbl = &(lq_sta->lq_info[active_tbl]); /* If we've been disallowing search, see if we should now allow it */ if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) { /* Elapsed time using current modulation mode */ if (lq_sta->flush_timer) flush_interval_passed = time_after(jiffies, (unsigned long)(lq_sta->flush_timer + RS_STAY_IN_COLUMN_TIMEOUT)); /* * Check if we should allow search for new modulation mode. * If many frames have failed or succeeded, or we've used * this same modulation for a long time, allow search, and * reset history stats that keep track of whether we should * allow a new search. Also (below) reset all bitmaps and * stats in active history. */ if (force_search || (lq_sta->total_failed > lq_sta->max_failure_limit) || (lq_sta->total_success > lq_sta->max_success_limit) || ((!lq_sta->search_better_tbl) && (lq_sta->flush_timer) && (flush_interval_passed))) { IWL_DEBUG_RATE(mvm, "LQ: stay is expired %d %d %d\n", lq_sta->total_failed, lq_sta->total_success, flush_interval_passed); /* Allow search for new mode */ lq_sta->rs_state = RS_STATE_SEARCH_CYCLE_STARTED; IWL_DEBUG_RATE(mvm, "Moving to RS_STATE_SEARCH_CYCLE_STARTED\n"); lq_sta->total_failed = 0; lq_sta->total_success = 0; lq_sta->flush_timer = 0; /* mark the current column as visited */ lq_sta->visited_columns = BIT(tbl->column); /* * Else if we've used this modulation mode enough repetitions * (regardless of elapsed time or success/failure), reset * history bitmaps and rate-specific stats for all rates in * active table. */ } else { lq_sta->table_count++; if (lq_sta->table_count >= lq_sta->table_count_limit) { lq_sta->table_count = 0; IWL_DEBUG_RATE(mvm, "LQ: stay in table clear win\n"); for (i = 0; i < IWL_RATE_COUNT; i++) rs_rate_scale_clear_window( &(tbl->win[i])); } } /* If transitioning to allow "search", reset all history * bitmaps and stats in active table (this will become the new * "search" table). */ if (lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_STARTED) { IWL_DEBUG_RATE(mvm, "Clearing up window stats\n"); for (i = 0; i < IWL_RATE_COUNT; i++) rs_rate_scale_clear_window(&(tbl->win[i])); } } } /* * setup rate table in uCode */ static void rs_update_rate_tbl(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, struct rs_rate *rate) { rs_fill_lq_cmd(mvm, sta, lq_sta, rate); iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, false); } static u8 rs_get_tid(struct iwl_lq_sta *lq_data, struct ieee80211_hdr *hdr) { u8 tid = IWL_MAX_TID_COUNT; if (ieee80211_is_data_qos(hdr->frame_control)) { u8 *qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & 0xf; } if (unlikely(tid > IWL_MAX_TID_COUNT)) tid = IWL_MAX_TID_COUNT; return tid; } static enum rs_column rs_get_next_column(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, struct ieee80211_sta *sta, struct iwl_scale_tbl_info *tbl) { int i, j, n; enum rs_column next_col_id; const struct rs_tx_column *curr_col = &rs_tx_columns[tbl->column]; const struct rs_tx_column *next_col; allow_column_func_t allow_func; u8 valid_ants = iwl_fw_valid_tx_ant(mvm->fw); const u16 *expected_tpt_tbl; s32 tpt, max_expected_tpt; for (i = 0; i < MAX_NEXT_COLUMNS; i++) { next_col_id = curr_col->next_columns[i]; if (next_col_id == RS_COLUMN_INVALID) continue; if (lq_sta->visited_columns & BIT(next_col_id)) { IWL_DEBUG_RATE(mvm, "Skip already visited column %d\n", next_col_id); continue; } next_col = &rs_tx_columns[next_col_id]; if (!rs_is_valid_ant(valid_ants, next_col->ant)) { IWL_DEBUG_RATE(mvm, "Skip column %d as ANT config isn't supported by chip. valid_ants 0x%x column ant 0x%x\n", next_col_id, valid_ants, next_col->ant); continue; } for (j = 0; j < MAX_COLUMN_CHECKS; j++) { allow_func = next_col->checks[j]; if (allow_func && !allow_func(mvm, sta, tbl)) break; } if (j != MAX_COLUMN_CHECKS) { IWL_DEBUG_RATE(mvm, "Skip column %d: not allowed (check %d failed)\n", next_col_id, j); continue; } tpt = lq_sta->last_tpt / 100; expected_tpt_tbl = rs_get_expected_tpt_table(lq_sta, next_col, tbl->rate.bw); if (WARN_ON_ONCE(!expected_tpt_tbl)) continue; max_expected_tpt = 0; for (n = 0; n < IWL_RATE_COUNT; n++) if (expected_tpt_tbl[n] > max_expected_tpt) max_expected_tpt = expected_tpt_tbl[n]; if (tpt >= max_expected_tpt) { IWL_DEBUG_RATE(mvm, "Skip column %d: can't beat current TPT. Max expected %d current %d\n", next_col_id, max_expected_tpt, tpt); continue; } break; } if (i == MAX_NEXT_COLUMNS) return RS_COLUMN_INVALID; IWL_DEBUG_RATE(mvm, "Found potential column %d\n", next_col_id); return next_col_id; } static int rs_switch_to_column(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, struct ieee80211_sta *sta, enum rs_column col_id) { struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); struct iwl_scale_tbl_info *search_tbl = &(lq_sta->lq_info[(1 - lq_sta->active_tbl)]); struct rs_rate *rate = &search_tbl->rate; const struct rs_tx_column *column = &rs_tx_columns[col_id]; const struct rs_tx_column *curr_column = &rs_tx_columns[tbl->column]; u32 sz = (sizeof(struct iwl_scale_tbl_info) - (sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT)); u16 rate_mask = 0; u32 rate_idx = 0; memcpy(search_tbl, tbl, sz); rate->sgi = column->sgi; rate->ant = column->ant; if (column->mode == RS_LEGACY) { if (lq_sta->band == IEEE80211_BAND_5GHZ) rate->type = LQ_LEGACY_A; else rate->type = LQ_LEGACY_G; rate_mask = lq_sta->active_legacy_rate; } else if (column->mode == RS_SISO) { rate->type = lq_sta->is_vht ? LQ_VHT_SISO : LQ_HT_SISO; rate_mask = lq_sta->active_siso_rate; } else if (column->mode == RS_MIMO2) { rate->type = lq_sta->is_vht ? LQ_VHT_MIMO2 : LQ_HT_MIMO2; rate_mask = lq_sta->active_mimo2_rate; } else { WARN_ON_ONCE("Bad column mode"); } rate->bw = rs_bw_from_sta_bw(sta); search_tbl->column = col_id; rs_set_expected_tpt_table(lq_sta, search_tbl); lq_sta->visited_columns |= BIT(col_id); /* Get the best matching rate if we're changing modes. e.g. * SISO->MIMO, LEGACY->SISO, MIMO->SISO */ if (curr_column->mode != column->mode) { rate_idx = rs_get_best_rate(mvm, lq_sta, search_tbl, rate_mask, rate->index); if ((rate_idx == IWL_RATE_INVALID) || !(BIT(rate_idx) & rate_mask)) { IWL_DEBUG_RATE(mvm, "can not switch with index %d" " rate mask %x\n", rate_idx, rate_mask); goto err; } rate->index = rate_idx; } IWL_DEBUG_RATE(mvm, "Switched to column %d: Index %d\n", col_id, rate->index); return 0; err: rate->type = LQ_NONE; return -1; } static enum rs_action rs_get_rate_action(struct iwl_mvm *mvm, struct iwl_scale_tbl_info *tbl, s32 sr, int low, int high, int current_tpt, int low_tpt, int high_tpt) { enum rs_action action = RS_ACTION_STAY; /* Too many failures, decrease rate */ if ((sr <= RS_SR_FORCE_DECREASE) || (current_tpt == 0)) { IWL_DEBUG_RATE(mvm, "decrease rate because of low SR\n"); action = RS_ACTION_DOWNSCALE; /* No throughput measured yet for adjacent rates; try increase. */ } else if ((low_tpt == IWL_INVALID_VALUE) && (high_tpt == IWL_INVALID_VALUE)) { if (high != IWL_RATE_INVALID && sr >= IWL_RATE_INCREASE_TH) { IWL_DEBUG_RATE(mvm, "Good SR and no high rate measurement. " "Increase rate\n"); action = RS_ACTION_UPSCALE; } else if (low != IWL_RATE_INVALID) { IWL_DEBUG_RATE(mvm, "Remain in current rate\n"); action = RS_ACTION_STAY; } } /* Both adjacent throughputs are measured, but neither one has better * throughput; we're using the best rate, don't change it! */ else if ((low_tpt != IWL_INVALID_VALUE) && (high_tpt != IWL_INVALID_VALUE) && (low_tpt < current_tpt) && (high_tpt < current_tpt)) { IWL_DEBUG_RATE(mvm, "Both high and low are worse. " "Maintain rate\n"); action = RS_ACTION_STAY; } /* At least one adjacent rate's throughput is measured, * and may have better performance. */ else { /* Higher adjacent rate's throughput is measured */ if (high_tpt != IWL_INVALID_VALUE) { /* Higher rate has better throughput */ if (high_tpt > current_tpt && sr >= IWL_RATE_INCREASE_TH) { IWL_DEBUG_RATE(mvm, "Higher rate is better and good " "SR. Increate rate\n"); action = RS_ACTION_UPSCALE; } else { IWL_DEBUG_RATE(mvm, "Higher rate isn't better OR " "no good SR. Maintain rate\n"); action = RS_ACTION_STAY; } /* Lower adjacent rate's throughput is measured */ } else if (low_tpt != IWL_INVALID_VALUE) { /* Lower rate has better throughput */ if (low_tpt > current_tpt) { IWL_DEBUG_RATE(mvm, "Lower rate is better. " "Decrease rate\n"); action = RS_ACTION_DOWNSCALE; } else if (sr >= IWL_RATE_INCREASE_TH) { IWL_DEBUG_RATE(mvm, "Lower rate isn't better and " "good SR. Increase rate\n"); action = RS_ACTION_UPSCALE; } } } /* Sanity check; asked for decrease, but success rate or throughput * has been good at old rate. Don't change it. */ if ((action == RS_ACTION_DOWNSCALE) && (low != IWL_RATE_INVALID) && ((sr > IWL_RATE_HIGH_TH) || (current_tpt > (100 * tbl->expected_tpt[low])))) { IWL_DEBUG_RATE(mvm, "Sanity check failed. Maintain rate\n"); action = RS_ACTION_STAY; } return action; } /* * Do rate scaling and search for new modulation mode. */ static void rs_rate_scale_perform(struct iwl_mvm *mvm, struct sk_buff *skb, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int low = IWL_RATE_INVALID; int high = IWL_RATE_INVALID; int index; int i; struct iwl_rate_scale_data *window = NULL; int current_tpt = IWL_INVALID_VALUE; int low_tpt = IWL_INVALID_VALUE; int high_tpt = IWL_INVALID_VALUE; u32 fail_count; enum rs_action scale_action = RS_ACTION_STAY; u16 rate_mask; u8 update_lq = 0; struct iwl_scale_tbl_info *tbl, *tbl1; u8 active_tbl = 0; u8 done_search = 0; u16 high_low; s32 sr; u8 tid = IWL_MAX_TID_COUNT; u8 prev_agg = lq_sta->is_agg; struct iwl_mvm_sta *sta_priv = (void *)sta->drv_priv; struct iwl_mvm_tid_data *tid_data; struct rs_rate *rate; /* Send management frames and NO_ACK data using lowest rate. */ /* TODO: this could probably be improved.. */ if (!ieee80211_is_data(hdr->frame_control) || info->flags & IEEE80211_TX_CTL_NO_ACK) return; tid = rs_get_tid(lq_sta, hdr); if ((tid != IWL_MAX_TID_COUNT) && (lq_sta->tx_agg_tid_en & (1 << tid))) { tid_data = &sta_priv->tid_data[tid]; if (tid_data->state == IWL_AGG_OFF) lq_sta->is_agg = 0; else lq_sta->is_agg = 1; } else { lq_sta->is_agg = 0; } /* * Select rate-scale / modulation-mode table to work with in * the rest of this function: "search" if searching for better * modulation mode, or "active" if doing rate scaling within a mode. */ if (!lq_sta->search_better_tbl) active_tbl = lq_sta->active_tbl; else active_tbl = 1 - lq_sta->active_tbl; tbl = &(lq_sta->lq_info[active_tbl]); rate = &tbl->rate; if (prev_agg != lq_sta->is_agg) { IWL_DEBUG_RATE(mvm, "Aggregation changed: prev %d current %d. Update expected TPT table\n", prev_agg, lq_sta->is_agg); rs_set_expected_tpt_table(lq_sta, tbl); } /* current tx rate */ index = lq_sta->last_txrate_idx; /* rates available for this association, and for modulation mode */ rate_mask = rs_get_supported_rates(lq_sta, rate); if (!(BIT(index) & rate_mask)) { IWL_ERR(mvm, "Current Rate is not valid\n"); if (lq_sta->search_better_tbl) { /* revert to active table if search table is not valid*/ rate->type = LQ_NONE; lq_sta->search_better_tbl = 0; tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); rs_update_rate_tbl(mvm, sta, lq_sta, &tbl->rate); } return; } /* Get expected throughput table and history window for current rate */ if (!tbl->expected_tpt) { IWL_ERR(mvm, "tbl->expected_tpt is NULL\n"); return; } /* force user max rate if set by user */ if ((lq_sta->max_rate_idx != -1) && (lq_sta->max_rate_idx < index)) { index = lq_sta->max_rate_idx; update_lq = 1; window = &(tbl->win[index]); IWL_DEBUG_RATE(mvm, "Forcing user max rate %d\n", index); goto lq_update; } window = &(tbl->win[index]); /* * If there is not enough history to calculate actual average * throughput, keep analyzing results of more tx frames, without * changing rate or mode (bypass most of the rest of this function). * Set up new rate table in uCode only if old rate is not supported * in current association (use new rate found above). */ fail_count = window->counter - window->success_counter; if ((fail_count < IWL_RATE_MIN_FAILURE_TH) && (window->success_counter < IWL_RATE_MIN_SUCCESS_TH)) { IWL_DEBUG_RATE(mvm, "(%s: %d): Test Window: succ %d total %d\n", rs_pretty_lq_type(rate->type), index, window->success_counter, window->counter); /* Can't calculate this yet; not enough history */ window->average_tpt = IWL_INVALID_VALUE; /* Should we stay with this modulation mode, * or search for a new one? */ rs_stay_in_table(lq_sta, false); goto out; } /* Else we have enough samples; calculate estimate of * actual average throughput */ if (window->average_tpt != ((window->success_ratio * tbl->expected_tpt[index] + 64) / 128)) { window->average_tpt = ((window->success_ratio * tbl->expected_tpt[index] + 64) / 128); } /* If we are searching for better modulation mode, check success. */ if (lq_sta->search_better_tbl) { /* If good success, continue using the "search" mode; * no need to send new link quality command, since we're * continuing to use the setup that we've been trying. */ if (window->average_tpt > lq_sta->last_tpt) { IWL_DEBUG_RATE(mvm, "SWITCHING TO NEW TABLE SR: %d " "cur-tpt %d old-tpt %d\n", window->success_ratio, window->average_tpt, lq_sta->last_tpt); /* Swap tables; "search" becomes "active" */ lq_sta->active_tbl = active_tbl; current_tpt = window->average_tpt; /* Else poor success; go back to mode in "active" table */ } else { IWL_DEBUG_RATE(mvm, "GOING BACK TO THE OLD TABLE: SR %d " "cur-tpt %d old-tpt %d\n", window->success_ratio, window->average_tpt, lq_sta->last_tpt); /* Nullify "search" table */ rate->type = LQ_NONE; /* Revert to "active" table */ active_tbl = lq_sta->active_tbl; tbl = &(lq_sta->lq_info[active_tbl]); /* Revert to "active" rate and throughput info */ index = tbl->rate.index; current_tpt = lq_sta->last_tpt; /* Need to set up a new rate table in uCode */ update_lq = 1; } /* Either way, we've made a decision; modulation mode * search is done, allow rate adjustment next time. */ lq_sta->search_better_tbl = 0; done_search = 1; /* Don't switch modes below! */ goto lq_update; } /* (Else) not in search of better modulation mode, try for better * starting rate, while staying in this mode. */ high_low = rs_get_adjacent_rate(mvm, index, rate_mask, rate->type); low = high_low & 0xff; high = (high_low >> 8) & 0xff; /* If user set max rate, dont allow higher than user constrain */ if ((lq_sta->max_rate_idx != -1) && (lq_sta->max_rate_idx < high)) high = IWL_RATE_INVALID; sr = window->success_ratio; /* Collect measured throughputs for current and adjacent rates */ current_tpt = window->average_tpt; if (low != IWL_RATE_INVALID) low_tpt = tbl->win[low].average_tpt; if (high != IWL_RATE_INVALID) high_tpt = tbl->win[high].average_tpt; IWL_DEBUG_RATE(mvm, "(%s: %d): cur_tpt %d SR %d low %d high %d low_tpt %d high_tpt %d\n", rs_pretty_lq_type(rate->type), index, current_tpt, sr, low, high, low_tpt, high_tpt); scale_action = rs_get_rate_action(mvm, tbl, sr, low, high, current_tpt, low_tpt, high_tpt); /* Force a search in case BT doesn't like us being in MIMO */ if (is_mimo(rate) && !iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta)) { IWL_DEBUG_RATE(mvm, "BT Coex forbids MIMO. Search for new config\n"); rs_stay_in_table(lq_sta, true); goto lq_update; } switch (scale_action) { case RS_ACTION_DOWNSCALE: /* Decrease starting rate, update uCode's rate table */ if (low != IWL_RATE_INVALID) { update_lq = 1; index = low; } else { IWL_DEBUG_RATE(mvm, "At the bottom rate. Can't decrease\n"); } break; case RS_ACTION_UPSCALE: /* Increase starting rate, update uCode's rate table */ if (high != IWL_RATE_INVALID) { update_lq = 1; index = high; } else { IWL_DEBUG_RATE(mvm, "At the top rate. Can't increase\n"); } break; case RS_ACTION_STAY: /* No change */ default: break; } lq_update: /* Replace uCode's rate table for the destination station. */ if (update_lq) { tbl->rate.index = index; rs_update_rate_tbl(mvm, sta, lq_sta, &tbl->rate); } rs_stay_in_table(lq_sta, false); /* * Search for new modulation mode if we're: * 1) Not changing rates right now * 2) Not just finishing up a search * 3) Allowing a new search */ if (!update_lq && !done_search && lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_STARTED && window->counter) { enum rs_column next_column; /* Save current throughput to compare with "search" throughput*/ lq_sta->last_tpt = current_tpt; IWL_DEBUG_RATE(mvm, "Start Search: update_lq %d done_search %d rs_state %d win->counter %d\n", update_lq, done_search, lq_sta->rs_state, window->counter); next_column = rs_get_next_column(mvm, lq_sta, sta, tbl); if (next_column != RS_COLUMN_INVALID) { int ret = rs_switch_to_column(mvm, lq_sta, sta, next_column); if (!ret) lq_sta->search_better_tbl = 1; } else { IWL_DEBUG_RATE(mvm, "No more columns to explore in search cycle. Go to RS_STATE_SEARCH_CYCLE_ENDED\n"); lq_sta->rs_state = RS_STATE_SEARCH_CYCLE_ENDED; } /* If new "search" mode was selected, set up in uCode table */ if (lq_sta->search_better_tbl) { /* Access the "search" table, clear its history. */ tbl = &(lq_sta->lq_info[(1 - lq_sta->active_tbl)]); for (i = 0; i < IWL_RATE_COUNT; i++) rs_rate_scale_clear_window(&(tbl->win[i])); /* Use new "search" start rate */ index = tbl->rate.index; rs_dump_rate(mvm, &tbl->rate, "Switch to SEARCH TABLE:"); rs_fill_lq_cmd(mvm, sta, lq_sta, &tbl->rate); iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, false); } else { done_search = 1; } } if (done_search && lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_ENDED) { /* If the "active" (non-search) mode was legacy, * and we've tried switching antennas, * but we haven't been able to try HT modes (not available), * stay with best antenna legacy modulation for a while * before next round of mode comparisons. */ tbl1 = &(lq_sta->lq_info[lq_sta->active_tbl]); if (is_legacy(&tbl1->rate) && !sta->ht_cap.ht_supported) { IWL_DEBUG_RATE(mvm, "LQ: STAY in legacy table\n"); rs_set_stay_in_table(mvm, 1, lq_sta); } else { /* If we're in an HT mode, and all 3 mode switch actions * have been tried and compared, stay in this best modulation * mode for a while before next round of mode comparisons. */ if ((lq_sta->last_tpt > IWL_AGG_TPT_THREHOLD) && (lq_sta->tx_agg_tid_en & (1 << tid)) && (tid != IWL_MAX_TID_COUNT)) { tid_data = &sta_priv->tid_data[tid]; if (tid_data->state == IWL_AGG_OFF) { IWL_DEBUG_RATE(mvm, "try to aggregate tid %d\n", tid); rs_tl_turn_on_agg(mvm, tid, lq_sta, sta); } } rs_set_stay_in_table(mvm, 0, lq_sta); } } out: lq_sta->last_txrate_idx = index; } /** * rs_initialize_lq - Initialize a station's hardware rate table * * The uCode's station table contains a table of fallback rates * for automatic fallback during transmission. * * NOTE: This sets up a default set of values. These will be replaced later * if the driver's iwl-agn-rs rate scaling algorithm is used, instead of * rc80211_simple. * * NOTE: Run REPLY_ADD_STA command to set up station table entry, before * calling this function (which runs REPLY_TX_LINK_QUALITY_CMD, * which requires station table entry to exist). */ static void rs_initialize_lq(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, enum ieee80211_band band, bool init) { struct iwl_scale_tbl_info *tbl; struct rs_rate *rate; int i; u8 active_tbl = 0; u8 valid_tx_ant; if (!sta || !lq_sta) return; i = lq_sta->last_txrate_idx; valid_tx_ant = iwl_fw_valid_tx_ant(mvm->fw); if (!lq_sta->search_better_tbl) active_tbl = lq_sta->active_tbl; else active_tbl = 1 - lq_sta->active_tbl; tbl = &(lq_sta->lq_info[active_tbl]); rate = &tbl->rate; if ((i < 0) || (i >= IWL_RATE_COUNT)) i = 0; rate->index = i; rate->ant = first_antenna(valid_tx_ant); rate->sgi = false; rate->bw = RATE_MCS_CHAN_WIDTH_20; if (band == IEEE80211_BAND_5GHZ) rate->type = LQ_LEGACY_A; else rate->type = LQ_LEGACY_G; WARN_ON_ONCE(rate->ant != ANT_A && rate->ant != ANT_B); if (rate->ant == ANT_A) tbl->column = RS_COLUMN_LEGACY_ANT_A; else tbl->column = RS_COLUMN_LEGACY_ANT_B; rs_set_expected_tpt_table(lq_sta, tbl); rs_fill_lq_cmd(mvm, sta, lq_sta, rate); /* TODO restore station should remember the lq cmd */ iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, init); } static void rs_get_rate(void *mvm_r, struct ieee80211_sta *sta, void *mvm_sta, struct ieee80211_tx_rate_control *txrc) { struct sk_buff *skb = txrc->skb; struct ieee80211_supported_band *sband = txrc->sband; struct iwl_op_mode *op_mode __maybe_unused = (struct iwl_op_mode *)mvm_r; struct iwl_mvm *mvm __maybe_unused = IWL_OP_MODE_GET_MVM(op_mode); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct iwl_lq_sta *lq_sta = mvm_sta; /* Get max rate if user set max rate */ if (lq_sta) { lq_sta->max_rate_idx = txrc->max_rate_idx; if ((sband->band == IEEE80211_BAND_5GHZ) && (lq_sta->max_rate_idx != -1)) lq_sta->max_rate_idx += IWL_FIRST_OFDM_RATE; if ((lq_sta->max_rate_idx < 0) || (lq_sta->max_rate_idx >= IWL_RATE_COUNT)) lq_sta->max_rate_idx = -1; } /* Treat uninitialized rate scaling data same as non-existing. */ if (lq_sta && !lq_sta->drv) { IWL_DEBUG_RATE(mvm, "Rate scaling not initialized yet.\n"); mvm_sta = NULL; } /* Send management frames and NO_ACK data using lowest rate. */ if (rate_control_send_low(sta, mvm_sta, txrc)) return; iwl_mvm_hwrate_to_tx_rate(lq_sta->last_rate_n_flags, info->band, &info->control.rates[0]); info->control.rates[0].count = 1; } static void *rs_alloc_sta(void *mvm_rate, struct ieee80211_sta *sta, gfp_t gfp) { struct iwl_mvm_sta *sta_priv = (struct iwl_mvm_sta *)sta->drv_priv; struct iwl_op_mode *op_mode __maybe_unused = (struct iwl_op_mode *)mvm_rate; struct iwl_mvm *mvm __maybe_unused = IWL_OP_MODE_GET_MVM(op_mode); IWL_DEBUG_RATE(mvm, "create station rate scale window\n"); return &sta_priv->lq_sta; } static int rs_vht_highest_rx_mcs_index(struct ieee80211_sta_vht_cap *vht_cap, int nss) { u16 rx_mcs = le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) & (0x3 << (2 * (nss - 1))); rx_mcs >>= (2 * (nss - 1)); if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_7) return IWL_RATE_MCS_7_INDEX; else if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_8) return IWL_RATE_MCS_8_INDEX; else if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_9) return IWL_RATE_MCS_9_INDEX; WARN_ON_ONCE(rx_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED); return -1; } static void rs_vht_set_enabled_rates(struct ieee80211_sta *sta, struct ieee80211_sta_vht_cap *vht_cap, struct iwl_lq_sta *lq_sta) { int i; int highest_mcs = rs_vht_highest_rx_mcs_index(vht_cap, 1); if (highest_mcs >= IWL_RATE_MCS_0_INDEX) { for (i = IWL_RATE_MCS_0_INDEX; i <= highest_mcs; i++) { if (i == IWL_RATE_9M_INDEX) continue; /* Disable MCS9 as a workaround */ if (i == IWL_RATE_MCS_9_INDEX) continue; /* VHT MCS9 isn't valid for 20Mhz for NSS=1,2 */ if (i == IWL_RATE_MCS_9_INDEX && sta->bandwidth == IEEE80211_STA_RX_BW_20) continue; lq_sta->active_siso_rate |= BIT(i); } } if (sta->rx_nss < 2) return; highest_mcs = rs_vht_highest_rx_mcs_index(vht_cap, 2); if (highest_mcs >= IWL_RATE_MCS_0_INDEX) { for (i = IWL_RATE_MCS_0_INDEX; i <= highest_mcs; i++) { if (i == IWL_RATE_9M_INDEX) continue; /* Disable MCS9 as a workaround */ if (i == IWL_RATE_MCS_9_INDEX) continue; /* VHT MCS9 isn't valid for 20Mhz for NSS=1,2 */ if (i == IWL_RATE_MCS_9_INDEX && sta->bandwidth == IEEE80211_STA_RX_BW_20) continue; lq_sta->active_mimo2_rate |= BIT(i); } } } /* * Called after adding a new station to initialize rate scaling */ void iwl_mvm_rs_rate_init(struct iwl_mvm *mvm, struct ieee80211_sta *sta, enum ieee80211_band band, bool init) { int i, j; struct ieee80211_hw *hw = mvm->hw; struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap; struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap; struct iwl_mvm_sta *sta_priv; struct iwl_lq_sta *lq_sta; struct ieee80211_supported_band *sband; unsigned long supp; /* must be unsigned long for for_each_set_bit */ sta_priv = (struct iwl_mvm_sta *)sta->drv_priv; lq_sta = &sta_priv->lq_sta; memset(lq_sta, 0, sizeof(*lq_sta)); sband = hw->wiphy->bands[band]; lq_sta->lq.sta_id = sta_priv->sta_id; for (j = 0; j < LQ_SIZE; j++) for (i = 0; i < IWL_RATE_COUNT; i++) rs_rate_scale_clear_window(&lq_sta->lq_info[j].win[i]); lq_sta->flush_timer = 0; IWL_DEBUG_RATE(mvm, "LQ: *** rate scale station global init for station %d ***\n", sta_priv->sta_id); /* TODO: what is a good starting rate for STA? About middle? Maybe not * the lowest or the highest rate.. Could consider using RSSI from * previous packets? Need to have IEEE 802.1X auth succeed immediately * after assoc.. */ lq_sta->max_rate_idx = -1; lq_sta->missed_rate_counter = IWL_MISSED_RATE_MAX; lq_sta->band = sband->band; /* * active legacy rates as per supported rates bitmap */ supp = sta->supp_rates[sband->band]; lq_sta->active_legacy_rate = 0; for_each_set_bit(i, &supp, BITS_PER_LONG) lq_sta->active_legacy_rate |= BIT(sband->bitrates[i].hw_value); /* TODO: should probably account for rx_highest for both HT/VHT */ if (!vht_cap || !vht_cap->vht_supported) { /* active_siso_rate mask includes 9 MBits (bit 5), * and CCK (bits 0-3), supp_rates[] does not; * shift to convert format, force 9 MBits off. */ lq_sta->active_siso_rate = ht_cap->mcs.rx_mask[0] << 1; lq_sta->active_siso_rate |= ht_cap->mcs.rx_mask[0] & 0x1; lq_sta->active_siso_rate &= ~((u16)0x2); lq_sta->active_siso_rate <<= IWL_FIRST_OFDM_RATE; /* Same here */ lq_sta->active_mimo2_rate = ht_cap->mcs.rx_mask[1] << 1; lq_sta->active_mimo2_rate |= ht_cap->mcs.rx_mask[1] & 0x1; lq_sta->active_mimo2_rate &= ~((u16)0x2); lq_sta->active_mimo2_rate <<= IWL_FIRST_OFDM_RATE; lq_sta->is_vht = false; } else { rs_vht_set_enabled_rates(sta, vht_cap, lq_sta); lq_sta->is_vht = true; } IWL_DEBUG_RATE(mvm, "SISO-RATE=%X MIMO2-RATE=%X VHT=%d\n", lq_sta->active_siso_rate, lq_sta->active_mimo2_rate, lq_sta->is_vht); /* These values will be overridden later */ lq_sta->lq.single_stream_ant_msk = first_antenna(iwl_fw_valid_tx_ant(mvm->fw)); lq_sta->lq.dual_stream_ant_msk = ANT_AB; /* as default allow aggregation for all tids */ lq_sta->tx_agg_tid_en = IWL_AGG_ALL_TID; lq_sta->drv = mvm; /* Set last_txrate_idx to lowest rate */ lq_sta->last_txrate_idx = rate_lowest_index(sband, sta); if (sband->band == IEEE80211_BAND_5GHZ) lq_sta->last_txrate_idx += IWL_FIRST_OFDM_RATE; lq_sta->is_agg = 0; #ifdef CONFIG_MAC80211_DEBUGFS lq_sta->dbg_fixed_rate = 0; #endif rs_initialize_lq(mvm, sta, lq_sta, band, init); } static void rs_rate_update(void *mvm_r, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *priv_sta, u32 changed) { u8 tid; struct iwl_op_mode *op_mode = (struct iwl_op_mode *)mvm_r; struct iwl_mvm *mvm = IWL_OP_MODE_GET_MVM(op_mode); /* Stop any ongoing aggregations as rs starts off assuming no agg */ for (tid = 0; tid < IWL_MAX_TID_COUNT; tid++) ieee80211_stop_tx_ba_session(sta, tid); iwl_mvm_rs_rate_init(mvm, sta, sband->band, false); } #ifdef CONFIG_MAC80211_DEBUGFS static void rs_build_rates_table_from_fixed(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq_cmd, enum ieee80211_band band, u32 ucode_rate) { struct rs_rate rate; int i; int num_rates = ARRAY_SIZE(lq_cmd->rs_table); __le32 ucode_rate_le32 = cpu_to_le32(ucode_rate); for (i = 0; i < num_rates; i++) lq_cmd->rs_table[i] = ucode_rate_le32; rs_rate_from_ucode_rate(ucode_rate, band, &rate); if (is_mimo(&rate)) lq_cmd->mimo_delim = num_rates - 1; else lq_cmd->mimo_delim = 0; } #endif /* CONFIG_MAC80211_DEBUGFS */ static void rs_fill_rates_for_column(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, struct rs_rate *rate, __le32 *rs_table, int *rs_table_index, int num_rates, int num_retries, u8 valid_tx_ant, bool toggle_ant) { int i, j; __le32 ucode_rate; bool bottom_reached = false; int prev_rate_idx = rate->index; int end = LINK_QUAL_MAX_RETRY_NUM; int index = *rs_table_index; for (i = 0; i < num_rates && index < end; i++) { ucode_rate = cpu_to_le32(ucode_rate_from_rs_rate(mvm, rate)); for (j = 0; j < num_retries && index < end; j++, index++) rs_table[index] = ucode_rate; if (toggle_ant) rs_toggle_antenna(valid_tx_ant, rate); prev_rate_idx = rate->index; bottom_reached = rs_get_lower_rate_in_column(lq_sta, rate); if (bottom_reached && !is_legacy(rate)) break; } if (!bottom_reached) rate->index = prev_rate_idx; *rs_table_index = index; } /* Building the rate table is non trivial. When we're in MIMO2/VHT/80Mhz/SGI * column the rate table should look like this: * * rate[0] 0x400D019 VHT | ANT: AB BW: 80Mhz MCS: 9 NSS: 2 SGI * rate[1] 0x400D019 VHT | ANT: AB BW: 80Mhz MCS: 9 NSS: 2 SGI * rate[2] 0x400D018 VHT | ANT: AB BW: 80Mhz MCS: 8 NSS: 2 SGI * rate[3] 0x400D018 VHT | ANT: AB BW: 80Mhz MCS: 8 NSS: 2 SGI * rate[4] 0x400D017 VHT | ANT: AB BW: 80Mhz MCS: 7 NSS: 2 SGI * rate[5] 0x400D017 VHT | ANT: AB BW: 80Mhz MCS: 7 NSS: 2 SGI * rate[6] 0x4005007 VHT | ANT: A BW: 80Mhz MCS: 7 NSS: 1 NGI * rate[7] 0x4009006 VHT | ANT: B BW: 80Mhz MCS: 6 NSS: 1 NGI * rate[8] 0x4005005 VHT | ANT: A BW: 80Mhz MCS: 5 NSS: 1 NGI * rate[9] 0x800B Legacy | ANT: B Rate: 36 Mbps * rate[10] 0x4009 Legacy | ANT: A Rate: 24 Mbps * rate[11] 0x8007 Legacy | ANT: B Rate: 18 Mbps * rate[12] 0x4005 Legacy | ANT: A Rate: 12 Mbps * rate[13] 0x800F Legacy | ANT: B Rate: 9 Mbps * rate[14] 0x400D Legacy | ANT: A Rate: 6 Mbps * rate[15] 0x800D Legacy | ANT: B Rate: 6 Mbps */ static void rs_build_rates_table(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, const struct rs_rate *initial_rate) { struct rs_rate rate; int num_rates, num_retries, index = 0; u8 valid_tx_ant = 0; struct iwl_lq_cmd *lq_cmd = &lq_sta->lq; bool toggle_ant = false; memcpy(&rate, initial_rate, sizeof(rate)); valid_tx_ant = iwl_fw_valid_tx_ant(mvm->fw); if (is_siso(&rate)) { num_rates = RS_INITIAL_SISO_NUM_RATES; num_retries = RS_HT_VHT_RETRIES_PER_RATE; } else if (is_mimo(&rate)) { num_rates = RS_INITIAL_MIMO_NUM_RATES; num_retries = RS_HT_VHT_RETRIES_PER_RATE; } else { num_rates = RS_INITIAL_LEGACY_NUM_RATES; num_retries = RS_LEGACY_RETRIES_PER_RATE; toggle_ant = true; } rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index, num_rates, num_retries, valid_tx_ant, toggle_ant); rs_get_lower_rate_down_column(lq_sta, &rate); if (is_siso(&rate)) { num_rates = RS_SECONDARY_SISO_NUM_RATES; num_retries = RS_SECONDARY_SISO_RETRIES; } else if (is_legacy(&rate)) { num_rates = RS_SECONDARY_LEGACY_NUM_RATES; num_retries = RS_LEGACY_RETRIES_PER_RATE; } else { WARN_ON_ONCE(1); } toggle_ant = true; rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index, num_rates, num_retries, valid_tx_ant, toggle_ant); rs_get_lower_rate_down_column(lq_sta, &rate); num_rates = RS_SECONDARY_LEGACY_NUM_RATES; num_retries = RS_LEGACY_RETRIES_PER_RATE; rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index, num_rates, num_retries, valid_tx_ant, toggle_ant); } static void rs_fill_lq_cmd(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, const struct rs_rate *initial_rate) { struct iwl_lq_cmd *lq_cmd = &lq_sta->lq; u8 ant = initial_rate->ant; #ifdef CONFIG_MAC80211_DEBUGFS if (lq_sta->dbg_fixed_rate) { rs_build_rates_table_from_fixed(mvm, lq_cmd, lq_sta->band, lq_sta->dbg_fixed_rate); ant = (lq_sta->dbg_fixed_rate & RATE_MCS_ANT_ABC_MSK) >> RATE_MCS_ANT_POS; } else #endif rs_build_rates_table(mvm, lq_sta, initial_rate); if (num_of_ant(ant) == 1) lq_cmd->single_stream_ant_msk = ant; lq_cmd->agg_frame_cnt_limit = LINK_QUAL_AGG_FRAME_LIMIT_DEF; lq_cmd->agg_disable_start_th = LINK_QUAL_AGG_DISABLE_START_DEF; lq_cmd->agg_time_limit = cpu_to_le16(LINK_QUAL_AGG_TIME_LIMIT_DEF); if (sta) lq_cmd->agg_time_limit = cpu_to_le16(iwl_mvm_bt_coex_agg_time_limit(mvm, sta)); } static void *rs_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir) { return hw->priv; } /* rate scale requires free function to be implemented */ static void rs_free(void *mvm_rate) { return; } static void rs_free_sta(void *mvm_r, struct ieee80211_sta *sta, void *mvm_sta) { struct iwl_op_mode *op_mode __maybe_unused = mvm_r; struct iwl_mvm *mvm __maybe_unused = IWL_OP_MODE_GET_MVM(op_mode); IWL_DEBUG_RATE(mvm, "enter\n"); IWL_DEBUG_RATE(mvm, "leave\n"); } #ifdef CONFIG_MAC80211_DEBUGFS static int rs_pretty_print_rate(char *buf, const u32 rate) { char *type, *bw; u8 mcs = 0, nss = 0; u8 ant = (rate & RATE_MCS_ANT_ABC_MSK) >> RATE_MCS_ANT_POS; if (!(rate & RATE_MCS_HT_MSK) && !(rate & RATE_MCS_VHT_MSK)) { int index = iwl_hwrate_to_plcp_idx(rate); return sprintf(buf, "Legacy | ANT: %s Rate: %s Mbps\n", rs_pretty_ant(ant), index == IWL_RATE_INVALID ? "BAD" : iwl_rate_mcs[index].mbps); } if (rate & RATE_MCS_VHT_MSK) { type = "VHT"; mcs = rate & RATE_VHT_MCS_RATE_CODE_MSK; nss = ((rate & RATE_VHT_MCS_NSS_MSK) >> RATE_VHT_MCS_NSS_POS) + 1; } else if (rate & RATE_MCS_HT_MSK) { type = "HT"; mcs = rate & RATE_HT_MCS_INDEX_MSK; } else { type = "Unknown"; /* shouldn't happen */ } switch (rate & RATE_MCS_CHAN_WIDTH_MSK) { case RATE_MCS_CHAN_WIDTH_20: bw = "20Mhz"; break; case RATE_MCS_CHAN_WIDTH_40: bw = "40Mhz"; break; case RATE_MCS_CHAN_WIDTH_80: bw = "80Mhz"; break; case RATE_MCS_CHAN_WIDTH_160: bw = "160Mhz"; break; default: bw = "BAD BW"; } return sprintf(buf, "%s | ANT: %s BW: %s MCS: %d NSS: %d %s%s%s%s%s\n", type, rs_pretty_ant(ant), bw, mcs, nss, (rate & RATE_MCS_SGI_MSK) ? "SGI " : "NGI ", (rate & RATE_MCS_STBC_MSK) ? "STBC " : "", (rate & RATE_MCS_LDPC_MSK) ? "LDPC " : "", (rate & RATE_MCS_BF_MSK) ? "BF " : "", (rate & RATE_MCS_ZLF_MSK) ? "ZLF " : ""); } /** * Program the device to use fixed rate for frame transmit * This is for debugging/testing only * once the device start use fixed rate, we need to reload the module * to being back the normal operation. */ static void rs_program_fix_rate(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta) { lq_sta->active_legacy_rate = 0x0FFF; /* 1 - 54 MBits, includes CCK */ lq_sta->active_siso_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */ lq_sta->active_mimo2_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */ IWL_DEBUG_RATE(mvm, "sta_id %d rate 0x%X\n", lq_sta->lq.sta_id, lq_sta->dbg_fixed_rate); if (lq_sta->dbg_fixed_rate) { struct rs_rate rate; rs_rate_from_ucode_rate(lq_sta->dbg_fixed_rate, lq_sta->band, &rate); rs_fill_lq_cmd(mvm, NULL, lq_sta, &rate); iwl_mvm_send_lq_cmd(lq_sta->drv, &lq_sta->lq, false); } } static ssize_t rs_sta_dbgfs_scale_table_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_lq_sta *lq_sta = file->private_data; struct iwl_mvm *mvm; char buf[64]; size_t buf_size; u32 parsed_rate; mvm = lq_sta->drv; memset(buf, 0, sizeof(buf)); buf_size = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; if (sscanf(buf, "%x", &parsed_rate) == 1) lq_sta->dbg_fixed_rate = parsed_rate; else lq_sta->dbg_fixed_rate = 0; rs_program_fix_rate(mvm, lq_sta); return count; } static ssize_t rs_sta_dbgfs_scale_table_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char *buff; int desc = 0; int i = 0; ssize_t ret; struct iwl_lq_sta *lq_sta = file->private_data; struct iwl_mvm *mvm; struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); struct rs_rate *rate = &tbl->rate; mvm = lq_sta->drv; buff = kmalloc(2048, GFP_KERNEL); if (!buff) return -ENOMEM; desc += sprintf(buff+desc, "sta_id %d\n", lq_sta->lq.sta_id); desc += sprintf(buff+desc, "failed=%d success=%d rate=0%X\n", lq_sta->total_failed, lq_sta->total_success, lq_sta->active_legacy_rate); desc += sprintf(buff+desc, "fixed rate 0x%X\n", lq_sta->dbg_fixed_rate); desc += sprintf(buff+desc, "valid_tx_ant %s%s%s\n", (iwl_fw_valid_tx_ant(mvm->fw) & ANT_A) ? "ANT_A," : "", (iwl_fw_valid_tx_ant(mvm->fw) & ANT_B) ? "ANT_B," : "", (iwl_fw_valid_tx_ant(mvm->fw) & ANT_C) ? "ANT_C" : ""); desc += sprintf(buff+desc, "lq type %s\n", (is_legacy(rate)) ? "legacy" : is_vht(rate) ? "VHT" : "HT"); if (!is_legacy(rate)) { desc += sprintf(buff+desc, " %s", (is_siso(rate)) ? "SISO" : "MIMO2"); desc += sprintf(buff+desc, " %s", (is_ht20(rate)) ? "20MHz" : (is_ht40(rate)) ? "40MHz" : (is_ht80(rate)) ? "80Mhz" : "BAD BW"); desc += sprintf(buff+desc, " %s %s\n", (rate->sgi) ? "SGI" : "NGI", (lq_sta->is_agg) ? "AGG on" : ""); } desc += sprintf(buff+desc, "last tx rate=0x%X\n", lq_sta->last_rate_n_flags); desc += sprintf(buff+desc, "general: flags=0x%X mimo-d=%d s-ant=0x%x d-ant=0x%x\n", lq_sta->lq.flags, lq_sta->lq.mimo_delim, lq_sta->lq.single_stream_ant_msk, lq_sta->lq.dual_stream_ant_msk); desc += sprintf(buff+desc, "agg: time_limit=%d dist_start_th=%d frame_cnt_limit=%d\n", le16_to_cpu(lq_sta->lq.agg_time_limit), lq_sta->lq.agg_disable_start_th, lq_sta->lq.agg_frame_cnt_limit); desc += sprintf(buff+desc, "Start idx [0]=0x%x [1]=0x%x [2]=0x%x [3]=0x%x\n", lq_sta->lq.initial_rate_index[0], lq_sta->lq.initial_rate_index[1], lq_sta->lq.initial_rate_index[2], lq_sta->lq.initial_rate_index[3]); for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) { u32 r = le32_to_cpu(lq_sta->lq.rs_table[i]); desc += sprintf(buff+desc, " rate[%d] 0x%X ", i, r); desc += rs_pretty_print_rate(buff+desc, r); } ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc); kfree(buff); return ret; } static const struct file_operations rs_sta_dbgfs_scale_table_ops = { .write = rs_sta_dbgfs_scale_table_write, .read = rs_sta_dbgfs_scale_table_read, .open = simple_open, .llseek = default_llseek, }; static ssize_t rs_sta_dbgfs_stats_table_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char *buff; int desc = 0; int i, j; ssize_t ret; struct iwl_scale_tbl_info *tbl; struct rs_rate *rate; struct iwl_lq_sta *lq_sta = file->private_data; buff = kmalloc(1024, GFP_KERNEL); if (!buff) return -ENOMEM; for (i = 0; i < LQ_SIZE; i++) { tbl = &(lq_sta->lq_info[i]); rate = &tbl->rate; desc += sprintf(buff+desc, "%s type=%d SGI=%d BW=%s DUP=0\n" "index=%d\n", lq_sta->active_tbl == i ? "*" : "x", rate->type, rate->sgi, is_ht20(rate) ? "20Mhz" : is_ht40(rate) ? "40Mhz" : is_ht80(rate) ? "80Mhz" : "ERR", rate->index); for (j = 0; j < IWL_RATE_COUNT; j++) { desc += sprintf(buff+desc, "counter=%d success=%d %%=%d\n", tbl->win[j].counter, tbl->win[j].success_counter, tbl->win[j].success_ratio); } } ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc); kfree(buff); return ret; } static const struct file_operations rs_sta_dbgfs_stats_table_ops = { .read = rs_sta_dbgfs_stats_table_read, .open = simple_open, .llseek = default_llseek, }; static void rs_add_debugfs(void *mvm, void *mvm_sta, struct dentry *dir) { struct iwl_lq_sta *lq_sta = mvm_sta; lq_sta->rs_sta_dbgfs_scale_table_file = debugfs_create_file("rate_scale_table", S_IRUSR | S_IWUSR, dir, lq_sta, &rs_sta_dbgfs_scale_table_ops); lq_sta->rs_sta_dbgfs_stats_table_file = debugfs_create_file("rate_stats_table", S_IRUSR, dir, lq_sta, &rs_sta_dbgfs_stats_table_ops); lq_sta->rs_sta_dbgfs_tx_agg_tid_en_file = debugfs_create_u8("tx_agg_tid_enable", S_IRUSR | S_IWUSR, dir, &lq_sta->tx_agg_tid_en); } static void rs_remove_debugfs(void *mvm, void *mvm_sta) { struct iwl_lq_sta *lq_sta = mvm_sta; debugfs_remove(lq_sta->rs_sta_dbgfs_scale_table_file); debugfs_remove(lq_sta->rs_sta_dbgfs_stats_table_file); debugfs_remove(lq_sta->rs_sta_dbgfs_tx_agg_tid_en_file); } #endif /* * Initialization of rate scaling information is done by driver after * the station is added. Since mac80211 calls this function before a * station is added we ignore it. */ static void rs_rate_init_stub(void *mvm_r, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *mvm_sta) { } static struct rate_control_ops rs_mvm_ops = { .module = NULL, .name = RS_NAME, .tx_status = rs_tx_status, .get_rate = rs_get_rate, .rate_init = rs_rate_init_stub, .alloc = rs_alloc, .free = rs_free, .alloc_sta = rs_alloc_sta, .free_sta = rs_free_sta, .rate_update = rs_rate_update, #ifdef CONFIG_MAC80211_DEBUGFS .add_sta_debugfs = rs_add_debugfs, .remove_sta_debugfs = rs_remove_debugfs, #endif }; int iwl_mvm_rate_control_register(void) { return ieee80211_rate_control_register(&rs_mvm_ops); } void iwl_mvm_rate_control_unregister(void) { ieee80211_rate_control_unregister(&rs_mvm_ops); } /** * iwl_mvm_tx_protection - Gets LQ command, change it to enable/disable * Tx protection, according to this rquest and previous requests, * and send the LQ command. * @mvmsta: The station * @enable: Enable Tx protection? */ int iwl_mvm_tx_protection(struct iwl_mvm *mvm, struct iwl_mvm_sta *mvmsta, bool enable) { struct iwl_lq_cmd *lq = &mvmsta->lq_sta.lq; lockdep_assert_held(&mvm->mutex); if (enable) { if (mvmsta->tx_protection == 0) lq->flags |= LQ_FLAG_USE_RTS_MSK; mvmsta->tx_protection++; } else { mvmsta->tx_protection--; if (mvmsta->tx_protection == 0) lq->flags &= ~LQ_FLAG_USE_RTS_MSK; } return iwl_mvm_send_lq_cmd(mvm, lq, false); }