/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2011-2014, Intel Corporation. */ #ifndef _NVME_H #define _NVME_H #include #include #include #include #include #include #include #include #include #include #include #include extern const struct pr_ops nvme_pr_ops; extern unsigned int nvme_io_timeout; #define NVME_IO_TIMEOUT (nvme_io_timeout * HZ) extern unsigned int admin_timeout; #define NVME_ADMIN_TIMEOUT (admin_timeout * HZ) #define NVME_DEFAULT_KATO 5 #ifdef CONFIG_ARCH_NO_SG_CHAIN #define NVME_INLINE_SG_CNT 0 #define NVME_INLINE_METADATA_SG_CNT 0 #else #define NVME_INLINE_SG_CNT 2 #define NVME_INLINE_METADATA_SG_CNT 1 #endif /* * Default to a 4K page size, with the intention to update this * path in the future to accommodate architectures with differing * kernel and IO page sizes. */ #define NVME_CTRL_PAGE_SHIFT 12 #define NVME_CTRL_PAGE_SIZE (1 << NVME_CTRL_PAGE_SHIFT) extern struct workqueue_struct *nvme_wq; extern struct workqueue_struct *nvme_reset_wq; extern struct workqueue_struct *nvme_delete_wq; /* * List of workarounds for devices that required behavior not specified in * the standard. */ enum nvme_quirks { /* * Prefers I/O aligned to a stripe size specified in a vendor * specific Identify field. */ NVME_QUIRK_STRIPE_SIZE = (1 << 0), /* * The controller doesn't handle Identify value others than 0 or 1 * correctly. */ NVME_QUIRK_IDENTIFY_CNS = (1 << 1), /* * The controller deterministically returns O's on reads to * logical blocks that deallocate was called on. */ NVME_QUIRK_DEALLOCATE_ZEROES = (1 << 2), /* * The controller needs a delay before starts checking the device * readiness, which is done by reading the NVME_CSTS_RDY bit. */ NVME_QUIRK_DELAY_BEFORE_CHK_RDY = (1 << 3), /* * APST should not be used. */ NVME_QUIRK_NO_APST = (1 << 4), /* * The deepest sleep state should not be used. */ NVME_QUIRK_NO_DEEPEST_PS = (1 << 5), /* * Set MEDIUM priority on SQ creation */ NVME_QUIRK_MEDIUM_PRIO_SQ = (1 << 7), /* * Ignore device provided subnqn. */ NVME_QUIRK_IGNORE_DEV_SUBNQN = (1 << 8), /* * Broken Write Zeroes. */ NVME_QUIRK_DISABLE_WRITE_ZEROES = (1 << 9), /* * Force simple suspend/resume path. */ NVME_QUIRK_SIMPLE_SUSPEND = (1 << 10), /* * Use only one interrupt vector for all queues */ NVME_QUIRK_SINGLE_VECTOR = (1 << 11), /* * Use non-standard 128 bytes SQEs. */ NVME_QUIRK_128_BYTES_SQES = (1 << 12), /* * Prevent tag overlap between queues */ NVME_QUIRK_SHARED_TAGS = (1 << 13), /* * Don't change the value of the temperature threshold feature */ NVME_QUIRK_NO_TEMP_THRESH_CHANGE = (1 << 14), /* * The controller doesn't handle the Identify Namespace * Identification Descriptor list subcommand despite claiming * NVMe 1.3 compliance. */ NVME_QUIRK_NO_NS_DESC_LIST = (1 << 15), /* * The controller does not properly handle DMA addresses over * 48 bits. */ NVME_QUIRK_DMA_ADDRESS_BITS_48 = (1 << 16), /* * The controller requires the command_id value be limited, so skip * encoding the generation sequence number. */ NVME_QUIRK_SKIP_CID_GEN = (1 << 17), /* * Reports garbage in the namespace identifiers (eui64, nguid, uuid). */ NVME_QUIRK_BOGUS_NID = (1 << 18), /* * No temperature thresholds for channels other than 0 (Composite). */ NVME_QUIRK_NO_SECONDARY_TEMP_THRESH = (1 << 19), /* * Disables simple suspend/resume path. */ NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND = (1 << 20), /* * MSI (but not MSI-X) interrupts are broken and never fire. */ NVME_QUIRK_BROKEN_MSI = (1 << 21), }; /* * Common request structure for NVMe passthrough. All drivers must have * this structure as the first member of their request-private data. */ struct nvme_request { struct nvme_command *cmd; union nvme_result result; u8 genctr; u8 retries; u8 flags; u16 status; #ifdef CONFIG_NVME_MULTIPATH unsigned long start_time; #endif struct nvme_ctrl *ctrl; }; /* * Mark a bio as coming in through the mpath node. */ #define REQ_NVME_MPATH REQ_DRV enum { NVME_REQ_CANCELLED = (1 << 0), NVME_REQ_USERCMD = (1 << 1), NVME_MPATH_IO_STATS = (1 << 2), }; static inline struct nvme_request *nvme_req(struct request *req) { return blk_mq_rq_to_pdu(req); } static inline u16 nvme_req_qid(struct request *req) { if (!req->q->queuedata) return 0; return req->mq_hctx->queue_num + 1; } /* The below value is the specific amount of delay needed before checking * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was * found empirically. */ #define NVME_QUIRK_DELAY_AMOUNT 2300 /* * enum nvme_ctrl_state: Controller state * * @NVME_CTRL_NEW: New controller just allocated, initial state * @NVME_CTRL_LIVE: Controller is connected and I/O capable * @NVME_CTRL_RESETTING: Controller is resetting (or scheduled reset) * @NVME_CTRL_CONNECTING: Controller is disconnected, now connecting the * transport * @NVME_CTRL_DELETING: Controller is deleting (or scheduled deletion) * @NVME_CTRL_DELETING_NOIO: Controller is deleting and I/O is not * disabled/failed immediately. This state comes * after all async event processing took place and * before ns removal and the controller deletion * progress * @NVME_CTRL_DEAD: Controller is non-present/unresponsive during * shutdown or removal. In this case we forcibly * kill all inflight I/O as they have no chance to * complete */ enum nvme_ctrl_state { NVME_CTRL_NEW, NVME_CTRL_LIVE, NVME_CTRL_RESETTING, NVME_CTRL_CONNECTING, NVME_CTRL_DELETING, NVME_CTRL_DELETING_NOIO, NVME_CTRL_DEAD, }; struct nvme_fault_inject { #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS struct fault_attr attr; struct dentry *parent; bool dont_retry; /* DNR, do not retry */ u16 status; /* status code */ #endif }; enum nvme_ctrl_flags { NVME_CTRL_FAILFAST_EXPIRED = 0, NVME_CTRL_ADMIN_Q_STOPPED = 1, NVME_CTRL_STARTED_ONCE = 2, NVME_CTRL_STOPPED = 3, NVME_CTRL_SKIP_ID_CNS_CS = 4, NVME_CTRL_DIRTY_CAPABILITY = 5, NVME_CTRL_FROZEN = 6, }; struct nvme_ctrl { bool comp_seen; bool identified; bool passthru_err_log_enabled; enum nvme_ctrl_state state; spinlock_t lock; struct mutex scan_lock; const struct nvme_ctrl_ops *ops; struct request_queue *admin_q; struct request_queue *connect_q; struct request_queue *fabrics_q; struct device *dev; int instance; int numa_node; struct blk_mq_tag_set *tagset; struct blk_mq_tag_set *admin_tagset; struct list_head namespaces; struct rw_semaphore namespaces_rwsem; struct device ctrl_device; struct device *device; /* char device */ #ifdef CONFIG_NVME_HWMON struct device *hwmon_device; #endif struct cdev cdev; struct work_struct reset_work; struct work_struct delete_work; wait_queue_head_t state_wq; struct nvme_subsystem *subsys; struct list_head subsys_entry; struct opal_dev *opal_dev; char name[12]; u16 cntlid; u16 mtfa; u32 ctrl_config; u32 queue_count; u64 cap; u32 max_hw_sectors; u32 max_segments; u32 max_integrity_segments; u32 max_zeroes_sectors; #ifdef CONFIG_BLK_DEV_ZONED u32 max_zone_append; #endif u16 crdt[3]; u16 oncs; u8 dmrl; u32 dmrsl; u16 oacs; u16 sqsize; u32 max_namespaces; atomic_t abort_limit; u8 vwc; u32 vs; u32 sgls; u16 kas; u8 npss; u8 apsta; u16 wctemp; u16 cctemp; u32 oaes; u32 aen_result; u32 ctratt; unsigned int shutdown_timeout; unsigned int kato; bool subsystem; unsigned long quirks; struct nvme_id_power_state psd[32]; struct nvme_effects_log *effects; struct xarray cels; struct work_struct scan_work; struct work_struct async_event_work; struct delayed_work ka_work; struct delayed_work failfast_work; struct nvme_command ka_cmd; unsigned long ka_last_check_time; struct work_struct fw_act_work; unsigned long events; #ifdef CONFIG_NVME_MULTIPATH /* asymmetric namespace access: */ u8 anacap; u8 anatt; u32 anagrpmax; u32 nanagrpid; struct mutex ana_lock; struct nvme_ana_rsp_hdr *ana_log_buf; size_t ana_log_size; struct timer_list anatt_timer; struct work_struct ana_work; #endif #ifdef CONFIG_NVME_HOST_AUTH struct work_struct dhchap_auth_work; struct mutex dhchap_auth_mutex; struct nvme_dhchap_queue_context *dhchap_ctxs; struct nvme_dhchap_key *host_key; struct nvme_dhchap_key *ctrl_key; u16 transaction; #endif struct key *tls_key; /* Power saving configuration */ u64 ps_max_latency_us; bool apst_enabled; /* PCIe only: */ u16 hmmaxd; u32 hmpre; u32 hmmin; u32 hmminds; /* Fabrics only */ u32 ioccsz; u32 iorcsz; u16 icdoff; u16 maxcmd; int nr_reconnects; unsigned long flags; struct nvmf_ctrl_options *opts; struct page *discard_page; unsigned long discard_page_busy; struct nvme_fault_inject fault_inject; enum nvme_ctrl_type cntrltype; enum nvme_dctype dctype; }; static inline enum nvme_ctrl_state nvme_ctrl_state(struct nvme_ctrl *ctrl) { return READ_ONCE(ctrl->state); } enum nvme_iopolicy { NVME_IOPOLICY_NUMA, NVME_IOPOLICY_RR, }; struct nvme_subsystem { int instance; struct device dev; /* * Because we unregister the device on the last put we need * a separate refcount. */ struct kref ref; struct list_head entry; struct mutex lock; struct list_head ctrls; struct list_head nsheads; char subnqn[NVMF_NQN_SIZE]; char serial[20]; char model[40]; char firmware_rev[8]; u8 cmic; enum nvme_subsys_type subtype; u16 vendor_id; u16 awupf; /* 0's based awupf value. */ struct ida ns_ida; #ifdef CONFIG_NVME_MULTIPATH enum nvme_iopolicy iopolicy; #endif }; /* * Container structure for uniqueue namespace identifiers. */ struct nvme_ns_ids { u8 eui64[8]; u8 nguid[16]; uuid_t uuid; u8 csi; }; /* * Anchor structure for namespaces. There is one for each namespace in a * NVMe subsystem that any of our controllers can see, and the namespace * structure for each controller is chained of it. For private namespaces * there is a 1:1 relation to our namespace structures, that is ->list * only ever has a single entry for private namespaces. */ struct nvme_ns_head { struct list_head list; struct srcu_struct srcu; struct nvme_subsystem *subsys; struct nvme_ns_ids ids; struct list_head entry; struct kref ref; bool shared; bool passthru_err_log_enabled; int instance; struct nvme_effects_log *effects; u64 nuse; unsigned ns_id; int lba_shift; u16 ms; u16 pi_size; u8 pi_type; u8 pi_offset; u8 guard_type; u16 sgs; u32 sws; #ifdef CONFIG_BLK_DEV_ZONED u64 zsze; #endif unsigned long features; struct ratelimit_state rs_nuse; struct cdev cdev; struct device cdev_device; struct gendisk *disk; #ifdef CONFIG_NVME_MULTIPATH struct bio_list requeue_list; spinlock_t requeue_lock; struct work_struct requeue_work; struct mutex lock; unsigned long flags; #define NVME_NSHEAD_DISK_LIVE 0 struct nvme_ns __rcu *current_path[]; #endif }; static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head) { return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk; } enum nvme_ns_features { NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */ NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */ NVME_NS_DEAC, /* DEAC bit in Write Zeores supported */ }; struct nvme_ns { struct list_head list; struct nvme_ctrl *ctrl; struct request_queue *queue; struct gendisk *disk; #ifdef CONFIG_NVME_MULTIPATH enum nvme_ana_state ana_state; u32 ana_grpid; #endif struct list_head siblings; struct kref kref; struct nvme_ns_head *head; unsigned long flags; #define NVME_NS_REMOVING 0 #define NVME_NS_ANA_PENDING 2 #define NVME_NS_FORCE_RO 3 #define NVME_NS_READY 4 struct cdev cdev; struct device cdev_device; struct nvme_fault_inject fault_inject; }; /* NVMe ns supports metadata actions by the controller (generate/strip) */ static inline bool nvme_ns_has_pi(struct nvme_ns_head *head) { return head->pi_type && head->ms == head->pi_size; } struct nvme_ctrl_ops { const char *name; struct module *module; unsigned int flags; #define NVME_F_FABRICS (1 << 0) #define NVME_F_METADATA_SUPPORTED (1 << 1) #define NVME_F_BLOCKING (1 << 2) const struct attribute_group **dev_attr_groups; int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val); int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val); int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val); void (*free_ctrl)(struct nvme_ctrl *ctrl); void (*submit_async_event)(struct nvme_ctrl *ctrl); void (*delete_ctrl)(struct nvme_ctrl *ctrl); void (*stop_ctrl)(struct nvme_ctrl *ctrl); int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size); void (*print_device_info)(struct nvme_ctrl *ctrl); bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl); }; /* * nvme command_id is constructed as such: * | xxxx | xxxxxxxxxxxx | * gen request tag */ #define nvme_genctr_mask(gen) (gen & 0xf) #define nvme_cid_install_genctr(gen) (nvme_genctr_mask(gen) << 12) #define nvme_genctr_from_cid(cid) ((cid & 0xf000) >> 12) #define nvme_tag_from_cid(cid) (cid & 0xfff) static inline u16 nvme_cid(struct request *rq) { return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag; } static inline struct request *nvme_find_rq(struct blk_mq_tags *tags, u16 command_id) { u8 genctr = nvme_genctr_from_cid(command_id); u16 tag = nvme_tag_from_cid(command_id); struct request *rq; rq = blk_mq_tag_to_rq(tags, tag); if (unlikely(!rq)) { pr_err("could not locate request for tag %#x\n", tag); return NULL; } if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) { dev_err(nvme_req(rq)->ctrl->device, "request %#x genctr mismatch (got %#x expected %#x)\n", tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr)); return NULL; } return rq; } static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags, u16 command_id) { return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id)); } /* * Return the length of the string without the space padding */ static inline int nvme_strlen(char *s, int len) { while (s[len - 1] == ' ') len--; return len; } static inline void nvme_print_device_info(struct nvme_ctrl *ctrl) { struct nvme_subsystem *subsys = ctrl->subsys; if (ctrl->ops->print_device_info) { ctrl->ops->print_device_info(ctrl); return; } dev_err(ctrl->device, "VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id, nvme_strlen(subsys->model, sizeof(subsys->model)), subsys->model, nvme_strlen(subsys->firmware_rev, sizeof(subsys->firmware_rev)), subsys->firmware_rev); } #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj, const char *dev_name); void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject); void nvme_should_fail(struct request *req); #else static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj, const char *dev_name) { } static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj) { } static inline void nvme_should_fail(struct request *req) {} #endif bool nvme_wait_reset(struct nvme_ctrl *ctrl); int nvme_try_sched_reset(struct nvme_ctrl *ctrl); static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl) { int ret; if (!ctrl->subsystem) return -ENOTTY; if (!nvme_wait_reset(ctrl)) return -EBUSY; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65); if (ret) return ret; return nvme_try_sched_reset(ctrl); } /* * Convert a 512B sector number to a device logical block number. */ static inline u64 nvme_sect_to_lba(struct nvme_ns_head *head, sector_t sector) { return sector >> (head->lba_shift - SECTOR_SHIFT); } /* * Convert a device logical block number to a 512B sector number. */ static inline sector_t nvme_lba_to_sect(struct nvme_ns_head *head, u64 lba) { return lba << (head->lba_shift - SECTOR_SHIFT); } /* * Convert byte length to nvme's 0-based num dwords */ static inline u32 nvme_bytes_to_numd(size_t len) { return (len >> 2) - 1; } static inline bool nvme_is_ana_error(u16 status) { switch (status & 0x7ff) { case NVME_SC_ANA_TRANSITION: case NVME_SC_ANA_INACCESSIBLE: case NVME_SC_ANA_PERSISTENT_LOSS: return true; default: return false; } } static inline bool nvme_is_path_error(u16 status) { /* check for a status code type of 'path related status' */ return (status & 0x700) == 0x300; } /* * Fill in the status and result information from the CQE, and then figure out * if blk-mq will need to use IPI magic to complete the request, and if yes do * so. If not let the caller complete the request without an indirect function * call. */ static inline bool nvme_try_complete_req(struct request *req, __le16 status, union nvme_result result) { struct nvme_request *rq = nvme_req(req); struct nvme_ctrl *ctrl = rq->ctrl; if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN)) rq->genctr++; rq->status = le16_to_cpu(status) >> 1; rq->result = result; /* inject error when permitted by fault injection framework */ nvme_should_fail(req); if (unlikely(blk_should_fake_timeout(req->q))) return true; return blk_mq_complete_request_remote(req); } static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl) { get_device(ctrl->device); } static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl) { put_device(ctrl->device); } static inline bool nvme_is_aen_req(u16 qid, __u16 command_id) { return !qid && nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH; } /* * Returns true for sink states that can't ever transition back to live. */ static inline bool nvme_state_terminal(struct nvme_ctrl *ctrl) { switch (nvme_ctrl_state(ctrl)) { case NVME_CTRL_NEW: case NVME_CTRL_LIVE: case NVME_CTRL_RESETTING: case NVME_CTRL_CONNECTING: return false; case NVME_CTRL_DELETING: case NVME_CTRL_DELETING_NOIO: case NVME_CTRL_DEAD: return true; default: WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); return true; } } void nvme_complete_rq(struct request *req); void nvme_complete_batch_req(struct request *req); static __always_inline void nvme_complete_batch(struct io_comp_batch *iob, void (*fn)(struct request *rq)) { struct request *req; rq_list_for_each(&iob->req_list, req) { fn(req); nvme_complete_batch_req(req); } blk_mq_end_request_batch(iob); } blk_status_t nvme_host_path_error(struct request *req); bool nvme_cancel_request(struct request *req, void *data); void nvme_cancel_tagset(struct nvme_ctrl *ctrl); void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl); bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, enum nvme_ctrl_state new_state); int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown); int nvme_enable_ctrl(struct nvme_ctrl *ctrl); int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, const struct nvme_ctrl_ops *ops, unsigned long quirks); void nvme_uninit_ctrl(struct nvme_ctrl *ctrl); void nvme_start_ctrl(struct nvme_ctrl *ctrl); void nvme_stop_ctrl(struct nvme_ctrl *ctrl); int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended); int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, const struct blk_mq_ops *ops, unsigned int cmd_size); void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl); int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, const struct blk_mq_ops *ops, unsigned int nr_maps, unsigned int cmd_size); void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl); void nvme_remove_namespaces(struct nvme_ctrl *ctrl); void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, volatile union nvme_result *res); void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl); void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl); void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl); void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl); void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl); void nvme_sync_queues(struct nvme_ctrl *ctrl); void nvme_sync_io_queues(struct nvme_ctrl *ctrl); void nvme_unfreeze(struct nvme_ctrl *ctrl); void nvme_wait_freeze(struct nvme_ctrl *ctrl); int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout); void nvme_start_freeze(struct nvme_ctrl *ctrl); static inline enum req_op nvme_req_op(struct nvme_command *cmd) { return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; } #define NVME_QID_ANY -1 void nvme_init_request(struct request *req, struct nvme_command *cmd); void nvme_cleanup_cmd(struct request *req); blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req); blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, struct request *req); bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, bool queue_live, enum nvme_ctrl_state state); static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, bool queue_live) { enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); if (likely(state == NVME_CTRL_LIVE)) return true; if (ctrl->ops->flags & NVME_F_FABRICS && state == NVME_CTRL_DELETING) return queue_live; return __nvme_check_ready(ctrl, rq, queue_live, state); } /* * NSID shall be unique for all shared namespaces, or if at least one of the * following conditions is met: * 1. Namespace Management is supported by the controller * 2. ANA is supported by the controller * 3. NVM Set are supported by the controller * * In other case, private namespace are not required to report a unique NSID. */ static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) { return head->shared || (ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) || (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) || (ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS); } /* * Flags for __nvme_submit_sync_cmd() */ typedef __u32 __bitwise nvme_submit_flags_t; enum { /* Insert request at the head of the queue */ NVME_SUBMIT_AT_HEAD = (__force nvme_submit_flags_t)(1 << 0), /* Set BLK_MQ_REQ_NOWAIT when allocating request */ NVME_SUBMIT_NOWAIT = (__force nvme_submit_flags_t)(1 << 1), /* Set BLK_MQ_REQ_RESERVED when allocating request */ NVME_SUBMIT_RESERVED = (__force nvme_submit_flags_t)(1 << 2), /* Retry command when NVME_SC_DNR is not set in the result */ NVME_SUBMIT_RETRY = (__force nvme_submit_flags_t)(1 << 3), }; int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, void *buf, unsigned bufflen); int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, union nvme_result *result, void *buffer, unsigned bufflen, int qid, nvme_submit_flags_t flags); int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, unsigned int dword11, void *buffer, size_t buflen, u32 *result); int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, unsigned int dword11, void *buffer, size_t buflen, u32 *result); int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count); void nvme_stop_keep_alive(struct nvme_ctrl *ctrl); int nvme_reset_ctrl(struct nvme_ctrl *ctrl); int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl); int nvme_delete_ctrl(struct nvme_ctrl *ctrl); void nvme_queue_scan(struct nvme_ctrl *ctrl); int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, void *log, size_t size, u64 offset); bool nvme_tryget_ns_head(struct nvme_ns_head *head); void nvme_put_ns_head(struct nvme_ns_head *head); int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, const struct file_operations *fops, struct module *owner); void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device); int nvme_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg); long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg); int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg); long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg); long nvme_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg); int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd, struct io_comp_batch *iob, unsigned int poll_flags); int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags); int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags); int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, struct nvme_id_ns **id); int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo); int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags); extern const struct attribute_group *nvme_ns_attr_groups[]; extern const struct pr_ops nvme_pr_ops; extern const struct block_device_operations nvme_ns_head_ops; extern const struct attribute_group nvme_dev_attrs_group; extern const struct attribute_group *nvme_subsys_attrs_groups[]; extern const struct attribute_group *nvme_dev_attr_groups[]; extern const struct block_device_operations nvme_bdev_ops; void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl); struct nvme_ns *nvme_find_path(struct nvme_ns_head *head); #ifdef CONFIG_NVME_MULTIPATH static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl) { return ctrl->ana_log_buf != NULL; } void nvme_mpath_unfreeze(struct nvme_subsystem *subsys); void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys); void nvme_mpath_start_freeze(struct nvme_subsystem *subsys); void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys); void nvme_failover_req(struct request *req); void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl); int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head); void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid); void nvme_mpath_remove_disk(struct nvme_ns_head *head); int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id); void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl); void nvme_mpath_update(struct nvme_ctrl *ctrl); void nvme_mpath_uninit(struct nvme_ctrl *ctrl); void nvme_mpath_stop(struct nvme_ctrl *ctrl); bool nvme_mpath_clear_current_path(struct nvme_ns *ns); void nvme_mpath_revalidate_paths(struct nvme_ns *ns); void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl); void nvme_mpath_shutdown_disk(struct nvme_ns_head *head); void nvme_mpath_start_request(struct request *rq); void nvme_mpath_end_request(struct request *rq); static inline void nvme_trace_bio_complete(struct request *req) { struct nvme_ns *ns = req->q->queuedata; if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio) trace_block_bio_complete(ns->head->disk->queue, req->bio); } extern bool multipath; extern struct device_attribute dev_attr_ana_grpid; extern struct device_attribute dev_attr_ana_state; extern struct device_attribute subsys_attr_iopolicy; static inline bool nvme_disk_is_ns_head(struct gendisk *disk) { return disk->fops == &nvme_ns_head_ops; } #else #define multipath false static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl) { return false; } static inline void nvme_failover_req(struct request *req) { } static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) { } static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) { return 0; } static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid) { } static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head) { } static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns) { return false; } static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns) { } static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) { } static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head) { } static inline void nvme_trace_bio_complete(struct request *req) { } static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl) { } static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) dev_warn(ctrl->device, "Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n"); return 0; } static inline void nvme_mpath_update(struct nvme_ctrl *ctrl) { } static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl) { } static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl) { } static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) { } static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) { } static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) { } static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys) { } static inline void nvme_mpath_start_request(struct request *rq) { } static inline void nvme_mpath_end_request(struct request *rq) { } static inline bool nvme_disk_is_ns_head(struct gendisk *disk) { return false; } #endif /* CONFIG_NVME_MULTIPATH */ struct nvme_zone_info { u64 zone_size; unsigned int max_open_zones; unsigned int max_active_zones; }; int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); int nvme_query_zone_info(struct nvme_ns *ns, unsigned lbaf, struct nvme_zone_info *zi); void nvme_update_zone_info(struct nvme_ns *ns, struct queue_limits *lim, struct nvme_zone_info *zi); #ifdef CONFIG_BLK_DEV_ZONED blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd, enum nvme_zone_mgmt_action action); #else static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd, enum nvme_zone_mgmt_action action) { return BLK_STS_NOTSUPP; } #endif static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev) { struct gendisk *disk = dev_to_disk(dev); WARN_ON(nvme_disk_is_ns_head(disk)); return disk->private_data; } #ifdef CONFIG_NVME_HWMON int nvme_hwmon_init(struct nvme_ctrl *ctrl); void nvme_hwmon_exit(struct nvme_ctrl *ctrl); #else static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl) { return 0; } static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl) { } #endif static inline void nvme_start_request(struct request *rq) { if (rq->cmd_flags & REQ_NVME_MPATH) nvme_mpath_start_request(rq); blk_mq_start_request(rq); } static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl) { return ctrl->sgls & ((1 << 0) | (1 << 1)); } #ifdef CONFIG_NVME_HOST_AUTH int __init nvme_init_auth(void); void __exit nvme_exit_auth(void); int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl); void nvme_auth_stop(struct nvme_ctrl *ctrl); int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid); int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid); void nvme_auth_free(struct nvme_ctrl *ctrl); #else static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl) { return 0; } static inline int __init nvme_init_auth(void) { return 0; } static inline void __exit nvme_exit_auth(void) { } static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {}; static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid) { return -EPROTONOSUPPORT; } static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid) { return NVME_SC_AUTH_REQUIRED; } static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {}; #endif u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode); u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode); int nvme_execute_rq(struct request *rq, bool at_head); void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, struct nvme_command *cmd, int status); struct nvme_ctrl *nvme_ctrl_from_file(struct file *file); struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid); void nvme_put_ns(struct nvme_ns *ns); static inline bool nvme_multi_css(struct nvme_ctrl *ctrl) { return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI; } #ifdef CONFIG_NVME_VERBOSE_ERRORS const char *nvme_get_error_status_str(u16 status); const char *nvme_get_opcode_str(u8 opcode); const char *nvme_get_admin_opcode_str(u8 opcode); const char *nvme_get_fabrics_opcode_str(u8 opcode); #else /* CONFIG_NVME_VERBOSE_ERRORS */ static inline const char *nvme_get_error_status_str(u16 status) { return "I/O Error"; } static inline const char *nvme_get_opcode_str(u8 opcode) { return "I/O Cmd"; } static inline const char *nvme_get_admin_opcode_str(u8 opcode) { return "Admin Cmd"; } static inline const char *nvme_get_fabrics_opcode_str(u8 opcode) { return "Fabrics Cmd"; } #endif /* CONFIG_NVME_VERBOSE_ERRORS */ static inline const char *nvme_opcode_str(int qid, u8 opcode) { return qid ? nvme_get_opcode_str(opcode) : nvme_get_admin_opcode_str(opcode); } static inline const char *nvme_fabrics_opcode_str( int qid, const struct nvme_command *cmd) { if (nvme_is_fabrics(cmd)) return nvme_get_fabrics_opcode_str(cmd->fabrics.fctype); return nvme_opcode_str(qid, cmd->common.opcode); } #endif /* _NVME_H */