// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013, Sony Mobile Communications AB. * Copyright (c) 2013, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../core.h" #include "../pinconf.h" #include "../pinctrl-utils.h" #include "pinctrl-msm.h" #define MAX_NR_GPIO 300 #define MAX_NR_TILES 4 #define PS_HOLD_OFFSET 0x820 /** * struct msm_pinctrl - state for a pinctrl-msm device * @dev: device handle. * @pctrl: pinctrl handle. * @chip: gpiochip handle. * @desc: pin controller descriptor * @restart_nb: restart notifier block. * @irq: parent irq for the TLMM irq_chip. * @intr_target_use_scm: route irq to application cpu using scm calls * @lock: Spinlock to protect register resources as well * as msm_pinctrl data structures. * @enabled_irqs: Bitmap of currently enabled irqs. * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge * detection. * @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller * @disabled_for_mux: These IRQs were disabled because we muxed away. * @ever_gpio: This bit is set the first time we mux a pin to gpio_func. * @soc: Reference to soc_data of platform specific data. * @regs: Base addresses for the TLMM tiles. * @phys_base: Physical base address */ struct msm_pinctrl { struct device *dev; struct pinctrl_dev *pctrl; struct gpio_chip chip; struct pinctrl_desc desc; struct notifier_block restart_nb; int irq; bool intr_target_use_scm; raw_spinlock_t lock; DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO); DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO); DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO); DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO); DECLARE_BITMAP(ever_gpio, MAX_NR_GPIO); const struct msm_pinctrl_soc_data *soc; void __iomem *regs[MAX_NR_TILES]; u32 phys_base[MAX_NR_TILES]; }; #define MSM_ACCESSOR(name) \ static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \ const struct msm_pingroup *g) \ { \ return readl(pctrl->regs[g->tile] + g->name##_reg); \ } \ static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \ const struct msm_pingroup *g) \ { \ writel(val, pctrl->regs[g->tile] + g->name##_reg); \ } MSM_ACCESSOR(ctl) MSM_ACCESSOR(io) MSM_ACCESSOR(intr_cfg) MSM_ACCESSOR(intr_status) MSM_ACCESSOR(intr_target) static void msm_ack_intr_status(struct msm_pinctrl *pctrl, const struct msm_pingroup *g) { u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0; msm_writel_intr_status(val, pctrl, g); } static int msm_get_groups_count(struct pinctrl_dev *pctldev) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->ngroups; } static const char *msm_get_group_name(struct pinctrl_dev *pctldev, unsigned group) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->groups[group].grp.name; } static int msm_get_group_pins(struct pinctrl_dev *pctldev, unsigned group, const unsigned **pins, unsigned *num_pins) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); *pins = pctrl->soc->groups[group].grp.pins; *num_pins = pctrl->soc->groups[group].grp.npins; return 0; } static const struct pinctrl_ops msm_pinctrl_ops = { .get_groups_count = msm_get_groups_count, .get_group_name = msm_get_group_name, .get_group_pins = msm_get_group_pins, .dt_node_to_map = pinconf_generic_dt_node_to_map_group, .dt_free_map = pinctrl_utils_free_map, }; static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); struct gpio_chip *chip = &pctrl->chip; return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL; } static int msm_get_functions_count(struct pinctrl_dev *pctldev) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->nfunctions; } static const char *msm_get_function_name(struct pinctrl_dev *pctldev, unsigned function) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->functions[function].name; } static int msm_get_function_groups(struct pinctrl_dev *pctldev, unsigned function, const char * const **groups, unsigned * const num_groups) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); *groups = pctrl->soc->functions[function].groups; *num_groups = pctrl->soc->functions[function].ngroups; return 0; } static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned function, unsigned group) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); struct gpio_chip *gc = &pctrl->chip; unsigned int irq = irq_find_mapping(gc->irq.domain, group); struct irq_data *d = irq_get_irq_data(irq); unsigned int gpio_func = pctrl->soc->gpio_func; unsigned int egpio_func = pctrl->soc->egpio_func; const struct msm_pingroup *g; unsigned long flags; u32 val, mask; int i; g = &pctrl->soc->groups[group]; mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit); for (i = 0; i < g->nfuncs; i++) { if (g->funcs[i] == function) break; } if (WARN_ON(i == g->nfuncs)) return -EINVAL; /* * If an GPIO interrupt is setup on this pin then we need special * handling. Specifically interrupt detection logic will still see * the pin twiddle even when we're muxed away. * * When we see a pin with an interrupt setup on it then we'll disable * (mask) interrupts on it when we mux away until we mux back. Note * that disable_irq() refcounts and interrupts are disabled as long as * at least one disable_irq() has been called. */ if (d && i != gpio_func && !test_and_set_bit(d->hwirq, pctrl->disabled_for_mux)) disable_irq(irq); raw_spin_lock_irqsave(&pctrl->lock, flags); val = msm_readl_ctl(pctrl, g); /* * If this is the first time muxing to GPIO and the direction is * output, make sure that we're not going to be glitching the pin * by reading the current state of the pin and setting it as the * output. */ if (i == gpio_func && (val & BIT(g->oe_bit)) && !test_and_set_bit(group, pctrl->ever_gpio)) { u32 io_val = msm_readl_io(pctrl, g); if (io_val & BIT(g->in_bit)) { if (!(io_val & BIT(g->out_bit))) msm_writel_io(io_val | BIT(g->out_bit), pctrl, g); } else { if (io_val & BIT(g->out_bit)) msm_writel_io(io_val & ~BIT(g->out_bit), pctrl, g); } } if (egpio_func && i == egpio_func) { if (val & BIT(g->egpio_present)) val &= ~BIT(g->egpio_enable); } else { val &= ~mask; val |= i << g->mux_bit; /* Claim ownership of pin if egpio capable */ if (egpio_func && val & BIT(g->egpio_present)) val |= BIT(g->egpio_enable); } msm_writel_ctl(val, pctrl, g); raw_spin_unlock_irqrestore(&pctrl->lock, flags); if (d && i == gpio_func && test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) { /* * Clear interrupts detected while not GPIO since we only * masked things. */ if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false); else msm_ack_intr_status(pctrl, g); enable_irq(irq); } return 0; } static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *range, unsigned offset) { struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); const struct msm_pingroup *g = &pctrl->soc->groups[offset]; /* No funcs? Probably ACPI so can't do anything here */ if (!g->nfuncs) return 0; return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset); } static const struct pinmux_ops msm_pinmux_ops = { .request = msm_pinmux_request, .get_functions_count = msm_get_functions_count, .get_function_name = msm_get_function_name, .get_function_groups = msm_get_function_groups, .gpio_request_enable = msm_pinmux_request_gpio, .set_mux = msm_pinmux_set_mux, }; static int msm_config_reg(struct msm_pinctrl *pctrl, const struct msm_pingroup *g, unsigned param, unsigned *mask, unsigned *bit) { switch (param) { case PIN_CONFIG_BIAS_DISABLE: case PIN_CONFIG_BIAS_PULL_DOWN: case PIN_CONFIG_BIAS_BUS_HOLD: case PIN_CONFIG_BIAS_PULL_UP: *bit = g->pull_bit; *mask = 3; if (g->i2c_pull_bit) *mask |= BIT(g->i2c_pull_bit) >> *bit; break; case PIN_CONFIG_DRIVE_OPEN_DRAIN: *bit = g->od_bit; *mask = 1; break; case PIN_CONFIG_DRIVE_STRENGTH: *bit = g->drv_bit; *mask = 7; break; case PIN_CONFIG_OUTPUT: case PIN_CONFIG_INPUT_ENABLE: case PIN_CONFIG_OUTPUT_ENABLE: *bit = g->oe_bit; *mask = 1; break; default: return -ENOTSUPP; } return 0; } #define MSM_NO_PULL 0 #define MSM_PULL_DOWN 1 #define MSM_KEEPER 2 #define MSM_PULL_UP_NO_KEEPER 2 #define MSM_PULL_UP 3 #define MSM_I2C_STRONG_PULL_UP 2200 static unsigned msm_regval_to_drive(u32 val) { return (val + 1) * 2; } static int msm_config_group_get(struct pinctrl_dev *pctldev, unsigned int group, unsigned long *config) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); unsigned param = pinconf_to_config_param(*config); unsigned mask; unsigned arg; unsigned bit; int ret; u32 val; /* Pin information can only be requested from valid pin groups */ if (!gpiochip_line_is_valid(&pctrl->chip, group)) return -EINVAL; g = &pctrl->soc->groups[group]; ret = msm_config_reg(pctrl, g, param, &mask, &bit); if (ret < 0) return ret; val = msm_readl_ctl(pctrl, g); arg = (val >> bit) & mask; /* Convert register value to pinconf value */ switch (param) { case PIN_CONFIG_BIAS_DISABLE: if (arg != MSM_NO_PULL) return -EINVAL; arg = 1; break; case PIN_CONFIG_BIAS_PULL_DOWN: if (arg != MSM_PULL_DOWN) return -EINVAL; arg = 1; break; case PIN_CONFIG_BIAS_BUS_HOLD: if (pctrl->soc->pull_no_keeper) return -ENOTSUPP; if (arg != MSM_KEEPER) return -EINVAL; arg = 1; break; case PIN_CONFIG_BIAS_PULL_UP: if (pctrl->soc->pull_no_keeper) arg = arg == MSM_PULL_UP_NO_KEEPER; else if (arg & BIT(g->i2c_pull_bit)) arg = MSM_I2C_STRONG_PULL_UP; else arg = arg == MSM_PULL_UP; if (!arg) return -EINVAL; break; case PIN_CONFIG_DRIVE_OPEN_DRAIN: /* Pin is not open-drain */ if (!arg) return -EINVAL; arg = 1; break; case PIN_CONFIG_DRIVE_STRENGTH: arg = msm_regval_to_drive(arg); break; case PIN_CONFIG_OUTPUT: /* Pin is not output */ if (!arg) return -EINVAL; val = msm_readl_io(pctrl, g); arg = !!(val & BIT(g->in_bit)); break; case PIN_CONFIG_OUTPUT_ENABLE: if (!arg) return -EINVAL; break; default: return -ENOTSUPP; } *config = pinconf_to_config_packed(param, arg); return 0; } static int msm_config_group_set(struct pinctrl_dev *pctldev, unsigned group, unsigned long *configs, unsigned num_configs) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); unsigned long flags; unsigned param; unsigned mask; unsigned arg; unsigned bit; int ret; u32 val; int i; g = &pctrl->soc->groups[group]; for (i = 0; i < num_configs; i++) { param = pinconf_to_config_param(configs[i]); arg = pinconf_to_config_argument(configs[i]); ret = msm_config_reg(pctrl, g, param, &mask, &bit); if (ret < 0) return ret; /* Convert pinconf values to register values */ switch (param) { case PIN_CONFIG_BIAS_DISABLE: arg = MSM_NO_PULL; break; case PIN_CONFIG_BIAS_PULL_DOWN: arg = MSM_PULL_DOWN; break; case PIN_CONFIG_BIAS_BUS_HOLD: if (pctrl->soc->pull_no_keeper) return -ENOTSUPP; arg = MSM_KEEPER; break; case PIN_CONFIG_BIAS_PULL_UP: if (pctrl->soc->pull_no_keeper) arg = MSM_PULL_UP_NO_KEEPER; else if (g->i2c_pull_bit && arg == MSM_I2C_STRONG_PULL_UP) arg = BIT(g->i2c_pull_bit) | MSM_PULL_UP; else arg = MSM_PULL_UP; break; case PIN_CONFIG_DRIVE_OPEN_DRAIN: arg = 1; break; case PIN_CONFIG_DRIVE_STRENGTH: /* Check for invalid values */ if (arg > 16 || arg < 2 || (arg % 2) != 0) arg = -1; else arg = (arg / 2) - 1; break; case PIN_CONFIG_OUTPUT: /* set output value */ raw_spin_lock_irqsave(&pctrl->lock, flags); val = msm_readl_io(pctrl, g); if (arg) val |= BIT(g->out_bit); else val &= ~BIT(g->out_bit); msm_writel_io(val, pctrl, g); raw_spin_unlock_irqrestore(&pctrl->lock, flags); /* enable output */ arg = 1; break; case PIN_CONFIG_INPUT_ENABLE: /* * According to pinctrl documentation this should * actually be a no-op. * * The docs are explicit that "this does not affect * the pin's ability to drive output" but what we do * here is to modify the output enable bit. Thus, to * follow the docs we should remove that. * * The docs say that we should enable any relevant * input buffer, but TLMM there is no input buffer that * can be enabled/disabled. It's always on. * * The points above, explain why this _should_ be a * no-op. However, for historical reasons and to * support old device trees, we'll violate the docs * and still affect the output. * * It should further be noted that this old historical * behavior actually overrides arg to 0. That means * that "input-enable" and "input-disable" in a device * tree would _both_ disable the output. We'll * continue to preserve this behavior as well since * we have no other use for this attribute. */ arg = 0; break; case PIN_CONFIG_OUTPUT_ENABLE: arg = !!arg; break; default: dev_err(pctrl->dev, "Unsupported config parameter: %x\n", param); return -EINVAL; } /* Range-check user-supplied value */ if (arg & ~mask) { dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg); return -EINVAL; } raw_spin_lock_irqsave(&pctrl->lock, flags); val = msm_readl_ctl(pctrl, g); val &= ~(mask << bit); val |= arg << bit; msm_writel_ctl(val, pctrl, g); raw_spin_unlock_irqrestore(&pctrl->lock, flags); } return 0; } static const struct pinconf_ops msm_pinconf_ops = { .is_generic = true, .pin_config_group_get = msm_config_group_get, .pin_config_group_set = msm_config_group_set, }; static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = gpiochip_get_data(chip); unsigned long flags; u32 val; g = &pctrl->soc->groups[offset]; raw_spin_lock_irqsave(&pctrl->lock, flags); val = msm_readl_ctl(pctrl, g); val &= ~BIT(g->oe_bit); msm_writel_ctl(val, pctrl, g); raw_spin_unlock_irqrestore(&pctrl->lock, flags); return 0; } static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = gpiochip_get_data(chip); unsigned long flags; u32 val; g = &pctrl->soc->groups[offset]; raw_spin_lock_irqsave(&pctrl->lock, flags); val = msm_readl_io(pctrl, g); if (value) val |= BIT(g->out_bit); else val &= ~BIT(g->out_bit); msm_writel_io(val, pctrl, g); val = msm_readl_ctl(pctrl, g); val |= BIT(g->oe_bit); msm_writel_ctl(val, pctrl, g); raw_spin_unlock_irqrestore(&pctrl->lock, flags); return 0; } static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) { struct msm_pinctrl *pctrl = gpiochip_get_data(chip); const struct msm_pingroup *g; u32 val; g = &pctrl->soc->groups[offset]; val = msm_readl_ctl(pctrl, g); return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; } static int msm_gpio_get(struct gpio_chip *chip, unsigned offset) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = gpiochip_get_data(chip); u32 val; g = &pctrl->soc->groups[offset]; val = msm_readl_io(pctrl, g); return !!(val & BIT(g->in_bit)); } static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = gpiochip_get_data(chip); unsigned long flags; u32 val; g = &pctrl->soc->groups[offset]; raw_spin_lock_irqsave(&pctrl->lock, flags); val = msm_readl_io(pctrl, g); if (value) val |= BIT(g->out_bit); else val &= ~BIT(g->out_bit); msm_writel_io(val, pctrl, g); raw_spin_unlock_irqrestore(&pctrl->lock, flags); } #ifdef CONFIG_DEBUG_FS static void msm_gpio_dbg_show_one(struct seq_file *s, struct pinctrl_dev *pctldev, struct gpio_chip *chip, unsigned offset, unsigned gpio) { const struct msm_pingroup *g; struct msm_pinctrl *pctrl = gpiochip_get_data(chip); unsigned func; int is_out; int drive; int pull; int val; int egpio_enable; u32 ctl_reg, io_reg; static const char * const pulls_keeper[] = { "no pull", "pull down", "keeper", "pull up" }; static const char * const pulls_no_keeper[] = { "no pull", "pull down", "pull up", }; if (!gpiochip_line_is_valid(chip, offset)) return; g = &pctrl->soc->groups[offset]; ctl_reg = msm_readl_ctl(pctrl, g); io_reg = msm_readl_io(pctrl, g); is_out = !!(ctl_reg & BIT(g->oe_bit)); func = (ctl_reg >> g->mux_bit) & 7; drive = (ctl_reg >> g->drv_bit) & 7; pull = (ctl_reg >> g->pull_bit) & 3; egpio_enable = 0; if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present)) egpio_enable = !(ctl_reg & BIT(g->egpio_enable)); if (is_out) val = !!(io_reg & BIT(g->out_bit)); else val = !!(io_reg & BIT(g->in_bit)); if (egpio_enable) { seq_printf(s, " %-8s: egpio\n", g->grp.name); return; } seq_printf(s, " %-8s: %-3s", g->grp.name, is_out ? "out" : "in"); seq_printf(s, " %-4s func%d", val ? "high" : "low", func); seq_printf(s, " %dmA", msm_regval_to_drive(drive)); if (pctrl->soc->pull_no_keeper) seq_printf(s, " %s", pulls_no_keeper[pull]); else seq_printf(s, " %s", pulls_keeper[pull]); seq_puts(s, "\n"); } static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip) { unsigned gpio = chip->base; unsigned i; for (i = 0; i < chip->ngpio; i++, gpio++) msm_gpio_dbg_show_one(s, NULL, chip, i, gpio); } #else #define msm_gpio_dbg_show NULL #endif static int msm_gpio_init_valid_mask(struct gpio_chip *gc, unsigned long *valid_mask, unsigned int ngpios) { struct msm_pinctrl *pctrl = gpiochip_get_data(gc); int ret; unsigned int len, i; const int *reserved = pctrl->soc->reserved_gpios; u16 *tmp; /* Remove driver-provided reserved GPIOs from valid_mask */ if (reserved) { for (i = 0; reserved[i] >= 0; i++) { if (i >= ngpios || reserved[i] >= ngpios) { dev_err(pctrl->dev, "invalid list of reserved GPIOs\n"); return -EINVAL; } clear_bit(reserved[i], valid_mask); } return 0; } /* The number of GPIOs in the ACPI tables */ len = ret = device_property_count_u16(pctrl->dev, "gpios"); if (ret < 0) return 0; if (ret > ngpios) return -EINVAL; tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL); if (!tmp) return -ENOMEM; ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len); if (ret < 0) { dev_err(pctrl->dev, "could not read list of GPIOs\n"); goto out; } bitmap_zero(valid_mask, ngpios); for (i = 0; i < len; i++) set_bit(tmp[i], valid_mask); out: kfree(tmp); return ret; } static const struct gpio_chip msm_gpio_template = { .direction_input = msm_gpio_direction_input, .direction_output = msm_gpio_direction_output, .get_direction = msm_gpio_get_direction, .get = msm_gpio_get, .set = msm_gpio_set, .request = gpiochip_generic_request, .free = gpiochip_generic_free, .dbg_show = msm_gpio_dbg_show, }; /* For dual-edge interrupts in software, since some hardware has no * such support: * * At appropriate moments, this function may be called to flip the polarity * settings of both-edge irq lines to try and catch the next edge. * * The attempt is considered successful if: * - the status bit goes high, indicating that an edge was caught, or * - the input value of the gpio doesn't change during the attempt. * If the value changes twice during the process, that would cause the first * test to fail but would force the second, as two opposite * transitions would cause a detection no matter the polarity setting. * * The do-loop tries to sledge-hammer closed the timing hole between * the initial value-read and the polarity-write - if the line value changes * during that window, an interrupt is lost, the new polarity setting is * incorrect, and the first success test will fail, causing a retry. * * Algorithm comes from Google's msmgpio driver. */ static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl, const struct msm_pingroup *g, struct irq_data *d) { int loop_limit = 100; unsigned val, val2, intstat; unsigned pol; do { val = msm_readl_io(pctrl, g) & BIT(g->in_bit); pol = msm_readl_intr_cfg(pctrl, g); pol ^= BIT(g->intr_polarity_bit); msm_writel_intr_cfg(pol, pctrl, g); val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit); intstat = msm_readl_intr_status(pctrl, g); if (intstat || (val == val2)) return; } while (loop_limit-- > 0); dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n", val, val2); } static void msm_gpio_irq_mask(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); const struct msm_pingroup *g; unsigned long flags; u32 val; if (d->parent_data) irq_chip_mask_parent(d); if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) return; g = &pctrl->soc->groups[d->hwirq]; raw_spin_lock_irqsave(&pctrl->lock, flags); val = msm_readl_intr_cfg(pctrl, g); /* * There are two bits that control interrupt forwarding to the CPU. The * RAW_STATUS_EN bit causes the level or edge sensed on the line to be * latched into the interrupt status register when the hardware detects * an irq that it's configured for (either edge for edge type or level * for level type irq). The 'non-raw' status enable bit causes the * hardware to assert the summary interrupt to the CPU if the latched * status bit is set. There's a bug though, the edge detection logic * seems to have a problem where toggling the RAW_STATUS_EN bit may * cause the status bit to latch spuriously when there isn't any edge * so we can't touch that bit for edge type irqs and we have to keep * the bit set anyway so that edges are latched while the line is masked. * * To make matters more complicated, leaving the RAW_STATUS_EN bit * enabled all the time causes level interrupts to re-latch into the * status register because the level is still present on the line after * we ack it. We clear the raw status enable bit during mask here and * set the bit on unmask so the interrupt can't latch into the hardware * while it's masked. */ if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK) val &= ~BIT(g->intr_raw_status_bit); val &= ~BIT(g->intr_enable_bit); msm_writel_intr_cfg(val, pctrl, g); clear_bit(d->hwirq, pctrl->enabled_irqs); raw_spin_unlock_irqrestore(&pctrl->lock, flags); } static void msm_gpio_irq_unmask(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); const struct msm_pingroup *g; unsigned long flags; u32 val; if (d->parent_data) irq_chip_unmask_parent(d); if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) return; g = &pctrl->soc->groups[d->hwirq]; raw_spin_lock_irqsave(&pctrl->lock, flags); val = msm_readl_intr_cfg(pctrl, g); val |= BIT(g->intr_raw_status_bit); val |= BIT(g->intr_enable_bit); msm_writel_intr_cfg(val, pctrl, g); set_bit(d->hwirq, pctrl->enabled_irqs); raw_spin_unlock_irqrestore(&pctrl->lock, flags); } static void msm_gpio_irq_enable(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); gpiochip_enable_irq(gc, d->hwirq); if (d->parent_data) irq_chip_enable_parent(d); if (!test_bit(d->hwirq, pctrl->skip_wake_irqs)) msm_gpio_irq_unmask(d); } static void msm_gpio_irq_disable(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); if (d->parent_data) irq_chip_disable_parent(d); if (!test_bit(d->hwirq, pctrl->skip_wake_irqs)) msm_gpio_irq_mask(d); gpiochip_disable_irq(gc, d->hwirq); } /** * msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent. * @d: The irq dta. * * This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are * normally handled by the parent irqchip. The logic here is slightly * different due to what's easy to do with our parent, but in principle it's * the same. */ static void msm_gpio_update_dual_edge_parent(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq]; int loop_limit = 100; unsigned int val; unsigned int type; /* Read the value and make a guess about what edge we need to catch */ val = msm_readl_io(pctrl, g) & BIT(g->in_bit); type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING; do { /* Set the parent to catch the next edge */ irq_chip_set_type_parent(d, type); /* * Possibly the line changed between when we last read "val" * (and decided what edge we needed) and when set the edge. * If the value didn't change (or changed and then changed * back) then we're done. */ val = msm_readl_io(pctrl, g) & BIT(g->in_bit); if (type == IRQ_TYPE_EDGE_RISING) { if (!val) return; type = IRQ_TYPE_EDGE_FALLING; } else if (type == IRQ_TYPE_EDGE_FALLING) { if (val) return; type = IRQ_TYPE_EDGE_RISING; } } while (loop_limit-- > 0); dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n"); } static void msm_gpio_irq_ack(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); const struct msm_pingroup *g; unsigned long flags; if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) { if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) msm_gpio_update_dual_edge_parent(d); return; } g = &pctrl->soc->groups[d->hwirq]; raw_spin_lock_irqsave(&pctrl->lock, flags); msm_ack_intr_status(pctrl, g); if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) msm_gpio_update_dual_edge_pos(pctrl, g, d); raw_spin_unlock_irqrestore(&pctrl->lock, flags); } static void msm_gpio_irq_eoi(struct irq_data *d) { d = d->parent_data; if (d) d->chip->irq_eoi(d); } static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d, unsigned int type) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); return type == IRQ_TYPE_EDGE_BOTH && pctrl->soc->wakeirq_dual_edge_errata && d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs); } static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); const struct msm_pingroup *g; u32 intr_target_mask = GENMASK(2, 0); unsigned long flags; bool was_enabled; u32 val; if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) { set_bit(d->hwirq, pctrl->dual_edge_irqs); irq_set_handler_locked(d, handle_fasteoi_ack_irq); msm_gpio_update_dual_edge_parent(d); return 0; } if (d->parent_data) irq_chip_set_type_parent(d, type); if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) { clear_bit(d->hwirq, pctrl->dual_edge_irqs); irq_set_handler_locked(d, handle_fasteoi_irq); return 0; } g = &pctrl->soc->groups[d->hwirq]; raw_spin_lock_irqsave(&pctrl->lock, flags); /* * For hw without possibility of detecting both edges */ if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH) set_bit(d->hwirq, pctrl->dual_edge_irqs); else clear_bit(d->hwirq, pctrl->dual_edge_irqs); /* Route interrupts to application cpu. * With intr_target_use_scm interrupts are routed to * application cpu using scm calls. */ if (g->intr_target_width) intr_target_mask = GENMASK(g->intr_target_width - 1, 0); if (pctrl->intr_target_use_scm) { u32 addr = pctrl->phys_base[0] + g->intr_target_reg; int ret; qcom_scm_io_readl(addr, &val); val &= ~(intr_target_mask << g->intr_target_bit); val |= g->intr_target_kpss_val << g->intr_target_bit; ret = qcom_scm_io_writel(addr, val); if (ret) dev_err(pctrl->dev, "Failed routing %lu interrupt to Apps proc", d->hwirq); } else { val = msm_readl_intr_target(pctrl, g); val &= ~(intr_target_mask << g->intr_target_bit); val |= g->intr_target_kpss_val << g->intr_target_bit; msm_writel_intr_target(val, pctrl, g); } /* Update configuration for gpio. * RAW_STATUS_EN is left on for all gpio irqs. Due to the * internal circuitry of TLMM, toggling the RAW_STATUS * could cause the INTR_STATUS to be set for EDGE interrupts. */ val = msm_readl_intr_cfg(pctrl, g); was_enabled = val & BIT(g->intr_raw_status_bit); val |= BIT(g->intr_raw_status_bit); if (g->intr_detection_width == 2) { val &= ~(3 << g->intr_detection_bit); val &= ~(1 << g->intr_polarity_bit); switch (type) { case IRQ_TYPE_EDGE_RISING: val |= 1 << g->intr_detection_bit; val |= BIT(g->intr_polarity_bit); break; case IRQ_TYPE_EDGE_FALLING: val |= 2 << g->intr_detection_bit; val |= BIT(g->intr_polarity_bit); break; case IRQ_TYPE_EDGE_BOTH: val |= 3 << g->intr_detection_bit; val |= BIT(g->intr_polarity_bit); break; case IRQ_TYPE_LEVEL_LOW: break; case IRQ_TYPE_LEVEL_HIGH: val |= BIT(g->intr_polarity_bit); break; } } else if (g->intr_detection_width == 1) { val &= ~(1 << g->intr_detection_bit); val &= ~(1 << g->intr_polarity_bit); switch (type) { case IRQ_TYPE_EDGE_RISING: val |= BIT(g->intr_detection_bit); val |= BIT(g->intr_polarity_bit); break; case IRQ_TYPE_EDGE_FALLING: val |= BIT(g->intr_detection_bit); break; case IRQ_TYPE_EDGE_BOTH: val |= BIT(g->intr_detection_bit); val |= BIT(g->intr_polarity_bit); break; case IRQ_TYPE_LEVEL_LOW: break; case IRQ_TYPE_LEVEL_HIGH: val |= BIT(g->intr_polarity_bit); break; } } else { BUG(); } msm_writel_intr_cfg(val, pctrl, g); /* * The first time we set RAW_STATUS_EN it could trigger an interrupt. * Clear the interrupt. This is safe because we have * IRQCHIP_SET_TYPE_MASKED. */ if (!was_enabled) msm_ack_intr_status(pctrl, g); if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) msm_gpio_update_dual_edge_pos(pctrl, g, d); raw_spin_unlock_irqrestore(&pctrl->lock, flags); if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH)) irq_set_handler_locked(d, handle_level_irq); else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING)) irq_set_handler_locked(d, handle_edge_irq); return 0; } static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); /* * While they may not wake up when the TLMM is powered off, * some GPIOs would like to wakeup the system from suspend * when TLMM is powered on. To allow that, enable the GPIO * summary line to be wakeup capable at GIC. */ if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) return irq_chip_set_wake_parent(d, on); return irq_set_irq_wake(pctrl->irq, on); } static int msm_gpio_irq_reqres(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq]; unsigned long flags; int ret; if (!try_module_get(gc->owner)) return -ENODEV; ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq); if (ret) goto out; msm_gpio_direction_input(gc, d->hwirq); if (gpiochip_lock_as_irq(gc, d->hwirq)) { dev_err(gc->parent, "unable to lock HW IRQ %lu for IRQ\n", d->hwirq); ret = -EINVAL; goto out; } /* * The disable / clear-enable workaround we do in msm_pinmux_set_mux() * only works if disable is not lazy since we only clear any bogus * interrupt in hardware. Explicitly mark the interrupt as UNLAZY. */ irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY); /* * If the wakeup_enable bit is present and marked as available for the * requested GPIO, it should be enabled when the GPIO is marked as * wake irq in order to allow the interrupt event to be transfered to * the PDC HW. * While the name implies only the wakeup event, it's also required for * the interrupt event. */ if (test_bit(d->hwirq, pctrl->skip_wake_irqs) && g->intr_wakeup_present_bit) { u32 intr_cfg; raw_spin_lock_irqsave(&pctrl->lock, flags); intr_cfg = msm_readl_intr_cfg(pctrl, g); if (intr_cfg & BIT(g->intr_wakeup_present_bit)) { intr_cfg |= BIT(g->intr_wakeup_enable_bit); msm_writel_intr_cfg(intr_cfg, pctrl, g); } raw_spin_unlock_irqrestore(&pctrl->lock, flags); } return 0; out: module_put(gc->owner); return ret; } static void msm_gpio_irq_relres(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq]; unsigned long flags; /* Disable the wakeup_enable bit if it has been set in msm_gpio_irq_reqres() */ if (test_bit(d->hwirq, pctrl->skip_wake_irqs) && g->intr_wakeup_present_bit) { u32 intr_cfg; raw_spin_lock_irqsave(&pctrl->lock, flags); intr_cfg = msm_readl_intr_cfg(pctrl, g); if (intr_cfg & BIT(g->intr_wakeup_present_bit)) { intr_cfg &= ~BIT(g->intr_wakeup_enable_bit); msm_writel_intr_cfg(intr_cfg, pctrl, g); } raw_spin_unlock_irqrestore(&pctrl->lock, flags); } gpiochip_unlock_as_irq(gc, d->hwirq); module_put(gc->owner); } static int msm_gpio_irq_set_affinity(struct irq_data *d, const struct cpumask *dest, bool force) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) return irq_chip_set_affinity_parent(d, dest, force); return -EINVAL; } static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct msm_pinctrl *pctrl = gpiochip_get_data(gc); if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) return irq_chip_set_vcpu_affinity_parent(d, vcpu_info); return -EINVAL; } static void msm_gpio_irq_handler(struct irq_desc *desc) { struct gpio_chip *gc = irq_desc_get_handler_data(desc); const struct msm_pingroup *g; struct msm_pinctrl *pctrl = gpiochip_get_data(gc); struct irq_chip *chip = irq_desc_get_chip(desc); int handled = 0; u32 val; int i; chained_irq_enter(chip, desc); /* * Each pin has it's own IRQ status register, so use * enabled_irq bitmap to limit the number of reads. */ for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) { g = &pctrl->soc->groups[i]; val = msm_readl_intr_status(pctrl, g); if (val & BIT(g->intr_status_bit)) { generic_handle_domain_irq(gc->irq.domain, i); handled++; } } /* No interrupts were flagged */ if (handled == 0) handle_bad_irq(desc); chained_irq_exit(chip, desc); } static int msm_gpio_wakeirq(struct gpio_chip *gc, unsigned int child, unsigned int child_type, unsigned int *parent, unsigned int *parent_type) { struct msm_pinctrl *pctrl = gpiochip_get_data(gc); const struct msm_gpio_wakeirq_map *map; int i; *parent = GPIO_NO_WAKE_IRQ; *parent_type = IRQ_TYPE_EDGE_RISING; for (i = 0; i < pctrl->soc->nwakeirq_map; i++) { map = &pctrl->soc->wakeirq_map[i]; if (map->gpio == child) { *parent = map->wakeirq; break; } } return 0; } static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl) { if (pctrl->soc->reserved_gpios) return true; return device_property_count_u16(pctrl->dev, "gpios") > 0; } static const struct irq_chip msm_gpio_irq_chip = { .name = "msmgpio", .irq_enable = msm_gpio_irq_enable, .irq_disable = msm_gpio_irq_disable, .irq_mask = msm_gpio_irq_mask, .irq_unmask = msm_gpio_irq_unmask, .irq_ack = msm_gpio_irq_ack, .irq_eoi = msm_gpio_irq_eoi, .irq_set_type = msm_gpio_irq_set_type, .irq_set_wake = msm_gpio_irq_set_wake, .irq_request_resources = msm_gpio_irq_reqres, .irq_release_resources = msm_gpio_irq_relres, .irq_set_affinity = msm_gpio_irq_set_affinity, .irq_set_vcpu_affinity = msm_gpio_irq_set_vcpu_affinity, .flags = (IRQCHIP_MASK_ON_SUSPEND | IRQCHIP_SET_TYPE_MASKED | IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND | IRQCHIP_IMMUTABLE), }; static int msm_gpio_init(struct msm_pinctrl *pctrl) { struct gpio_chip *chip; struct gpio_irq_chip *girq; int i, ret; unsigned gpio, ngpio = pctrl->soc->ngpios; struct device_node *np; bool skip; if (WARN_ON(ngpio > MAX_NR_GPIO)) return -EINVAL; chip = &pctrl->chip; chip->base = -1; chip->ngpio = ngpio; chip->label = dev_name(pctrl->dev); chip->parent = pctrl->dev; chip->owner = THIS_MODULE; if (msm_gpio_needs_valid_mask(pctrl)) chip->init_valid_mask = msm_gpio_init_valid_mask; np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0); if (np) { chip->irq.parent_domain = irq_find_matching_host(np, DOMAIN_BUS_WAKEUP); of_node_put(np); if (!chip->irq.parent_domain) return -EPROBE_DEFER; chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq; /* * Let's skip handling the GPIOs, if the parent irqchip * is handling the direct connect IRQ of the GPIO. */ skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain); for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) { gpio = pctrl->soc->wakeirq_map[i].gpio; set_bit(gpio, pctrl->skip_wake_irqs); } } girq = &chip->irq; gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip); girq->parent_handler = msm_gpio_irq_handler; girq->fwnode = dev_fwnode(pctrl->dev); girq->num_parents = 1; girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents), GFP_KERNEL); if (!girq->parents) return -ENOMEM; girq->default_type = IRQ_TYPE_NONE; girq->handler = handle_bad_irq; girq->parents[0] = pctrl->irq; ret = gpiochip_add_data(&pctrl->chip, pctrl); if (ret) { dev_err(pctrl->dev, "Failed register gpiochip\n"); return ret; } /* * For DeviceTree-supported systems, the gpio core checks the * pinctrl's device node for the "gpio-ranges" property. * If it is present, it takes care of adding the pin ranges * for the driver. In this case the driver can skip ahead. * * In order to remain compatible with older, existing DeviceTree * files which don't set the "gpio-ranges" property or systems that * utilize ACPI the driver has to call gpiochip_add_pin_range(). */ if (!of_property_read_bool(pctrl->dev->of_node, "gpio-ranges")) { ret = gpiochip_add_pin_range(&pctrl->chip, dev_name(pctrl->dev), 0, 0, chip->ngpio); if (ret) { dev_err(pctrl->dev, "Failed to add pin range\n"); gpiochip_remove(&pctrl->chip); return ret; } } return 0; } static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action, void *data) { struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb); writel(0, pctrl->regs[0] + PS_HOLD_OFFSET); mdelay(1000); return NOTIFY_DONE; } static struct msm_pinctrl *poweroff_pctrl; static void msm_ps_hold_poweroff(void) { msm_ps_hold_restart(&poweroff_pctrl->restart_nb, 0, NULL); } static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl) { int i; const struct pinfunction *func = pctrl->soc->functions; for (i = 0; i < pctrl->soc->nfunctions; i++) if (!strcmp(func[i].name, "ps_hold")) { pctrl->restart_nb.notifier_call = msm_ps_hold_restart; pctrl->restart_nb.priority = 128; if (register_restart_handler(&pctrl->restart_nb)) dev_err(pctrl->dev, "failed to setup restart handler.\n"); poweroff_pctrl = pctrl; pm_power_off = msm_ps_hold_poweroff; break; } } static __maybe_unused int msm_pinctrl_suspend(struct device *dev) { struct msm_pinctrl *pctrl = dev_get_drvdata(dev); return pinctrl_force_sleep(pctrl->pctrl); } static __maybe_unused int msm_pinctrl_resume(struct device *dev) { struct msm_pinctrl *pctrl = dev_get_drvdata(dev); return pinctrl_force_default(pctrl->pctrl); } SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend, msm_pinctrl_resume); EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops); int msm_pinctrl_probe(struct platform_device *pdev, const struct msm_pinctrl_soc_data *soc_data) { struct msm_pinctrl *pctrl; struct resource *res; int ret; int i; pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL); if (!pctrl) return -ENOMEM; pctrl->dev = &pdev->dev; pctrl->soc = soc_data; pctrl->chip = msm_gpio_template; pctrl->intr_target_use_scm = of_device_is_compatible( pctrl->dev->of_node, "qcom,ipq8064-pinctrl"); raw_spin_lock_init(&pctrl->lock); if (soc_data->tiles) { for (i = 0; i < soc_data->ntiles; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, soc_data->tiles[i]); pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pctrl->regs[i])) return PTR_ERR(pctrl->regs[i]); } } else { pctrl->regs[0] = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(pctrl->regs[0])) return PTR_ERR(pctrl->regs[0]); pctrl->phys_base[0] = res->start; } msm_pinctrl_setup_pm_reset(pctrl); pctrl->irq = platform_get_irq(pdev, 0); if (pctrl->irq < 0) return pctrl->irq; pctrl->desc.owner = THIS_MODULE; pctrl->desc.pctlops = &msm_pinctrl_ops; pctrl->desc.pmxops = &msm_pinmux_ops; pctrl->desc.confops = &msm_pinconf_ops; pctrl->desc.name = dev_name(&pdev->dev); pctrl->desc.pins = pctrl->soc->pins; pctrl->desc.npins = pctrl->soc->npins; pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl); if (IS_ERR(pctrl->pctrl)) { dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); return PTR_ERR(pctrl->pctrl); } ret = msm_gpio_init(pctrl); if (ret) return ret; platform_set_drvdata(pdev, pctrl); dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n"); return 0; } EXPORT_SYMBOL(msm_pinctrl_probe); void msm_pinctrl_remove(struct platform_device *pdev) { struct msm_pinctrl *pctrl = platform_get_drvdata(pdev); gpiochip_remove(&pctrl->chip); unregister_restart_handler(&pctrl->restart_nb); } EXPORT_SYMBOL(msm_pinctrl_remove); MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver"); MODULE_LICENSE("GPL v2");