// SPDX-License-Identifier: GPL-2.0-or-later /* * Asus PC WMI hotkey driver * * Copyright(C) 2010 Intel Corporation. * Copyright(C) 2010-2011 Corentin Chary * * Portions based on wistron_btns.c: * Copyright (C) 2005 Miloslav Trmac * Copyright (C) 2005 Bernhard Rosenkraenzer * Copyright (C) 2005 Dmitry Torokhov */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "asus-wmi.h" MODULE_AUTHOR("Corentin Chary "); MODULE_AUTHOR("Yong Wang "); MODULE_DESCRIPTION("Asus Generic WMI Driver"); MODULE_LICENSE("GPL"); static bool fnlock_default = true; module_param(fnlock_default, bool, 0444); #define to_asus_wmi_driver(pdrv) \ (container_of((pdrv), struct asus_wmi_driver, platform_driver)) #define ASUS_WMI_MGMT_GUID "97845ED0-4E6D-11DE-8A39-0800200C9A66" #define NOTIFY_BRNUP_MIN 0x11 #define NOTIFY_BRNUP_MAX 0x1f #define NOTIFY_BRNDOWN_MIN 0x20 #define NOTIFY_BRNDOWN_MAX 0x2e #define NOTIFY_FNLOCK_TOGGLE 0x4e #define NOTIFY_KBD_DOCK_CHANGE 0x75 #define NOTIFY_KBD_BRTUP 0xc4 #define NOTIFY_KBD_BRTDWN 0xc5 #define NOTIFY_KBD_BRTTOGGLE 0xc7 #define NOTIFY_KBD_FBM 0x99 #define NOTIFY_KBD_TTP 0xae #define NOTIFY_LID_FLIP 0xfa #define NOTIFY_LID_FLIP_ROG 0xbd #define ASUS_WMI_FNLOCK_BIOS_DISABLED BIT(0) #define ASUS_MID_FAN_DESC "mid_fan" #define ASUS_GPU_FAN_DESC "gpu_fan" #define ASUS_FAN_DESC "cpu_fan" #define ASUS_FAN_MFUN 0x13 #define ASUS_FAN_SFUN_READ 0x06 #define ASUS_FAN_SFUN_WRITE 0x07 /* Based on standard hwmon pwmX_enable values */ #define ASUS_FAN_CTRL_FULLSPEED 0 #define ASUS_FAN_CTRL_MANUAL 1 #define ASUS_FAN_CTRL_AUTO 2 #define ASUS_FAN_BOOST_MODE_NORMAL 0 #define ASUS_FAN_BOOST_MODE_OVERBOOST 1 #define ASUS_FAN_BOOST_MODE_OVERBOOST_MASK 0x01 #define ASUS_FAN_BOOST_MODE_SILENT 2 #define ASUS_FAN_BOOST_MODE_SILENT_MASK 0x02 #define ASUS_FAN_BOOST_MODES_MASK 0x03 #define ASUS_THROTTLE_THERMAL_POLICY_DEFAULT 0 #define ASUS_THROTTLE_THERMAL_POLICY_OVERBOOST 1 #define ASUS_THROTTLE_THERMAL_POLICY_SILENT 2 #define USB_INTEL_XUSB2PR 0xD0 #define PCI_DEVICE_ID_INTEL_LYNXPOINT_LP_XHCI 0x9c31 #define ASUS_ACPI_UID_ASUSWMI "ASUSWMI" #define WMI_EVENT_MASK 0xFFFF #define FAN_CURVE_POINTS 8 #define FAN_CURVE_BUF_LEN 32 #define FAN_CURVE_DEV_CPU 0x00 #define FAN_CURVE_DEV_GPU 0x01 #define FAN_CURVE_DEV_MID 0x02 /* Mask to determine if setting temperature or percentage */ #define FAN_CURVE_PWM_MASK 0x04 /* Limits for tunables available on ASUS ROG laptops */ #define PPT_TOTAL_MIN 5 #define PPT_TOTAL_MAX 250 #define PPT_CPU_MIN 5 #define PPT_CPU_MAX 130 #define NVIDIA_BOOST_MIN 5 #define NVIDIA_BOOST_MAX 25 #define NVIDIA_TEMP_MIN 75 #define NVIDIA_TEMP_MAX 87 #define ASUS_SCREENPAD_BRIGHT_MIN 20 #define ASUS_SCREENPAD_BRIGHT_MAX 255 #define ASUS_SCREENPAD_BRIGHT_DEFAULT 60 #define ASUS_MINI_LED_MODE_MASK 0x03 /* Standard modes for devices with only on/off */ #define ASUS_MINI_LED_OFF 0x00 #define ASUS_MINI_LED_ON 0x01 /* New mode on some devices, define here to clarify remapping later */ #define ASUS_MINI_LED_STRONG_MODE 0x02 /* New modes for devices with 3 mini-led mode types */ #define ASUS_MINI_LED_2024_WEAK 0x00 #define ASUS_MINI_LED_2024_STRONG 0x01 #define ASUS_MINI_LED_2024_OFF 0x02 /* Controls the power state of the USB0 hub on ROG Ally which input is on */ #define ASUS_USB0_PWR_EC0_CSEE "\\_SB.PCI0.SBRG.EC0.CSEE" /* 300ms so far seems to produce a reliable result on AC and battery */ #define ASUS_USB0_PWR_EC0_CSEE_WAIT 1500 static const char * const ashs_ids[] = { "ATK4001", "ATK4002", NULL }; static int throttle_thermal_policy_write(struct asus_wmi *); static bool ashs_present(void) { int i = 0; while (ashs_ids[i]) { if (acpi_dev_found(ashs_ids[i++])) return true; } return false; } struct bios_args { u32 arg0; u32 arg1; u32 arg2; /* At least TUF Gaming series uses 3 dword input buffer. */ u32 arg3; u32 arg4; /* Some ROG laptops require a full 5 input args */ u32 arg5; } __packed; /* * Struct that's used for all methods called via AGFN. Naming is * identically to the AML code. */ struct agfn_args { u16 mfun; /* probably "Multi-function" to be called */ u16 sfun; /* probably "Sub-function" to be called */ u16 len; /* size of the hole struct, including subfunction fields */ u8 stas; /* not used by now */ u8 err; /* zero on success */ } __packed; /* struct used for calling fan read and write methods */ struct agfn_fan_args { struct agfn_args agfn; /* common fields */ u8 fan; /* fan number: 0: set auto mode 1: 1st fan */ u32 speed; /* read: RPM/100 - write: 0-255 */ } __packed; /* * / - debugfs root directory * dev_id - current dev_id * ctrl_param - current ctrl_param * method_id - current method_id * devs - call DEVS(dev_id, ctrl_param) and print result * dsts - call DSTS(dev_id) and print result * call - call method_id(dev_id, ctrl_param) and print result */ struct asus_wmi_debug { struct dentry *root; u32 method_id; u32 dev_id; u32 ctrl_param; }; struct asus_rfkill { struct asus_wmi *asus; struct rfkill *rfkill; u32 dev_id; }; enum fan_type { FAN_TYPE_NONE = 0, FAN_TYPE_AGFN, /* deprecated on newer platforms */ FAN_TYPE_SPEC83, /* starting in Spec 8.3, use CPU_FAN_CTRL */ }; struct fan_curve_data { bool enabled; u32 device_id; u8 temps[FAN_CURVE_POINTS]; u8 percents[FAN_CURVE_POINTS]; }; struct asus_wmi { int dsts_id; int spec; int sfun; struct input_dev *inputdev; struct backlight_device *backlight_device; struct backlight_device *screenpad_backlight_device; struct platform_device *platform_device; struct led_classdev wlan_led; int wlan_led_wk; struct led_classdev tpd_led; int tpd_led_wk; struct led_classdev kbd_led; int kbd_led_wk; struct led_classdev lightbar_led; int lightbar_led_wk; struct led_classdev micmute_led; struct workqueue_struct *led_workqueue; struct work_struct tpd_led_work; struct work_struct wlan_led_work; struct work_struct lightbar_led_work; struct asus_rfkill wlan; struct asus_rfkill bluetooth; struct asus_rfkill wimax; struct asus_rfkill wwan3g; struct asus_rfkill gps; struct asus_rfkill uwb; int tablet_switch_event_code; u32 tablet_switch_dev_id; bool tablet_switch_inverted; /* The ROG Ally device requires the MCU USB device be disconnected before suspend */ bool ally_mcu_usb_switch; enum fan_type fan_type; enum fan_type gpu_fan_type; enum fan_type mid_fan_type; int fan_pwm_mode; int gpu_fan_pwm_mode; int mid_fan_pwm_mode; int agfn_pwm; bool fan_boost_mode_available; u8 fan_boost_mode_mask; u8 fan_boost_mode; bool egpu_enable_available; bool dgpu_disable_available; u32 gpu_mux_dev; /* Tunables provided by ASUS for gaming laptops */ u32 ppt_pl2_sppt; u32 ppt_pl1_spl; u32 ppt_apu_sppt; u32 ppt_platform_sppt; u32 ppt_fppt; u32 nv_dynamic_boost; u32 nv_temp_target; u32 kbd_rgb_dev; bool kbd_rgb_state_available; bool throttle_thermal_policy_available; u8 throttle_thermal_policy_mode; bool cpu_fan_curve_available; bool gpu_fan_curve_available; bool mid_fan_curve_available; struct fan_curve_data custom_fan_curves[3]; struct platform_profile_handler platform_profile_handler; bool platform_profile_support; // The RSOC controls the maximum charging percentage. bool battery_rsoc_available; bool panel_overdrive_available; u32 mini_led_dev_id; struct hotplug_slot hotplug_slot; struct mutex hotplug_lock; struct mutex wmi_lock; struct workqueue_struct *hotplug_workqueue; struct work_struct hotplug_work; bool fnlock_locked; struct asus_wmi_debug debug; struct asus_wmi_driver *driver; }; /* WMI ************************************************************************/ static int asus_wmi_evaluate_method3(u32 method_id, u32 arg0, u32 arg1, u32 arg2, u32 *retval) { struct bios_args args = { .arg0 = arg0, .arg1 = arg1, .arg2 = arg2, }; struct acpi_buffer input = { (acpi_size) sizeof(args), &args }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; acpi_status status; union acpi_object *obj; u32 tmp = 0; status = wmi_evaluate_method(ASUS_WMI_MGMT_GUID, 0, method_id, &input, &output); if (ACPI_FAILURE(status)) return -EIO; obj = (union acpi_object *)output.pointer; if (obj && obj->type == ACPI_TYPE_INTEGER) tmp = (u32) obj->integer.value; if (retval) *retval = tmp; kfree(obj); if (tmp == ASUS_WMI_UNSUPPORTED_METHOD) return -ENODEV; return 0; } int asus_wmi_evaluate_method(u32 method_id, u32 arg0, u32 arg1, u32 *retval) { return asus_wmi_evaluate_method3(method_id, arg0, arg1, 0, retval); } EXPORT_SYMBOL_GPL(asus_wmi_evaluate_method); static int asus_wmi_evaluate_method5(u32 method_id, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 *retval) { struct bios_args args = { .arg0 = arg0, .arg1 = arg1, .arg2 = arg2, .arg3 = arg3, .arg4 = arg4, }; struct acpi_buffer input = { (acpi_size) sizeof(args), &args }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; acpi_status status; union acpi_object *obj; u32 tmp = 0; status = wmi_evaluate_method(ASUS_WMI_MGMT_GUID, 0, method_id, &input, &output); if (ACPI_FAILURE(status)) return -EIO; obj = (union acpi_object *)output.pointer; if (obj && obj->type == ACPI_TYPE_INTEGER) tmp = (u32) obj->integer.value; if (retval) *retval = tmp; kfree(obj); if (tmp == ASUS_WMI_UNSUPPORTED_METHOD) return -ENODEV; return 0; } /* * Returns as an error if the method output is not a buffer. Typically this * means that the method called is unsupported. */ static int asus_wmi_evaluate_method_buf(u32 method_id, u32 arg0, u32 arg1, u8 *ret_buffer, size_t size) { struct bios_args args = { .arg0 = arg0, .arg1 = arg1, .arg2 = 0, }; struct acpi_buffer input = { (acpi_size) sizeof(args), &args }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; acpi_status status; union acpi_object *obj; int err = 0; status = wmi_evaluate_method(ASUS_WMI_MGMT_GUID, 0, method_id, &input, &output); if (ACPI_FAILURE(status)) return -EIO; obj = (union acpi_object *)output.pointer; switch (obj->type) { case ACPI_TYPE_BUFFER: if (obj->buffer.length > size) { err = -ENOSPC; break; } if (obj->buffer.length == 0) { err = -ENODATA; break; } memcpy(ret_buffer, obj->buffer.pointer, obj->buffer.length); break; case ACPI_TYPE_INTEGER: err = (u32)obj->integer.value; if (err == ASUS_WMI_UNSUPPORTED_METHOD) err = -ENODEV; /* * At least one method returns a 0 with no buffer if no arg * is provided, such as ASUS_WMI_DEVID_CPU_FAN_CURVE */ if (err == 0) err = -ENODATA; break; default: err = -ENODATA; break; } kfree(obj); if (err) return err; return 0; } static int asus_wmi_evaluate_method_agfn(const struct acpi_buffer args) { struct acpi_buffer input; u64 phys_addr; u32 retval; u32 status; /* * Copy to dma capable address otherwise memory corruption occurs as * bios has to be able to access it. */ input.pointer = kmemdup(args.pointer, args.length, GFP_DMA | GFP_KERNEL); input.length = args.length; if (!input.pointer) return -ENOMEM; phys_addr = virt_to_phys(input.pointer); status = asus_wmi_evaluate_method(ASUS_WMI_METHODID_AGFN, phys_addr, 0, &retval); if (!status) memcpy(args.pointer, input.pointer, args.length); kfree(input.pointer); if (status) return -ENXIO; return retval; } static int asus_wmi_get_devstate(struct asus_wmi *asus, u32 dev_id, u32 *retval) { int err; err = asus_wmi_evaluate_method(asus->dsts_id, dev_id, 0, retval); if (err) return err; if (*retval == ~0) return -ENODEV; return 0; } static int asus_wmi_set_devstate(u32 dev_id, u32 ctrl_param, u32 *retval) { return asus_wmi_evaluate_method(ASUS_WMI_METHODID_DEVS, dev_id, ctrl_param, retval); } /* Helper for special devices with magic return codes */ static int asus_wmi_get_devstate_bits(struct asus_wmi *asus, u32 dev_id, u32 mask) { u32 retval = 0; int err; err = asus_wmi_get_devstate(asus, dev_id, &retval); if (err < 0) return err; if (!(retval & ASUS_WMI_DSTS_PRESENCE_BIT)) return -ENODEV; if (mask == ASUS_WMI_DSTS_STATUS_BIT) { if (retval & ASUS_WMI_DSTS_UNKNOWN_BIT) return -ENODEV; } return retval & mask; } static int asus_wmi_get_devstate_simple(struct asus_wmi *asus, u32 dev_id) { return asus_wmi_get_devstate_bits(asus, dev_id, ASUS_WMI_DSTS_STATUS_BIT); } static bool asus_wmi_dev_is_present(struct asus_wmi *asus, u32 dev_id) { u32 retval; int status = asus_wmi_get_devstate(asus, dev_id, &retval); return status == 0 && (retval & ASUS_WMI_DSTS_PRESENCE_BIT); } /* Input **********************************************************************/ static void asus_wmi_tablet_sw_report(struct asus_wmi *asus, bool value) { input_report_switch(asus->inputdev, SW_TABLET_MODE, asus->tablet_switch_inverted ? !value : value); input_sync(asus->inputdev); } static void asus_wmi_tablet_sw_init(struct asus_wmi *asus, u32 dev_id, int event_code) { struct device *dev = &asus->platform_device->dev; int result; result = asus_wmi_get_devstate_simple(asus, dev_id); if (result >= 0) { input_set_capability(asus->inputdev, EV_SW, SW_TABLET_MODE); asus_wmi_tablet_sw_report(asus, result); asus->tablet_switch_dev_id = dev_id; asus->tablet_switch_event_code = event_code; } else if (result == -ENODEV) { dev_err(dev, "This device has tablet-mode-switch quirk but got ENODEV checking it. This is a bug."); } else { dev_err(dev, "Error checking for tablet-mode-switch: %d\n", result); } } static int asus_wmi_input_init(struct asus_wmi *asus) { struct device *dev = &asus->platform_device->dev; int err; asus->inputdev = input_allocate_device(); if (!asus->inputdev) return -ENOMEM; asus->inputdev->name = asus->driver->input_name; asus->inputdev->phys = asus->driver->input_phys; asus->inputdev->id.bustype = BUS_HOST; asus->inputdev->dev.parent = dev; set_bit(EV_REP, asus->inputdev->evbit); err = sparse_keymap_setup(asus->inputdev, asus->driver->keymap, NULL); if (err) goto err_free_dev; switch (asus->driver->quirks->tablet_switch_mode) { case asus_wmi_no_tablet_switch: break; case asus_wmi_kbd_dock_devid: asus->tablet_switch_inverted = true; asus_wmi_tablet_sw_init(asus, ASUS_WMI_DEVID_KBD_DOCK, NOTIFY_KBD_DOCK_CHANGE); break; case asus_wmi_lid_flip_devid: asus_wmi_tablet_sw_init(asus, ASUS_WMI_DEVID_LID_FLIP, NOTIFY_LID_FLIP); break; case asus_wmi_lid_flip_rog_devid: asus_wmi_tablet_sw_init(asus, ASUS_WMI_DEVID_LID_FLIP_ROG, NOTIFY_LID_FLIP_ROG); break; } err = input_register_device(asus->inputdev); if (err) goto err_free_dev; return 0; err_free_dev: input_free_device(asus->inputdev); return err; } static void asus_wmi_input_exit(struct asus_wmi *asus) { if (asus->inputdev) input_unregister_device(asus->inputdev); asus->inputdev = NULL; } /* Tablet mode ****************************************************************/ static void asus_wmi_tablet_mode_get_state(struct asus_wmi *asus) { int result; if (!asus->tablet_switch_dev_id) return; result = asus_wmi_get_devstate_simple(asus, asus->tablet_switch_dev_id); if (result >= 0) asus_wmi_tablet_sw_report(asus, result); } /* Charging mode, 1=Barrel, 2=USB ******************************************/ static ssize_t charge_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int result, value; result = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_CHARGE_MODE, &value); if (result < 0) return result; return sysfs_emit(buf, "%d\n", value & 0xff); } static DEVICE_ATTR_RO(charge_mode); /* dGPU ********************************************************************/ static ssize_t dgpu_disable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int result; result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_DGPU); if (result < 0) return result; return sysfs_emit(buf, "%d\n", result); } /* * A user may be required to store the value twice, typcial store first, then * rescan PCI bus to activate power, then store a second time to save correctly. * The reason for this is that an extra code path in the ACPI is enabled when * the device and bus are powered. */ static ssize_t dgpu_disable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int result, err; u32 disable; struct asus_wmi *asus = dev_get_drvdata(dev); result = kstrtou32(buf, 10, &disable); if (result) return result; if (disable > 1) return -EINVAL; if (asus->gpu_mux_dev) { result = asus_wmi_get_devstate_simple(asus, asus->gpu_mux_dev); if (result < 0) /* An error here may signal greater failure of GPU handling */ return result; if (!result && disable) { err = -ENODEV; pr_warn("Can not disable dGPU when the MUX is in dGPU mode: %d\n", err); return err; } } err = asus_wmi_set_devstate(ASUS_WMI_DEVID_DGPU, disable, &result); if (err) { pr_warn("Failed to set dgpu disable: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set dgpu disable (result): 0x%x\n", result); return -EIO; } sysfs_notify(&asus->platform_device->dev.kobj, NULL, "dgpu_disable"); return count; } static DEVICE_ATTR_RW(dgpu_disable); /* eGPU ********************************************************************/ static ssize_t egpu_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int result; result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_EGPU); if (result < 0) return result; return sysfs_emit(buf, "%d\n", result); } /* The ACPI call to enable the eGPU also disables the internal dGPU */ static ssize_t egpu_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int result, err; u32 enable; struct asus_wmi *asus = dev_get_drvdata(dev); err = kstrtou32(buf, 10, &enable); if (err) return err; if (enable > 1) return -EINVAL; err = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_EGPU_CONNECTED); if (err < 0) { pr_warn("Failed to get egpu connection status: %d\n", err); return err; } if (asus->gpu_mux_dev) { result = asus_wmi_get_devstate_simple(asus, asus->gpu_mux_dev); if (result < 0) { /* An error here may signal greater failure of GPU handling */ pr_warn("Failed to get gpu mux status: %d\n", result); return result; } if (!result && enable) { err = -ENODEV; pr_warn("Can not enable eGPU when the MUX is in dGPU mode: %d\n", err); return err; } } err = asus_wmi_set_devstate(ASUS_WMI_DEVID_EGPU, enable, &result); if (err) { pr_warn("Failed to set egpu state: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set egpu state (retval): 0x%x\n", result); return -EIO; } sysfs_notify(&asus->platform_device->dev.kobj, NULL, "egpu_enable"); return count; } static DEVICE_ATTR_RW(egpu_enable); /* Is eGPU connected? *********************************************************/ static ssize_t egpu_connected_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int result; result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_EGPU_CONNECTED); if (result < 0) return result; return sysfs_emit(buf, "%d\n", result); } static DEVICE_ATTR_RO(egpu_connected); /* gpu mux switch *************************************************************/ static ssize_t gpu_mux_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int result; result = asus_wmi_get_devstate_simple(asus, asus->gpu_mux_dev); if (result < 0) return result; return sysfs_emit(buf, "%d\n", result); } static ssize_t gpu_mux_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int result, err; u32 optimus; err = kstrtou32(buf, 10, &optimus); if (err) return err; if (optimus > 1) return -EINVAL; if (asus->dgpu_disable_available) { result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_DGPU); if (result < 0) /* An error here may signal greater failure of GPU handling */ return result; if (result && !optimus) { err = -ENODEV; pr_warn("Can not switch MUX to dGPU mode when dGPU is disabled: %d\n", err); return err; } } if (asus->egpu_enable_available) { result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_EGPU); if (result < 0) /* An error here may signal greater failure of GPU handling */ return result; if (result && !optimus) { err = -ENODEV; pr_warn("Can not switch MUX to dGPU mode when eGPU is enabled: %d\n", err); return err; } } err = asus_wmi_set_devstate(asus->gpu_mux_dev, optimus, &result); if (err) { dev_err(dev, "Failed to set GPU MUX mode: %d\n", err); return err; } /* !1 is considered a fail by ASUS */ if (result != 1) { dev_warn(dev, "Failed to set GPU MUX mode (result): 0x%x\n", result); return -EIO; } sysfs_notify(&asus->platform_device->dev.kobj, NULL, "gpu_mux_mode"); return count; } static DEVICE_ATTR_RW(gpu_mux_mode); /* TUF Laptop Keyboard RGB Modes **********************************************/ static ssize_t kbd_rgb_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); u32 cmd, mode, r, g, b, speed; int err; if (sscanf(buf, "%d %d %d %d %d %d", &cmd, &mode, &r, &g, &b, &speed) != 6) return -EINVAL; /* B3 is set and B4 is save to BIOS */ switch (cmd) { case 0: cmd = 0xb3; break; case 1: cmd = 0xb4; break; default: return -EINVAL; } /* These are the known usable modes across all TUF/ROG */ if (mode >= 12 || mode == 9) mode = 10; switch (speed) { case 0: speed = 0xe1; break; case 1: speed = 0xeb; break; case 2: speed = 0xf5; break; default: speed = 0xeb; } err = asus_wmi_evaluate_method3(ASUS_WMI_METHODID_DEVS, asus->kbd_rgb_dev, cmd | (mode << 8) | (r << 16) | (g << 24), b | (speed << 8), NULL); if (err) return err; return count; } static DEVICE_ATTR_WO(kbd_rgb_mode); static DEVICE_STRING_ATTR_RO(kbd_rgb_mode_index, 0444, "cmd mode red green blue speed"); static struct attribute *kbd_rgb_mode_attrs[] = { &dev_attr_kbd_rgb_mode.attr, &dev_attr_kbd_rgb_mode_index.attr.attr, NULL, }; static const struct attribute_group kbd_rgb_mode_group = { .attrs = kbd_rgb_mode_attrs, }; /* TUF Laptop Keyboard RGB State **********************************************/ static ssize_t kbd_rgb_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u32 flags, cmd, boot, awake, sleep, keyboard; int err; if (sscanf(buf, "%d %d %d %d %d", &cmd, &boot, &awake, &sleep, &keyboard) != 5) return -EINVAL; if (cmd) cmd = BIT(2); flags = 0; if (boot) flags |= BIT(1); if (awake) flags |= BIT(3); if (sleep) flags |= BIT(5); if (keyboard) flags |= BIT(7); /* 0xbd is the required default arg0 for the method. Nothing happens otherwise */ err = asus_wmi_evaluate_method3(ASUS_WMI_METHODID_DEVS, ASUS_WMI_DEVID_TUF_RGB_STATE, 0xbd | cmd << 8 | (flags << 16), 0, NULL); if (err) return err; return count; } static DEVICE_ATTR_WO(kbd_rgb_state); static DEVICE_STRING_ATTR_RO(kbd_rgb_state_index, 0444, "cmd boot awake sleep keyboard"); static struct attribute *kbd_rgb_state_attrs[] = { &dev_attr_kbd_rgb_state.attr, &dev_attr_kbd_rgb_state_index.attr.attr, NULL, }; static const struct attribute_group kbd_rgb_state_group = { .attrs = kbd_rgb_state_attrs, }; static const struct attribute_group *kbd_rgb_mode_groups[] = { NULL, NULL, NULL, }; /* Tunable: PPT: Intel=PL1, AMD=SPPT *****************************************/ static ssize_t ppt_pl2_sppt_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int result, err; u32 value; result = kstrtou32(buf, 10, &value); if (result) return result; if (value < PPT_TOTAL_MIN || value > PPT_TOTAL_MAX) return -EINVAL; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PPT_PL2_SPPT, value, &result); if (err) { pr_warn("Failed to set ppt_pl2_sppt: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set ppt_pl2_sppt (result): 0x%x\n", result); return -EIO; } asus->ppt_pl2_sppt = value; sysfs_notify(&asus->platform_device->dev.kobj, NULL, "ppt_pl2_sppt"); return count; } static ssize_t ppt_pl2_sppt_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); return sysfs_emit(buf, "%u\n", asus->ppt_pl2_sppt); } static DEVICE_ATTR_RW(ppt_pl2_sppt); /* Tunable: PPT, Intel=PL1, AMD=SPL ******************************************/ static ssize_t ppt_pl1_spl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int result, err; u32 value; result = kstrtou32(buf, 10, &value); if (result) return result; if (value < PPT_TOTAL_MIN || value > PPT_TOTAL_MAX) return -EINVAL; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PPT_PL1_SPL, value, &result); if (err) { pr_warn("Failed to set ppt_pl1_spl: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set ppt_pl1_spl (result): 0x%x\n", result); return -EIO; } asus->ppt_pl1_spl = value; sysfs_notify(&asus->platform_device->dev.kobj, NULL, "ppt_pl1_spl"); return count; } static ssize_t ppt_pl1_spl_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); return sysfs_emit(buf, "%u\n", asus->ppt_pl1_spl); } static DEVICE_ATTR_RW(ppt_pl1_spl); /* Tunable: PPT APU FPPT ******************************************************/ static ssize_t ppt_fppt_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int result, err; u32 value; result = kstrtou32(buf, 10, &value); if (result) return result; if (value < PPT_TOTAL_MIN || value > PPT_TOTAL_MAX) return -EINVAL; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PPT_FPPT, value, &result); if (err) { pr_warn("Failed to set ppt_fppt: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set ppt_fppt (result): 0x%x\n", result); return -EIO; } asus->ppt_fppt = value; sysfs_notify(&asus->platform_device->dev.kobj, NULL, "ppt_fpu_sppt"); return count; } static ssize_t ppt_fppt_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); return sysfs_emit(buf, "%u\n", asus->ppt_fppt); } static DEVICE_ATTR_RW(ppt_fppt); /* Tunable: PPT APU SPPT *****************************************************/ static ssize_t ppt_apu_sppt_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int result, err; u32 value; result = kstrtou32(buf, 10, &value); if (result) return result; if (value < PPT_CPU_MIN || value > PPT_CPU_MAX) return -EINVAL; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PPT_APU_SPPT, value, &result); if (err) { pr_warn("Failed to set ppt_apu_sppt: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set ppt_apu_sppt (result): 0x%x\n", result); return -EIO; } asus->ppt_apu_sppt = value; sysfs_notify(&asus->platform_device->dev.kobj, NULL, "ppt_apu_sppt"); return count; } static ssize_t ppt_apu_sppt_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); return sysfs_emit(buf, "%u\n", asus->ppt_apu_sppt); } static DEVICE_ATTR_RW(ppt_apu_sppt); /* Tunable: PPT platform SPPT ************************************************/ static ssize_t ppt_platform_sppt_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int result, err; u32 value; result = kstrtou32(buf, 10, &value); if (result) return result; if (value < PPT_CPU_MIN || value > PPT_CPU_MAX) return -EINVAL; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PPT_PLAT_SPPT, value, &result); if (err) { pr_warn("Failed to set ppt_platform_sppt: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set ppt_platform_sppt (result): 0x%x\n", result); return -EIO; } asus->ppt_platform_sppt = value; sysfs_notify(&asus->platform_device->dev.kobj, NULL, "ppt_platform_sppt"); return count; } static ssize_t ppt_platform_sppt_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); return sysfs_emit(buf, "%u\n", asus->ppt_platform_sppt); } static DEVICE_ATTR_RW(ppt_platform_sppt); /* Tunable: NVIDIA dynamic boost *********************************************/ static ssize_t nv_dynamic_boost_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int result, err; u32 value; result = kstrtou32(buf, 10, &value); if (result) return result; if (value < NVIDIA_BOOST_MIN || value > NVIDIA_BOOST_MAX) return -EINVAL; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_NV_DYN_BOOST, value, &result); if (err) { pr_warn("Failed to set nv_dynamic_boost: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set nv_dynamic_boost (result): 0x%x\n", result); return -EIO; } asus->nv_dynamic_boost = value; sysfs_notify(&asus->platform_device->dev.kobj, NULL, "nv_dynamic_boost"); return count; } static ssize_t nv_dynamic_boost_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); return sysfs_emit(buf, "%u\n", asus->nv_dynamic_boost); } static DEVICE_ATTR_RW(nv_dynamic_boost); /* Tunable: NVIDIA temperature target ****************************************/ static ssize_t nv_temp_target_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int result, err; u32 value; result = kstrtou32(buf, 10, &value); if (result) return result; if (value < NVIDIA_TEMP_MIN || value > NVIDIA_TEMP_MAX) return -EINVAL; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_NV_THERM_TARGET, value, &result); if (err) { pr_warn("Failed to set nv_temp_target: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set nv_temp_target (result): 0x%x\n", result); return -EIO; } asus->nv_temp_target = value; sysfs_notify(&asus->platform_device->dev.kobj, NULL, "nv_temp_target"); return count; } static ssize_t nv_temp_target_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); return sysfs_emit(buf, "%u\n", asus->nv_temp_target); } static DEVICE_ATTR_RW(nv_temp_target); /* Ally MCU Powersave ********************************************************/ static ssize_t mcu_powersave_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int result; result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_MCU_POWERSAVE); if (result < 0) return result; return sysfs_emit(buf, "%d\n", result); } static ssize_t mcu_powersave_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int result, err; u32 enable; struct asus_wmi *asus = dev_get_drvdata(dev); result = kstrtou32(buf, 10, &enable); if (result) return result; if (enable > 1) return -EINVAL; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_MCU_POWERSAVE, enable, &result); if (err) { pr_warn("Failed to set MCU powersave: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set MCU powersave (result): 0x%x\n", result); return -EIO; } sysfs_notify(&asus->platform_device->dev.kobj, NULL, "mcu_powersave"); return count; } static DEVICE_ATTR_RW(mcu_powersave); /* Battery ********************************************************************/ /* The battery maximum charging percentage */ static int charge_end_threshold; static ssize_t charge_control_end_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value, ret, rv; ret = kstrtouint(buf, 10, &value); if (ret) return ret; if (value < 0 || value > 100) return -EINVAL; ret = asus_wmi_set_devstate(ASUS_WMI_DEVID_RSOC, value, &rv); if (ret) return ret; if (rv != 1) return -EIO; /* There isn't any method in the DSDT to read the threshold, so we * save the threshold. */ charge_end_threshold = value; return count; } static ssize_t charge_control_end_threshold_show(struct device *device, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", charge_end_threshold); } static DEVICE_ATTR_RW(charge_control_end_threshold); static int asus_wmi_battery_add(struct power_supply *battery, struct acpi_battery_hook *hook) { /* The WMI method does not provide a way to specific a battery, so we * just assume it is the first battery. * Note: On some newer ASUS laptops (Zenbook UM431DA), the primary/first * battery is named BATT. */ if (strcmp(battery->desc->name, "BAT0") != 0 && strcmp(battery->desc->name, "BAT1") != 0 && strcmp(battery->desc->name, "BATC") != 0 && strcmp(battery->desc->name, "BATT") != 0) return -ENODEV; if (device_create_file(&battery->dev, &dev_attr_charge_control_end_threshold)) return -ENODEV; /* The charge threshold is only reset when the system is power cycled, * and we can't get the current threshold so let set it to 100% when * a battery is added. */ asus_wmi_set_devstate(ASUS_WMI_DEVID_RSOC, 100, NULL); charge_end_threshold = 100; return 0; } static int asus_wmi_battery_remove(struct power_supply *battery, struct acpi_battery_hook *hook) { device_remove_file(&battery->dev, &dev_attr_charge_control_end_threshold); return 0; } static struct acpi_battery_hook battery_hook = { .add_battery = asus_wmi_battery_add, .remove_battery = asus_wmi_battery_remove, .name = "ASUS Battery Extension", }; static void asus_wmi_battery_init(struct asus_wmi *asus) { asus->battery_rsoc_available = false; if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_RSOC)) { asus->battery_rsoc_available = true; battery_hook_register(&battery_hook); } } static void asus_wmi_battery_exit(struct asus_wmi *asus) { if (asus->battery_rsoc_available) battery_hook_unregister(&battery_hook); } /* LEDs ***********************************************************************/ /* * These functions actually update the LED's, and are called from a * workqueue. By doing this as separate work rather than when the LED * subsystem asks, we avoid messing with the Asus ACPI stuff during a * potentially bad time, such as a timer interrupt. */ static void tpd_led_update(struct work_struct *work) { int ctrl_param; struct asus_wmi *asus; asus = container_of(work, struct asus_wmi, tpd_led_work); ctrl_param = asus->tpd_led_wk; asus_wmi_set_devstate(ASUS_WMI_DEVID_TOUCHPAD_LED, ctrl_param, NULL); } static void tpd_led_set(struct led_classdev *led_cdev, enum led_brightness value) { struct asus_wmi *asus; asus = container_of(led_cdev, struct asus_wmi, tpd_led); asus->tpd_led_wk = !!value; queue_work(asus->led_workqueue, &asus->tpd_led_work); } static int read_tpd_led_state(struct asus_wmi *asus) { return asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_TOUCHPAD_LED); } static enum led_brightness tpd_led_get(struct led_classdev *led_cdev) { struct asus_wmi *asus; asus = container_of(led_cdev, struct asus_wmi, tpd_led); return read_tpd_led_state(asus); } static void kbd_led_update(struct asus_wmi *asus) { int ctrl_param = 0; ctrl_param = 0x80 | (asus->kbd_led_wk & 0x7F); asus_wmi_set_devstate(ASUS_WMI_DEVID_KBD_BACKLIGHT, ctrl_param, NULL); } static int kbd_led_read(struct asus_wmi *asus, int *level, int *env) { int retval; /* * bits 0-2: level * bit 7: light on/off * bit 8-10: environment (0: dark, 1: normal, 2: light) * bit 17: status unknown */ retval = asus_wmi_get_devstate_bits(asus, ASUS_WMI_DEVID_KBD_BACKLIGHT, 0xFFFF); /* Unknown status is considered as off */ if (retval == 0x8000) retval = 0; if (retval < 0) return retval; if (level) *level = retval & 0x7F; if (env) *env = (retval >> 8) & 0x7F; return 0; } static void do_kbd_led_set(struct led_classdev *led_cdev, int value) { struct asus_wmi *asus; int max_level; asus = container_of(led_cdev, struct asus_wmi, kbd_led); max_level = asus->kbd_led.max_brightness; asus->kbd_led_wk = clamp_val(value, 0, max_level); kbd_led_update(asus); } static void kbd_led_set(struct led_classdev *led_cdev, enum led_brightness value) { /* Prevent disabling keyboard backlight on module unregister */ if (led_cdev->flags & LED_UNREGISTERING) return; do_kbd_led_set(led_cdev, value); } static void kbd_led_set_by_kbd(struct asus_wmi *asus, enum led_brightness value) { struct led_classdev *led_cdev = &asus->kbd_led; do_kbd_led_set(led_cdev, value); led_classdev_notify_brightness_hw_changed(led_cdev, asus->kbd_led_wk); } static enum led_brightness kbd_led_get(struct led_classdev *led_cdev) { struct asus_wmi *asus; int retval, value; asus = container_of(led_cdev, struct asus_wmi, kbd_led); retval = kbd_led_read(asus, &value, NULL); if (retval < 0) return retval; return value; } static int wlan_led_unknown_state(struct asus_wmi *asus) { u32 result; asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_WIRELESS_LED, &result); return result & ASUS_WMI_DSTS_UNKNOWN_BIT; } static void wlan_led_update(struct work_struct *work) { int ctrl_param; struct asus_wmi *asus; asus = container_of(work, struct asus_wmi, wlan_led_work); ctrl_param = asus->wlan_led_wk; asus_wmi_set_devstate(ASUS_WMI_DEVID_WIRELESS_LED, ctrl_param, NULL); } static void wlan_led_set(struct led_classdev *led_cdev, enum led_brightness value) { struct asus_wmi *asus; asus = container_of(led_cdev, struct asus_wmi, wlan_led); asus->wlan_led_wk = !!value; queue_work(asus->led_workqueue, &asus->wlan_led_work); } static enum led_brightness wlan_led_get(struct led_classdev *led_cdev) { struct asus_wmi *asus; u32 result; asus = container_of(led_cdev, struct asus_wmi, wlan_led); asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_WIRELESS_LED, &result); return result & ASUS_WMI_DSTS_BRIGHTNESS_MASK; } static void lightbar_led_update(struct work_struct *work) { struct asus_wmi *asus; int ctrl_param; asus = container_of(work, struct asus_wmi, lightbar_led_work); ctrl_param = asus->lightbar_led_wk; asus_wmi_set_devstate(ASUS_WMI_DEVID_LIGHTBAR, ctrl_param, NULL); } static void lightbar_led_set(struct led_classdev *led_cdev, enum led_brightness value) { struct asus_wmi *asus; asus = container_of(led_cdev, struct asus_wmi, lightbar_led); asus->lightbar_led_wk = !!value; queue_work(asus->led_workqueue, &asus->lightbar_led_work); } static enum led_brightness lightbar_led_get(struct led_classdev *led_cdev) { struct asus_wmi *asus; u32 result; asus = container_of(led_cdev, struct asus_wmi, lightbar_led); asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_LIGHTBAR, &result); return result & ASUS_WMI_DSTS_LIGHTBAR_MASK; } static int micmute_led_set(struct led_classdev *led_cdev, enum led_brightness brightness) { int state = brightness != LED_OFF; int err; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_MICMUTE_LED, state, NULL); return err < 0 ? err : 0; } static void asus_wmi_led_exit(struct asus_wmi *asus) { led_classdev_unregister(&asus->kbd_led); led_classdev_unregister(&asus->tpd_led); led_classdev_unregister(&asus->wlan_led); led_classdev_unregister(&asus->lightbar_led); led_classdev_unregister(&asus->micmute_led); if (asus->led_workqueue) destroy_workqueue(asus->led_workqueue); } static int asus_wmi_led_init(struct asus_wmi *asus) { int rv = 0, num_rgb_groups = 0, led_val; if (asus->kbd_rgb_dev) kbd_rgb_mode_groups[num_rgb_groups++] = &kbd_rgb_mode_group; if (asus->kbd_rgb_state_available) kbd_rgb_mode_groups[num_rgb_groups++] = &kbd_rgb_state_group; asus->led_workqueue = create_singlethread_workqueue("led_workqueue"); if (!asus->led_workqueue) return -ENOMEM; if (read_tpd_led_state(asus) >= 0) { INIT_WORK(&asus->tpd_led_work, tpd_led_update); asus->tpd_led.name = "asus::touchpad"; asus->tpd_led.brightness_set = tpd_led_set; asus->tpd_led.brightness_get = tpd_led_get; asus->tpd_led.max_brightness = 1; rv = led_classdev_register(&asus->platform_device->dev, &asus->tpd_led); if (rv) goto error; } if (!kbd_led_read(asus, &led_val, NULL)) { asus->kbd_led_wk = led_val; asus->kbd_led.name = "asus::kbd_backlight"; asus->kbd_led.flags = LED_BRIGHT_HW_CHANGED; asus->kbd_led.brightness_set = kbd_led_set; asus->kbd_led.brightness_get = kbd_led_get; asus->kbd_led.max_brightness = 3; if (num_rgb_groups != 0) asus->kbd_led.groups = kbd_rgb_mode_groups; rv = led_classdev_register(&asus->platform_device->dev, &asus->kbd_led); if (rv) goto error; } if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_WIRELESS_LED) && (asus->driver->quirks->wapf > 0)) { INIT_WORK(&asus->wlan_led_work, wlan_led_update); asus->wlan_led.name = "asus::wlan"; asus->wlan_led.brightness_set = wlan_led_set; if (!wlan_led_unknown_state(asus)) asus->wlan_led.brightness_get = wlan_led_get; asus->wlan_led.flags = LED_CORE_SUSPENDRESUME; asus->wlan_led.max_brightness = 1; asus->wlan_led.default_trigger = "asus-wlan"; rv = led_classdev_register(&asus->platform_device->dev, &asus->wlan_led); if (rv) goto error; } if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_LIGHTBAR)) { INIT_WORK(&asus->lightbar_led_work, lightbar_led_update); asus->lightbar_led.name = "asus::lightbar"; asus->lightbar_led.brightness_set = lightbar_led_set; asus->lightbar_led.brightness_get = lightbar_led_get; asus->lightbar_led.max_brightness = 1; rv = led_classdev_register(&asus->platform_device->dev, &asus->lightbar_led); } if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_MICMUTE_LED)) { asus->micmute_led.name = "platform::micmute"; asus->micmute_led.max_brightness = 1; asus->micmute_led.brightness_set_blocking = micmute_led_set; asus->micmute_led.default_trigger = "audio-micmute"; rv = led_classdev_register(&asus->platform_device->dev, &asus->micmute_led); if (rv) goto error; } error: if (rv) asus_wmi_led_exit(asus); return rv; } /* RF *************************************************************************/ /* * PCI hotplug (for wlan rfkill) */ static bool asus_wlan_rfkill_blocked(struct asus_wmi *asus) { int result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_WLAN); if (result < 0) return false; return !result; } static void asus_rfkill_hotplug(struct asus_wmi *asus) { struct pci_dev *dev; struct pci_bus *bus; bool blocked; bool absent; u32 l; mutex_lock(&asus->wmi_lock); blocked = asus_wlan_rfkill_blocked(asus); mutex_unlock(&asus->wmi_lock); mutex_lock(&asus->hotplug_lock); pci_lock_rescan_remove(); if (asus->wlan.rfkill) rfkill_set_sw_state(asus->wlan.rfkill, blocked); if (asus->hotplug_slot.ops) { bus = pci_find_bus(0, 1); if (!bus) { pr_warn("Unable to find PCI bus 1?\n"); goto out_unlock; } if (pci_bus_read_config_dword(bus, 0, PCI_VENDOR_ID, &l)) { pr_err("Unable to read PCI config space?\n"); goto out_unlock; } absent = (l == 0xffffffff); if (blocked != absent) { pr_warn("BIOS says wireless lan is %s, but the pci device is %s\n", blocked ? "blocked" : "unblocked", absent ? "absent" : "present"); pr_warn("skipped wireless hotplug as probably inappropriate for this model\n"); goto out_unlock; } if (!blocked) { dev = pci_get_slot(bus, 0); if (dev) { /* Device already present */ pci_dev_put(dev); goto out_unlock; } dev = pci_scan_single_device(bus, 0); if (dev) { pci_bus_assign_resources(bus); pci_bus_add_device(dev); } } else { dev = pci_get_slot(bus, 0); if (dev) { pci_stop_and_remove_bus_device(dev); pci_dev_put(dev); } } } out_unlock: pci_unlock_rescan_remove(); mutex_unlock(&asus->hotplug_lock); } static void asus_rfkill_notify(acpi_handle handle, u32 event, void *data) { struct asus_wmi *asus = data; if (event != ACPI_NOTIFY_BUS_CHECK) return; /* * We can't call directly asus_rfkill_hotplug because most * of the time WMBC is still being executed and not reetrant. * There is currently no way to tell ACPICA that we want this * method to be serialized, we schedule a asus_rfkill_hotplug * call later, in a safer context. */ queue_work(asus->hotplug_workqueue, &asus->hotplug_work); } static int asus_register_rfkill_notifier(struct asus_wmi *asus, char *node) { acpi_status status; acpi_handle handle; status = acpi_get_handle(NULL, node, &handle); if (ACPI_FAILURE(status)) return -ENODEV; status = acpi_install_notify_handler(handle, ACPI_SYSTEM_NOTIFY, asus_rfkill_notify, asus); if (ACPI_FAILURE(status)) pr_warn("Failed to register notify on %s\n", node); return 0; } static void asus_unregister_rfkill_notifier(struct asus_wmi *asus, char *node) { acpi_status status = AE_OK; acpi_handle handle; status = acpi_get_handle(NULL, node, &handle); if (ACPI_FAILURE(status)) return; status = acpi_remove_notify_handler(handle, ACPI_SYSTEM_NOTIFY, asus_rfkill_notify); if (ACPI_FAILURE(status)) pr_err("Error removing rfkill notify handler %s\n", node); } static int asus_get_adapter_status(struct hotplug_slot *hotplug_slot, u8 *value) { struct asus_wmi *asus = container_of(hotplug_slot, struct asus_wmi, hotplug_slot); int result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_WLAN); if (result < 0) return result; *value = !!result; return 0; } static const struct hotplug_slot_ops asus_hotplug_slot_ops = { .get_adapter_status = asus_get_adapter_status, .get_power_status = asus_get_adapter_status, }; static void asus_hotplug_work(struct work_struct *work) { struct asus_wmi *asus; asus = container_of(work, struct asus_wmi, hotplug_work); asus_rfkill_hotplug(asus); } static int asus_setup_pci_hotplug(struct asus_wmi *asus) { int ret = -ENOMEM; struct pci_bus *bus = pci_find_bus(0, 1); if (!bus) { pr_err("Unable to find wifi PCI bus\n"); return -ENODEV; } asus->hotplug_workqueue = create_singlethread_workqueue("hotplug_workqueue"); if (!asus->hotplug_workqueue) goto error_workqueue; INIT_WORK(&asus->hotplug_work, asus_hotplug_work); asus->hotplug_slot.ops = &asus_hotplug_slot_ops; ret = pci_hp_register(&asus->hotplug_slot, bus, 0, "asus-wifi"); if (ret) { pr_err("Unable to register hotplug slot - %d\n", ret); goto error_register; } return 0; error_register: asus->hotplug_slot.ops = NULL; destroy_workqueue(asus->hotplug_workqueue); error_workqueue: return ret; } /* * Rfkill devices */ static int asus_rfkill_set(void *data, bool blocked) { struct asus_rfkill *priv = data; u32 ctrl_param = !blocked; u32 dev_id = priv->dev_id; /* * If the user bit is set, BIOS can't set and record the wlan status, * it will report the value read from id ASUS_WMI_DEVID_WLAN_LED * while we query the wlan status through WMI(ASUS_WMI_DEVID_WLAN). * So, we have to record wlan status in id ASUS_WMI_DEVID_WLAN_LED * while setting the wlan status through WMI. * This is also the behavior that windows app will do. */ if ((dev_id == ASUS_WMI_DEVID_WLAN) && priv->asus->driver->wlan_ctrl_by_user) dev_id = ASUS_WMI_DEVID_WLAN_LED; return asus_wmi_set_devstate(dev_id, ctrl_param, NULL); } static void asus_rfkill_query(struct rfkill *rfkill, void *data) { struct asus_rfkill *priv = data; int result; result = asus_wmi_get_devstate_simple(priv->asus, priv->dev_id); if (result < 0) return; rfkill_set_sw_state(priv->rfkill, !result); } static int asus_rfkill_wlan_set(void *data, bool blocked) { struct asus_rfkill *priv = data; struct asus_wmi *asus = priv->asus; int ret; /* * This handler is enabled only if hotplug is enabled. * In this case, the asus_wmi_set_devstate() will * trigger a wmi notification and we need to wait * this call to finish before being able to call * any wmi method */ mutex_lock(&asus->wmi_lock); ret = asus_rfkill_set(data, blocked); mutex_unlock(&asus->wmi_lock); return ret; } static const struct rfkill_ops asus_rfkill_wlan_ops = { .set_block = asus_rfkill_wlan_set, .query = asus_rfkill_query, }; static const struct rfkill_ops asus_rfkill_ops = { .set_block = asus_rfkill_set, .query = asus_rfkill_query, }; static int asus_new_rfkill(struct asus_wmi *asus, struct asus_rfkill *arfkill, const char *name, enum rfkill_type type, int dev_id) { int result = asus_wmi_get_devstate_simple(asus, dev_id); struct rfkill **rfkill = &arfkill->rfkill; if (result < 0) return result; arfkill->dev_id = dev_id; arfkill->asus = asus; if (dev_id == ASUS_WMI_DEVID_WLAN && asus->driver->quirks->hotplug_wireless) *rfkill = rfkill_alloc(name, &asus->platform_device->dev, type, &asus_rfkill_wlan_ops, arfkill); else *rfkill = rfkill_alloc(name, &asus->platform_device->dev, type, &asus_rfkill_ops, arfkill); if (!*rfkill) return -EINVAL; if ((dev_id == ASUS_WMI_DEVID_WLAN) && (asus->driver->quirks->wapf > 0)) rfkill_set_led_trigger_name(*rfkill, "asus-wlan"); rfkill_init_sw_state(*rfkill, !result); result = rfkill_register(*rfkill); if (result) { rfkill_destroy(*rfkill); *rfkill = NULL; return result; } return 0; } static void asus_wmi_rfkill_exit(struct asus_wmi *asus) { if (asus->driver->wlan_ctrl_by_user && ashs_present()) return; asus_unregister_rfkill_notifier(asus, "\\_SB.PCI0.P0P5"); asus_unregister_rfkill_notifier(asus, "\\_SB.PCI0.P0P6"); asus_unregister_rfkill_notifier(asus, "\\_SB.PCI0.P0P7"); if (asus->wlan.rfkill) { rfkill_unregister(asus->wlan.rfkill); rfkill_destroy(asus->wlan.rfkill); asus->wlan.rfkill = NULL; } /* * Refresh pci hotplug in case the rfkill state was changed after * asus_unregister_rfkill_notifier() */ asus_rfkill_hotplug(asus); if (asus->hotplug_slot.ops) pci_hp_deregister(&asus->hotplug_slot); if (asus->hotplug_workqueue) destroy_workqueue(asus->hotplug_workqueue); if (asus->bluetooth.rfkill) { rfkill_unregister(asus->bluetooth.rfkill); rfkill_destroy(asus->bluetooth.rfkill); asus->bluetooth.rfkill = NULL; } if (asus->wimax.rfkill) { rfkill_unregister(asus->wimax.rfkill); rfkill_destroy(asus->wimax.rfkill); asus->wimax.rfkill = NULL; } if (asus->wwan3g.rfkill) { rfkill_unregister(asus->wwan3g.rfkill); rfkill_destroy(asus->wwan3g.rfkill); asus->wwan3g.rfkill = NULL; } if (asus->gps.rfkill) { rfkill_unregister(asus->gps.rfkill); rfkill_destroy(asus->gps.rfkill); asus->gps.rfkill = NULL; } if (asus->uwb.rfkill) { rfkill_unregister(asus->uwb.rfkill); rfkill_destroy(asus->uwb.rfkill); asus->uwb.rfkill = NULL; } } static int asus_wmi_rfkill_init(struct asus_wmi *asus) { int result = 0; mutex_init(&asus->hotplug_lock); mutex_init(&asus->wmi_lock); result = asus_new_rfkill(asus, &asus->wlan, "asus-wlan", RFKILL_TYPE_WLAN, ASUS_WMI_DEVID_WLAN); if (result && result != -ENODEV) goto exit; result = asus_new_rfkill(asus, &asus->bluetooth, "asus-bluetooth", RFKILL_TYPE_BLUETOOTH, ASUS_WMI_DEVID_BLUETOOTH); if (result && result != -ENODEV) goto exit; result = asus_new_rfkill(asus, &asus->wimax, "asus-wimax", RFKILL_TYPE_WIMAX, ASUS_WMI_DEVID_WIMAX); if (result && result != -ENODEV) goto exit; result = asus_new_rfkill(asus, &asus->wwan3g, "asus-wwan3g", RFKILL_TYPE_WWAN, ASUS_WMI_DEVID_WWAN3G); if (result && result != -ENODEV) goto exit; result = asus_new_rfkill(asus, &asus->gps, "asus-gps", RFKILL_TYPE_GPS, ASUS_WMI_DEVID_GPS); if (result && result != -ENODEV) goto exit; result = asus_new_rfkill(asus, &asus->uwb, "asus-uwb", RFKILL_TYPE_UWB, ASUS_WMI_DEVID_UWB); if (result && result != -ENODEV) goto exit; if (!asus->driver->quirks->hotplug_wireless) goto exit; result = asus_setup_pci_hotplug(asus); /* * If we get -EBUSY then something else is handling the PCI hotplug - * don't fail in this case */ if (result == -EBUSY) result = 0; asus_register_rfkill_notifier(asus, "\\_SB.PCI0.P0P5"); asus_register_rfkill_notifier(asus, "\\_SB.PCI0.P0P6"); asus_register_rfkill_notifier(asus, "\\_SB.PCI0.P0P7"); /* * Refresh pci hotplug in case the rfkill state was changed during * setup. */ asus_rfkill_hotplug(asus); exit: if (result && result != -ENODEV) asus_wmi_rfkill_exit(asus); if (result == -ENODEV) result = 0; return result; } /* Panel Overdrive ************************************************************/ static ssize_t panel_od_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int result; result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_PANEL_OD); if (result < 0) return result; return sysfs_emit(buf, "%d\n", result); } static ssize_t panel_od_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int result, err; u32 overdrive; struct asus_wmi *asus = dev_get_drvdata(dev); result = kstrtou32(buf, 10, &overdrive); if (result) return result; if (overdrive > 1) return -EINVAL; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PANEL_OD, overdrive, &result); if (err) { pr_warn("Failed to set panel overdrive: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set panel overdrive (result): 0x%x\n", result); return -EIO; } sysfs_notify(&asus->platform_device->dev.kobj, NULL, "panel_od"); return count; } static DEVICE_ATTR_RW(panel_od); /* Bootup sound ***************************************************************/ static ssize_t boot_sound_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int result; result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_BOOT_SOUND); if (result < 0) return result; return sysfs_emit(buf, "%d\n", result); } static ssize_t boot_sound_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int result, err; u32 snd; struct asus_wmi *asus = dev_get_drvdata(dev); result = kstrtou32(buf, 10, &snd); if (result) return result; if (snd > 1) return -EINVAL; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_BOOT_SOUND, snd, &result); if (err) { pr_warn("Failed to set boot sound: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set panel boot sound (result): 0x%x\n", result); return -EIO; } sysfs_notify(&asus->platform_device->dev.kobj, NULL, "boot_sound"); return count; } static DEVICE_ATTR_RW(boot_sound); /* Mini-LED mode **************************************************************/ static ssize_t mini_led_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); u32 value; int err; err = asus_wmi_get_devstate(asus, asus->mini_led_dev_id, &value); if (err < 0) return err; value = value & ASUS_MINI_LED_MODE_MASK; /* * Remap the mode values to match previous generation mini-led. The last gen * WMI 0 == off, while on this version WMI 2 ==off (flipped). */ if (asus->mini_led_dev_id == ASUS_WMI_DEVID_MINI_LED_MODE2) { switch (value) { case ASUS_MINI_LED_2024_WEAK: value = ASUS_MINI_LED_ON; break; case ASUS_MINI_LED_2024_STRONG: value = ASUS_MINI_LED_STRONG_MODE; break; case ASUS_MINI_LED_2024_OFF: value = ASUS_MINI_LED_OFF; break; } } return sysfs_emit(buf, "%d\n", value); } static ssize_t mini_led_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int result, err; u32 mode; struct asus_wmi *asus = dev_get_drvdata(dev); result = kstrtou32(buf, 10, &mode); if (result) return result; if (asus->mini_led_dev_id == ASUS_WMI_DEVID_MINI_LED_MODE && mode > ASUS_MINI_LED_ON) return -EINVAL; if (asus->mini_led_dev_id == ASUS_WMI_DEVID_MINI_LED_MODE2 && mode > ASUS_MINI_LED_STRONG_MODE) return -EINVAL; /* * Remap the mode values so expected behaviour is the same as the last * generation of mini-LED with 0 == off, 1 == on. */ if (asus->mini_led_dev_id == ASUS_WMI_DEVID_MINI_LED_MODE2) { switch (mode) { case ASUS_MINI_LED_OFF: mode = ASUS_MINI_LED_2024_OFF; break; case ASUS_MINI_LED_ON: mode = ASUS_MINI_LED_2024_WEAK; break; case ASUS_MINI_LED_STRONG_MODE: mode = ASUS_MINI_LED_2024_STRONG; break; } } err = asus_wmi_set_devstate(asus->mini_led_dev_id, mode, &result); if (err) { pr_warn("Failed to set mini-LED: %d\n", err); return err; } if (result > 1) { pr_warn("Failed to set mini-LED mode (result): 0x%x\n", result); return -EIO; } sysfs_notify(&asus->platform_device->dev.kobj, NULL, "mini_led_mode"); return count; } static DEVICE_ATTR_RW(mini_led_mode); static ssize_t available_mini_led_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); switch (asus->mini_led_dev_id) { case ASUS_WMI_DEVID_MINI_LED_MODE: return sysfs_emit(buf, "0 1\n"); case ASUS_WMI_DEVID_MINI_LED_MODE2: return sysfs_emit(buf, "0 1 2\n"); } return sysfs_emit(buf, "0\n"); } static DEVICE_ATTR_RO(available_mini_led_mode); /* Quirks *********************************************************************/ static void asus_wmi_set_xusb2pr(struct asus_wmi *asus) { struct pci_dev *xhci_pdev; u32 orig_ports_available; u32 ports_available = asus->driver->quirks->xusb2pr; xhci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNXPOINT_LP_XHCI, NULL); if (!xhci_pdev) return; pci_read_config_dword(xhci_pdev, USB_INTEL_XUSB2PR, &orig_ports_available); pci_write_config_dword(xhci_pdev, USB_INTEL_XUSB2PR, cpu_to_le32(ports_available)); pci_dev_put(xhci_pdev); pr_info("set USB_INTEL_XUSB2PR old: 0x%04x, new: 0x%04x\n", orig_ports_available, ports_available); } /* * Some devices dont support or have borcken get_als method * but still support set method. */ static void asus_wmi_set_als(void) { asus_wmi_set_devstate(ASUS_WMI_DEVID_ALS_ENABLE, 1, NULL); } /* Hwmon device ***************************************************************/ static int asus_agfn_fan_speed_read(struct asus_wmi *asus, int fan, int *speed) { struct agfn_fan_args args = { .agfn.len = sizeof(args), .agfn.mfun = ASUS_FAN_MFUN, .agfn.sfun = ASUS_FAN_SFUN_READ, .fan = fan, .speed = 0, }; struct acpi_buffer input = { (acpi_size) sizeof(args), &args }; int status; if (fan != 1) return -EINVAL; status = asus_wmi_evaluate_method_agfn(input); if (status || args.agfn.err) return -ENXIO; if (speed) *speed = args.speed; return 0; } static int asus_agfn_fan_speed_write(struct asus_wmi *asus, int fan, int *speed) { struct agfn_fan_args args = { .agfn.len = sizeof(args), .agfn.mfun = ASUS_FAN_MFUN, .agfn.sfun = ASUS_FAN_SFUN_WRITE, .fan = fan, .speed = speed ? *speed : 0, }; struct acpi_buffer input = { (acpi_size) sizeof(args), &args }; int status; /* 1: for setting 1st fan's speed 0: setting auto mode */ if (fan != 1 && fan != 0) return -EINVAL; status = asus_wmi_evaluate_method_agfn(input); if (status || args.agfn.err) return -ENXIO; if (speed && fan == 1) asus->agfn_pwm = *speed; return 0; } /* * Check if we can read the speed of one fan. If true we assume we can also * control it. */ static bool asus_wmi_has_agfn_fan(struct asus_wmi *asus) { int status; int speed; u32 value; status = asus_agfn_fan_speed_read(asus, 1, &speed); if (status != 0) return false; status = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_FAN_CTRL, &value); if (status != 0) return false; /* * We need to find a better way, probably using sfun, * bits or spec ... * Currently we disable it if: * - ASUS_WMI_UNSUPPORTED_METHOD is returned * - reverved bits are non-zero * - sfun and presence bit are not set */ return !(value == ASUS_WMI_UNSUPPORTED_METHOD || value & 0xFFF80000 || (!asus->sfun && !(value & ASUS_WMI_DSTS_PRESENCE_BIT))); } static int asus_fan_set_auto(struct asus_wmi *asus) { int status; u32 retval; switch (asus->fan_type) { case FAN_TYPE_SPEC83: status = asus_wmi_set_devstate(ASUS_WMI_DEVID_CPU_FAN_CTRL, 0, &retval); if (status) return status; if (retval != 1) return -EIO; break; case FAN_TYPE_AGFN: status = asus_agfn_fan_speed_write(asus, 0, NULL); if (status) return -ENXIO; break; default: return -ENXIO; } /* * Modern models like the G713 also have GPU fan control (this is not AGFN) */ if (asus->gpu_fan_type == FAN_TYPE_SPEC83) { status = asus_wmi_set_devstate(ASUS_WMI_DEVID_GPU_FAN_CTRL, 0, &retval); if (status) return status; if (retval != 1) return -EIO; } return 0; } static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int err; int value; /* If we already set a value then just return it */ if (asus->agfn_pwm >= 0) return sysfs_emit(buf, "%d\n", asus->agfn_pwm); /* * If we haven't set already set a value through the AGFN interface, * we read a current value through the (now-deprecated) FAN_CTRL device. */ err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_FAN_CTRL, &value); if (err < 0) return err; value &= 0xFF; if (value == 1) /* Low Speed */ value = 85; else if (value == 2) value = 170; else if (value == 3) value = 255; else if (value) { pr_err("Unknown fan speed %#x\n", value); value = -1; } return sysfs_emit(buf, "%d\n", value); } static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int value; int state; int ret; ret = kstrtouint(buf, 10, &value); if (ret) return ret; value = clamp(value, 0, 255); state = asus_agfn_fan_speed_write(asus, 1, &value); if (state) pr_warn("Setting fan speed failed: %d\n", state); else asus->fan_pwm_mode = ASUS_FAN_CTRL_MANUAL; return count; } static ssize_t fan1_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int value; int ret; switch (asus->fan_type) { case FAN_TYPE_SPEC83: ret = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_CPU_FAN_CTRL, &value); if (ret < 0) return ret; value &= 0xffff; break; case FAN_TYPE_AGFN: /* no speed readable on manual mode */ if (asus->fan_pwm_mode == ASUS_FAN_CTRL_MANUAL) return -ENXIO; ret = asus_agfn_fan_speed_read(asus, 1, &value); if (ret) { pr_warn("reading fan speed failed: %d\n", ret); return -ENXIO; } break; default: return -ENXIO; } return sysfs_emit(buf, "%d\n", value < 0 ? -1 : value * 100); } static ssize_t pwm1_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); /* * Just read back the cached pwm mode. * * For the CPU_FAN device, the spec indicates that we should be * able to read the device status and consult bit 19 to see if we * are in Full On or Automatic mode. However, this does not work * in practice on X532FL at least (the bit is always 0) and there's * also nothing in the DSDT to indicate that this behaviour exists. */ return sysfs_emit(buf, "%d\n", asus->fan_pwm_mode); } static ssize_t pwm1_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int status = 0; int state; int value; int ret; u32 retval; ret = kstrtouint(buf, 10, &state); if (ret) return ret; if (asus->fan_type == FAN_TYPE_SPEC83) { switch (state) { /* standard documented hwmon values */ case ASUS_FAN_CTRL_FULLSPEED: value = 1; break; case ASUS_FAN_CTRL_AUTO: value = 0; break; default: return -EINVAL; } ret = asus_wmi_set_devstate(ASUS_WMI_DEVID_CPU_FAN_CTRL, value, &retval); if (ret) return ret; if (retval != 1) return -EIO; } else if (asus->fan_type == FAN_TYPE_AGFN) { switch (state) { case ASUS_FAN_CTRL_MANUAL: break; case ASUS_FAN_CTRL_AUTO: status = asus_fan_set_auto(asus); if (status) return status; break; default: return -EINVAL; } } asus->fan_pwm_mode = state; /* Must set to disabled if mode is toggled */ if (asus->cpu_fan_curve_available) asus->custom_fan_curves[FAN_CURVE_DEV_CPU].enabled = false; if (asus->gpu_fan_curve_available) asus->custom_fan_curves[FAN_CURVE_DEV_GPU].enabled = false; if (asus->mid_fan_curve_available) asus->custom_fan_curves[FAN_CURVE_DEV_MID].enabled = false; return count; } static ssize_t asus_hwmon_temp1(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); u32 value; int err; err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_THERMAL_CTRL, &value); if (err < 0) return err; return sysfs_emit(buf, "%ld\n", deci_kelvin_to_millicelsius(value & 0xFFFF)); } /* GPU fan on modern ROG laptops */ static ssize_t fan2_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int value; int ret; ret = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_GPU_FAN_CTRL, &value); if (ret < 0) return ret; value &= 0xffff; return sysfs_emit(buf, "%d\n", value * 100); } /* Middle/Center fan on modern ROG laptops */ static ssize_t fan3_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); int value; int ret; ret = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_MID_FAN_CTRL, &value); if (ret < 0) return ret; value &= 0xffff; return sysfs_emit(buf, "%d\n", value * 100); } static ssize_t pwm2_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", asus->gpu_fan_pwm_mode); } static ssize_t pwm2_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int state; int value; int ret; u32 retval; ret = kstrtouint(buf, 10, &state); if (ret) return ret; switch (state) { /* standard documented hwmon values */ case ASUS_FAN_CTRL_FULLSPEED: value = 1; break; case ASUS_FAN_CTRL_AUTO: value = 0; break; default: return -EINVAL; } ret = asus_wmi_set_devstate(ASUS_WMI_DEVID_GPU_FAN_CTRL, value, &retval); if (ret) return ret; if (retval != 1) return -EIO; asus->gpu_fan_pwm_mode = state; return count; } static ssize_t pwm3_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", asus->mid_fan_pwm_mode); } static ssize_t pwm3_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); int state; int value; int ret; u32 retval; ret = kstrtouint(buf, 10, &state); if (ret) return ret; switch (state) { /* standard documented hwmon values */ case ASUS_FAN_CTRL_FULLSPEED: value = 1; break; case ASUS_FAN_CTRL_AUTO: value = 0; break; default: return -EINVAL; } ret = asus_wmi_set_devstate(ASUS_WMI_DEVID_MID_FAN_CTRL, value, &retval); if (ret) return ret; if (retval != 1) return -EIO; asus->mid_fan_pwm_mode = state; return count; } /* Fan1 */ static DEVICE_ATTR_RW(pwm1); static DEVICE_ATTR_RW(pwm1_enable); static DEVICE_ATTR_RO(fan1_input); static DEVICE_STRING_ATTR_RO(fan1_label, 0444, ASUS_FAN_DESC); /* Fan2 - GPU fan */ static DEVICE_ATTR_RW(pwm2_enable); static DEVICE_ATTR_RO(fan2_input); static DEVICE_STRING_ATTR_RO(fan2_label, 0444, ASUS_GPU_FAN_DESC); /* Fan3 - Middle/center fan */ static DEVICE_ATTR_RW(pwm3_enable); static DEVICE_ATTR_RO(fan3_input); static DEVICE_STRING_ATTR_RO(fan3_label, 0444, ASUS_MID_FAN_DESC); /* Temperature */ static DEVICE_ATTR(temp1_input, S_IRUGO, asus_hwmon_temp1, NULL); static struct attribute *hwmon_attributes[] = { &dev_attr_pwm1.attr, &dev_attr_pwm1_enable.attr, &dev_attr_pwm2_enable.attr, &dev_attr_pwm3_enable.attr, &dev_attr_fan1_input.attr, &dev_attr_fan1_label.attr.attr, &dev_attr_fan2_input.attr, &dev_attr_fan2_label.attr.attr, &dev_attr_fan3_input.attr, &dev_attr_fan3_label.attr.attr, &dev_attr_temp1_input.attr, NULL }; static umode_t asus_hwmon_sysfs_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct asus_wmi *asus = dev_get_drvdata(dev->parent); u32 value = ASUS_WMI_UNSUPPORTED_METHOD; if (attr == &dev_attr_pwm1.attr) { if (asus->fan_type != FAN_TYPE_AGFN) return 0; } else if (attr == &dev_attr_fan1_input.attr || attr == &dev_attr_fan1_label.attr.attr || attr == &dev_attr_pwm1_enable.attr) { if (asus->fan_type == FAN_TYPE_NONE) return 0; } else if (attr == &dev_attr_fan2_input.attr || attr == &dev_attr_fan2_label.attr.attr || attr == &dev_attr_pwm2_enable.attr) { if (asus->gpu_fan_type == FAN_TYPE_NONE) return 0; } else if (attr == &dev_attr_fan3_input.attr || attr == &dev_attr_fan3_label.attr.attr || attr == &dev_attr_pwm3_enable.attr) { if (asus->mid_fan_type == FAN_TYPE_NONE) return 0; } else if (attr == &dev_attr_temp1_input.attr) { int err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_THERMAL_CTRL, &value); if (err < 0) return 0; /* can't return negative here */ /* * If the temperature value in deci-Kelvin is near the absolute * zero temperature, something is clearly wrong */ if (value == 0 || value == 1) return 0; } return attr->mode; } static const struct attribute_group hwmon_attribute_group = { .is_visible = asus_hwmon_sysfs_is_visible, .attrs = hwmon_attributes }; __ATTRIBUTE_GROUPS(hwmon_attribute); static int asus_wmi_hwmon_init(struct asus_wmi *asus) { struct device *dev = &asus->platform_device->dev; struct device *hwmon; hwmon = devm_hwmon_device_register_with_groups(dev, "asus", asus, hwmon_attribute_groups); if (IS_ERR(hwmon)) { pr_err("Could not register asus hwmon device\n"); return PTR_ERR(hwmon); } return 0; } static int asus_wmi_fan_init(struct asus_wmi *asus) { asus->gpu_fan_type = FAN_TYPE_NONE; asus->mid_fan_type = FAN_TYPE_NONE; asus->fan_type = FAN_TYPE_NONE; asus->agfn_pwm = -1; if (asus->driver->quirks->wmi_ignore_fan) asus->fan_type = FAN_TYPE_NONE; else if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_CPU_FAN_CTRL)) asus->fan_type = FAN_TYPE_SPEC83; else if (asus_wmi_has_agfn_fan(asus)) asus->fan_type = FAN_TYPE_AGFN; /* Modern models like G713 also have GPU fan control */ if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_GPU_FAN_CTRL)) asus->gpu_fan_type = FAN_TYPE_SPEC83; /* Some models also have a center/middle fan */ if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_MID_FAN_CTRL)) asus->mid_fan_type = FAN_TYPE_SPEC83; if (asus->fan_type == FAN_TYPE_NONE) return -ENODEV; asus_fan_set_auto(asus); asus->fan_pwm_mode = ASUS_FAN_CTRL_AUTO; return 0; } /* Fan mode *******************************************************************/ static int fan_boost_mode_check_present(struct asus_wmi *asus) { u32 result; int err; asus->fan_boost_mode_available = false; err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_FAN_BOOST_MODE, &result); if (err) { if (err == -ENODEV) return 0; else return err; } if ((result & ASUS_WMI_DSTS_PRESENCE_BIT) && (result & ASUS_FAN_BOOST_MODES_MASK)) { asus->fan_boost_mode_available = true; asus->fan_boost_mode_mask = result & ASUS_FAN_BOOST_MODES_MASK; } return 0; } static int fan_boost_mode_write(struct asus_wmi *asus) { u32 retval; u8 value; int err; value = asus->fan_boost_mode; pr_info("Set fan boost mode: %u\n", value); err = asus_wmi_set_devstate(ASUS_WMI_DEVID_FAN_BOOST_MODE, value, &retval); sysfs_notify(&asus->platform_device->dev.kobj, NULL, "fan_boost_mode"); if (err) { pr_warn("Failed to set fan boost mode: %d\n", err); return err; } if (retval != 1) { pr_warn("Failed to set fan boost mode (retval): 0x%x\n", retval); return -EIO; } return 0; } static int fan_boost_mode_switch_next(struct asus_wmi *asus) { u8 mask = asus->fan_boost_mode_mask; if (asus->fan_boost_mode == ASUS_FAN_BOOST_MODE_NORMAL) { if (mask & ASUS_FAN_BOOST_MODE_OVERBOOST_MASK) asus->fan_boost_mode = ASUS_FAN_BOOST_MODE_OVERBOOST; else if (mask & ASUS_FAN_BOOST_MODE_SILENT_MASK) asus->fan_boost_mode = ASUS_FAN_BOOST_MODE_SILENT; } else if (asus->fan_boost_mode == ASUS_FAN_BOOST_MODE_OVERBOOST) { if (mask & ASUS_FAN_BOOST_MODE_SILENT_MASK) asus->fan_boost_mode = ASUS_FAN_BOOST_MODE_SILENT; else asus->fan_boost_mode = ASUS_FAN_BOOST_MODE_NORMAL; } else { asus->fan_boost_mode = ASUS_FAN_BOOST_MODE_NORMAL; } return fan_boost_mode_write(asus); } static ssize_t fan_boost_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", asus->fan_boost_mode); } static ssize_t fan_boost_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); u8 mask = asus->fan_boost_mode_mask; u8 new_mode; int result; result = kstrtou8(buf, 10, &new_mode); if (result < 0) { pr_warn("Trying to store invalid value\n"); return result; } if (new_mode == ASUS_FAN_BOOST_MODE_OVERBOOST) { if (!(mask & ASUS_FAN_BOOST_MODE_OVERBOOST_MASK)) return -EINVAL; } else if (new_mode == ASUS_FAN_BOOST_MODE_SILENT) { if (!(mask & ASUS_FAN_BOOST_MODE_SILENT_MASK)) return -EINVAL; } else if (new_mode != ASUS_FAN_BOOST_MODE_NORMAL) { return -EINVAL; } asus->fan_boost_mode = new_mode; fan_boost_mode_write(asus); return count; } // Fan boost mode: 0 - normal, 1 - overboost, 2 - silent static DEVICE_ATTR_RW(fan_boost_mode); /* Custom fan curves **********************************************************/ static void fan_curve_copy_from_buf(struct fan_curve_data *data, u8 *buf) { int i; for (i = 0; i < FAN_CURVE_POINTS; i++) { data->temps[i] = buf[i]; } for (i = 0; i < FAN_CURVE_POINTS; i++) { data->percents[i] = 255 * buf[i + FAN_CURVE_POINTS] / 100; } } static int fan_curve_get_factory_default(struct asus_wmi *asus, u32 fan_dev) { struct fan_curve_data *curves; u8 buf[FAN_CURVE_BUF_LEN]; int err, fan_idx; u8 mode = 0; if (asus->throttle_thermal_policy_available) mode = asus->throttle_thermal_policy_mode; /* DEVID_PU_FAN_CURVE is switched for OVERBOOST vs SILENT */ if (mode == 2) mode = 1; else if (mode == 1) mode = 2; err = asus_wmi_evaluate_method_buf(asus->dsts_id, fan_dev, mode, buf, FAN_CURVE_BUF_LEN); if (err) { pr_warn("%s (0x%08x) failed: %d\n", __func__, fan_dev, err); return err; } fan_idx = FAN_CURVE_DEV_CPU; if (fan_dev == ASUS_WMI_DEVID_GPU_FAN_CURVE) fan_idx = FAN_CURVE_DEV_GPU; if (fan_dev == ASUS_WMI_DEVID_MID_FAN_CURVE) fan_idx = FAN_CURVE_DEV_MID; curves = &asus->custom_fan_curves[fan_idx]; curves->device_id = fan_dev; fan_curve_copy_from_buf(curves, buf); return 0; } /* Check if capability exists, and populate defaults */ static int fan_curve_check_present(struct asus_wmi *asus, bool *available, u32 fan_dev) { int err; *available = false; if (asus->fan_type == FAN_TYPE_NONE) return 0; err = fan_curve_get_factory_default(asus, fan_dev); if (err) { return 0; } *available = true; return 0; } /* Determine which fan the attribute is for if SENSOR_ATTR */ static struct fan_curve_data *fan_curve_attr_select(struct asus_wmi *asus, struct device_attribute *attr) { int index = to_sensor_dev_attr(attr)->index; return &asus->custom_fan_curves[index]; } /* Determine which fan the attribute is for if SENSOR_ATTR_2 */ static struct fan_curve_data *fan_curve_attr_2_select(struct asus_wmi *asus, struct device_attribute *attr) { int nr = to_sensor_dev_attr_2(attr)->nr; return &asus->custom_fan_curves[nr & ~FAN_CURVE_PWM_MASK]; } static ssize_t fan_curve_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *dev_attr = to_sensor_dev_attr_2(attr); struct asus_wmi *asus = dev_get_drvdata(dev); struct fan_curve_data *data; int value, pwm, index; data = fan_curve_attr_2_select(asus, attr); pwm = dev_attr->nr & FAN_CURVE_PWM_MASK; index = dev_attr->index; if (pwm) value = data->percents[index]; else value = data->temps[index]; return sysfs_emit(buf, "%d\n", value); } /* * "fan_dev" is the related WMI method such as ASUS_WMI_DEVID_CPU_FAN_CURVE. */ static int fan_curve_write(struct asus_wmi *asus, struct fan_curve_data *data) { u32 arg1 = 0, arg2 = 0, arg3 = 0, arg4 = 0; u8 *percents = data->percents; u8 *temps = data->temps; int ret, i, shift = 0; if (!data->enabled) return 0; for (i = 0; i < FAN_CURVE_POINTS / 2; i++) { arg1 += (temps[i]) << shift; arg2 += (temps[i + 4]) << shift; /* Scale to percentage for device */ arg3 += (100 * percents[i] / 255) << shift; arg4 += (100 * percents[i + 4] / 255) << shift; shift += 8; } return asus_wmi_evaluate_method5(ASUS_WMI_METHODID_DEVS, data->device_id, arg1, arg2, arg3, arg4, &ret); } static ssize_t fan_curve_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *dev_attr = to_sensor_dev_attr_2(attr); struct asus_wmi *asus = dev_get_drvdata(dev); struct fan_curve_data *data; int err, pwm, index; u8 value; data = fan_curve_attr_2_select(asus, attr); pwm = dev_attr->nr & FAN_CURVE_PWM_MASK; index = dev_attr->index; err = kstrtou8(buf, 10, &value); if (err < 0) return err; if (pwm) data->percents[index] = value; else data->temps[index] = value; /* * Mark as disabled so the user has to explicitly enable to apply a * changed fan curve. This prevents potential lockups from writing out * many changes as one-write-per-change. */ data->enabled = false; return count; } static ssize_t fan_curve_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); struct fan_curve_data *data; int out = 2; data = fan_curve_attr_select(asus, attr); if (data->enabled) out = 1; return sysfs_emit(buf, "%d\n", out); } static ssize_t fan_curve_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); struct fan_curve_data *data; int value, err; data = fan_curve_attr_select(asus, attr); err = kstrtoint(buf, 10, &value); if (err < 0) return err; switch (value) { case 1: data->enabled = true; break; case 2: data->enabled = false; break; /* * Auto + reset the fan curve data to defaults. Make it an explicit * option so that users don't accidentally overwrite a set fan curve. */ case 3: err = fan_curve_get_factory_default(asus, data->device_id); if (err) return err; data->enabled = false; break; default: return -EINVAL; } if (data->enabled) { err = fan_curve_write(asus, data); if (err) return err; } else { /* * For machines with throttle this is the only way to reset fans * to default mode of operation (does not erase curve data). */ if (asus->throttle_thermal_policy_available) { err = throttle_thermal_policy_write(asus); if (err) return err; /* Similar is true for laptops with this fan */ } else if (asus->fan_type == FAN_TYPE_SPEC83) { err = asus_fan_set_auto(asus); if (err) return err; } else { /* Safeguard against fautly ACPI tables */ err = fan_curve_get_factory_default(asus, data->device_id); if (err) return err; err = fan_curve_write(asus, data); if (err) return err; } } return count; } /* CPU */ static SENSOR_DEVICE_ATTR_RW(pwm1_enable, fan_curve_enable, FAN_CURVE_DEV_CPU); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_temp, fan_curve, FAN_CURVE_DEV_CPU, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_temp, fan_curve, FAN_CURVE_DEV_CPU, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point3_temp, fan_curve, FAN_CURVE_DEV_CPU, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point4_temp, fan_curve, FAN_CURVE_DEV_CPU, 3); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point5_temp, fan_curve, FAN_CURVE_DEV_CPU, 4); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point6_temp, fan_curve, FAN_CURVE_DEV_CPU, 5); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point7_temp, fan_curve, FAN_CURVE_DEV_CPU, 6); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point8_temp, fan_curve, FAN_CURVE_DEV_CPU, 7); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_pwm, fan_curve, FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_pwm, fan_curve, FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point3_pwm, fan_curve, FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point4_pwm, fan_curve, FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 3); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point5_pwm, fan_curve, FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 4); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point6_pwm, fan_curve, FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 5); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point7_pwm, fan_curve, FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 6); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point8_pwm, fan_curve, FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 7); /* GPU */ static SENSOR_DEVICE_ATTR_RW(pwm2_enable, fan_curve_enable, FAN_CURVE_DEV_GPU); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_temp, fan_curve, FAN_CURVE_DEV_GPU, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_temp, fan_curve, FAN_CURVE_DEV_GPU, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point3_temp, fan_curve, FAN_CURVE_DEV_GPU, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point4_temp, fan_curve, FAN_CURVE_DEV_GPU, 3); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point5_temp, fan_curve, FAN_CURVE_DEV_GPU, 4); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point6_temp, fan_curve, FAN_CURVE_DEV_GPU, 5); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point7_temp, fan_curve, FAN_CURVE_DEV_GPU, 6); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point8_temp, fan_curve, FAN_CURVE_DEV_GPU, 7); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_pwm, fan_curve, FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_pwm, fan_curve, FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point3_pwm, fan_curve, FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point4_pwm, fan_curve, FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 3); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point5_pwm, fan_curve, FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 4); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point6_pwm, fan_curve, FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 5); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point7_pwm, fan_curve, FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 6); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point8_pwm, fan_curve, FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 7); /* MID */ static SENSOR_DEVICE_ATTR_RW(pwm3_enable, fan_curve_enable, FAN_CURVE_DEV_MID); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_temp, fan_curve, FAN_CURVE_DEV_MID, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_temp, fan_curve, FAN_CURVE_DEV_MID, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point3_temp, fan_curve, FAN_CURVE_DEV_MID, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point4_temp, fan_curve, FAN_CURVE_DEV_MID, 3); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point5_temp, fan_curve, FAN_CURVE_DEV_MID, 4); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point6_temp, fan_curve, FAN_CURVE_DEV_MID, 5); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point7_temp, fan_curve, FAN_CURVE_DEV_MID, 6); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point8_temp, fan_curve, FAN_CURVE_DEV_MID, 7); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_pwm, fan_curve, FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_pwm, fan_curve, FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 1); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point3_pwm, fan_curve, FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 2); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point4_pwm, fan_curve, FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 3); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point5_pwm, fan_curve, FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 4); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point6_pwm, fan_curve, FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 5); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point7_pwm, fan_curve, FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 6); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point8_pwm, fan_curve, FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 7); static struct attribute *asus_fan_curve_attr[] = { /* CPU */ &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point5_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point6_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point7_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point8_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point4_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point5_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point6_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point7_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point8_pwm.dev_attr.attr, /* GPU */ &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point3_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point4_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point5_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point6_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point7_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point8_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point3_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point4_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point5_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point6_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point7_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point8_pwm.dev_attr.attr, /* MID */ &sensor_dev_attr_pwm3_enable.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point3_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point4_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point5_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point6_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point7_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point8_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point3_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point4_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point5_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point6_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point7_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point8_pwm.dev_attr.attr, NULL }; static umode_t asus_fan_curve_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct asus_wmi *asus = dev_get_drvdata(dev->parent); /* * Check the char instead of casting attr as there are two attr types * involved here (attr1 and attr2) */ if (asus->cpu_fan_curve_available && attr->name[3] == '1') return 0644; if (asus->gpu_fan_curve_available && attr->name[3] == '2') return 0644; if (asus->mid_fan_curve_available && attr->name[3] == '3') return 0644; return 0; } static const struct attribute_group asus_fan_curve_attr_group = { .is_visible = asus_fan_curve_is_visible, .attrs = asus_fan_curve_attr, }; __ATTRIBUTE_GROUPS(asus_fan_curve_attr); /* * Must be initialised after throttle_thermal_policy_check_present() as * we check the status of throttle_thermal_policy_available during init. */ static int asus_wmi_custom_fan_curve_init(struct asus_wmi *asus) { struct device *dev = &asus->platform_device->dev; struct device *hwmon; int err; err = fan_curve_check_present(asus, &asus->cpu_fan_curve_available, ASUS_WMI_DEVID_CPU_FAN_CURVE); if (err) return err; err = fan_curve_check_present(asus, &asus->gpu_fan_curve_available, ASUS_WMI_DEVID_GPU_FAN_CURVE); if (err) return err; err = fan_curve_check_present(asus, &asus->mid_fan_curve_available, ASUS_WMI_DEVID_MID_FAN_CURVE); if (err) return err; if (!asus->cpu_fan_curve_available && !asus->gpu_fan_curve_available && !asus->mid_fan_curve_available) return 0; hwmon = devm_hwmon_device_register_with_groups( dev, "asus_custom_fan_curve", asus, asus_fan_curve_attr_groups); if (IS_ERR(hwmon)) { dev_err(dev, "Could not register asus_custom_fan_curve device\n"); return PTR_ERR(hwmon); } return 0; } /* Throttle thermal policy ****************************************************/ static int throttle_thermal_policy_check_present(struct asus_wmi *asus) { u32 result; int err; asus->throttle_thermal_policy_available = false; err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_THROTTLE_THERMAL_POLICY, &result); if (err) { if (err == -ENODEV) return 0; return err; } if (result & ASUS_WMI_DSTS_PRESENCE_BIT) asus->throttle_thermal_policy_available = true; return 0; } static int throttle_thermal_policy_write(struct asus_wmi *asus) { int err; u8 value; u32 retval; value = asus->throttle_thermal_policy_mode; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_THROTTLE_THERMAL_POLICY, value, &retval); sysfs_notify(&asus->platform_device->dev.kobj, NULL, "throttle_thermal_policy"); if (err) { pr_warn("Failed to set throttle thermal policy: %d\n", err); return err; } if (retval != 1) { pr_warn("Failed to set throttle thermal policy (retval): 0x%x\n", retval); return -EIO; } /* Must set to disabled if mode is toggled */ if (asus->cpu_fan_curve_available) asus->custom_fan_curves[FAN_CURVE_DEV_CPU].enabled = false; if (asus->gpu_fan_curve_available) asus->custom_fan_curves[FAN_CURVE_DEV_GPU].enabled = false; if (asus->mid_fan_curve_available) asus->custom_fan_curves[FAN_CURVE_DEV_MID].enabled = false; return 0; } static int throttle_thermal_policy_set_default(struct asus_wmi *asus) { if (!asus->throttle_thermal_policy_available) return 0; asus->throttle_thermal_policy_mode = ASUS_THROTTLE_THERMAL_POLICY_DEFAULT; return throttle_thermal_policy_write(asus); } static int throttle_thermal_policy_switch_next(struct asus_wmi *asus) { u8 new_mode = asus->throttle_thermal_policy_mode + 1; int err; if (new_mode > ASUS_THROTTLE_THERMAL_POLICY_SILENT) new_mode = ASUS_THROTTLE_THERMAL_POLICY_DEFAULT; asus->throttle_thermal_policy_mode = new_mode; err = throttle_thermal_policy_write(asus); if (err) return err; /* * Ensure that platform_profile updates userspace with the change to ensure * that platform_profile and throttle_thermal_policy_mode are in sync. */ platform_profile_notify(); return 0; } static ssize_t throttle_thermal_policy_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asus_wmi *asus = dev_get_drvdata(dev); u8 mode = asus->throttle_thermal_policy_mode; return sysfs_emit(buf, "%d\n", mode); } static ssize_t throttle_thermal_policy_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asus_wmi *asus = dev_get_drvdata(dev); u8 new_mode; int result; int err; result = kstrtou8(buf, 10, &new_mode); if (result < 0) return result; if (new_mode > ASUS_THROTTLE_THERMAL_POLICY_SILENT) return -EINVAL; asus->throttle_thermal_policy_mode = new_mode; err = throttle_thermal_policy_write(asus); if (err) return err; /* * Ensure that platform_profile updates userspace with the change to ensure * that platform_profile and throttle_thermal_policy_mode are in sync. */ platform_profile_notify(); return count; } // Throttle thermal policy: 0 - default, 1 - overboost, 2 - silent static DEVICE_ATTR_RW(throttle_thermal_policy); /* Platform profile ***********************************************************/ static int asus_wmi_platform_profile_get(struct platform_profile_handler *pprof, enum platform_profile_option *profile) { struct asus_wmi *asus; int tp; asus = container_of(pprof, struct asus_wmi, platform_profile_handler); tp = asus->throttle_thermal_policy_mode; switch (tp) { case ASUS_THROTTLE_THERMAL_POLICY_DEFAULT: *profile = PLATFORM_PROFILE_BALANCED; break; case ASUS_THROTTLE_THERMAL_POLICY_OVERBOOST: *profile = PLATFORM_PROFILE_PERFORMANCE; break; case ASUS_THROTTLE_THERMAL_POLICY_SILENT: *profile = PLATFORM_PROFILE_QUIET; break; default: return -EINVAL; } return 0; } static int asus_wmi_platform_profile_set(struct platform_profile_handler *pprof, enum platform_profile_option profile) { struct asus_wmi *asus; int tp; asus = container_of(pprof, struct asus_wmi, platform_profile_handler); switch (profile) { case PLATFORM_PROFILE_PERFORMANCE: tp = ASUS_THROTTLE_THERMAL_POLICY_OVERBOOST; break; case PLATFORM_PROFILE_BALANCED: tp = ASUS_THROTTLE_THERMAL_POLICY_DEFAULT; break; case PLATFORM_PROFILE_QUIET: tp = ASUS_THROTTLE_THERMAL_POLICY_SILENT; break; default: return -EOPNOTSUPP; } asus->throttle_thermal_policy_mode = tp; return throttle_thermal_policy_write(asus); } static int platform_profile_setup(struct asus_wmi *asus) { struct device *dev = &asus->platform_device->dev; int err; /* * Not an error if a component platform_profile relies on is unavailable * so early return, skipping the setup of platform_profile. */ if (!asus->throttle_thermal_policy_available) return 0; dev_info(dev, "Using throttle_thermal_policy for platform_profile support\n"); asus->platform_profile_handler.profile_get = asus_wmi_platform_profile_get; asus->platform_profile_handler.profile_set = asus_wmi_platform_profile_set; set_bit(PLATFORM_PROFILE_QUIET, asus->platform_profile_handler.choices); set_bit(PLATFORM_PROFILE_BALANCED, asus->platform_profile_handler.choices); set_bit(PLATFORM_PROFILE_PERFORMANCE, asus->platform_profile_handler.choices); err = platform_profile_register(&asus->platform_profile_handler); if (err) return err; asus->platform_profile_support = true; return 0; } /* Backlight ******************************************************************/ static int read_backlight_power(struct asus_wmi *asus) { int ret; if (asus->driver->quirks->store_backlight_power) ret = !asus->driver->panel_power; else ret = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_BACKLIGHT); if (ret < 0) return ret; return ret ? FB_BLANK_UNBLANK : FB_BLANK_POWERDOWN; } static int read_brightness_max(struct asus_wmi *asus) { u32 retval; int err; err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_BRIGHTNESS, &retval); if (err < 0) return err; retval = retval & ASUS_WMI_DSTS_MAX_BRIGTH_MASK; retval >>= 8; if (!retval) return -ENODEV; return retval; } static int read_brightness(struct backlight_device *bd) { struct asus_wmi *asus = bl_get_data(bd); u32 retval; int err; err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_BRIGHTNESS, &retval); if (err < 0) return err; return retval & ASUS_WMI_DSTS_BRIGHTNESS_MASK; } static u32 get_scalar_command(struct backlight_device *bd) { struct asus_wmi *asus = bl_get_data(bd); u32 ctrl_param = 0; if ((asus->driver->brightness < bd->props.brightness) || bd->props.brightness == bd->props.max_brightness) ctrl_param = 0x00008001; else if ((asus->driver->brightness > bd->props.brightness) || bd->props.brightness == 0) ctrl_param = 0x00008000; asus->driver->brightness = bd->props.brightness; return ctrl_param; } static int update_bl_status(struct backlight_device *bd) { struct asus_wmi *asus = bl_get_data(bd); u32 ctrl_param; int power, err = 0; power = read_backlight_power(asus); if (power != -ENODEV && bd->props.power != power) { ctrl_param = !!(bd->props.power == FB_BLANK_UNBLANK); err = asus_wmi_set_devstate(ASUS_WMI_DEVID_BACKLIGHT, ctrl_param, NULL); if (asus->driver->quirks->store_backlight_power) asus->driver->panel_power = bd->props.power; /* When using scalar brightness, updating the brightness * will mess with the backlight power */ if (asus->driver->quirks->scalar_panel_brightness) return err; } if (asus->driver->quirks->scalar_panel_brightness) ctrl_param = get_scalar_command(bd); else ctrl_param = bd->props.brightness; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_BRIGHTNESS, ctrl_param, NULL); return err; } static const struct backlight_ops asus_wmi_bl_ops = { .get_brightness = read_brightness, .update_status = update_bl_status, }; static int asus_wmi_backlight_notify(struct asus_wmi *asus, int code) { struct backlight_device *bd = asus->backlight_device; int old = bd->props.brightness; int new = old; if (code >= NOTIFY_BRNUP_MIN && code <= NOTIFY_BRNUP_MAX) new = code - NOTIFY_BRNUP_MIN + 1; else if (code >= NOTIFY_BRNDOWN_MIN && code <= NOTIFY_BRNDOWN_MAX) new = code - NOTIFY_BRNDOWN_MIN; bd->props.brightness = new; backlight_update_status(bd); backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY); return old; } static int asus_wmi_backlight_init(struct asus_wmi *asus) { struct backlight_device *bd; struct backlight_properties props; int max; int power; max = read_brightness_max(asus); if (max < 0) return max; power = read_backlight_power(asus); if (power == -ENODEV) power = FB_BLANK_UNBLANK; else if (power < 0) return power; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = max; bd = backlight_device_register(asus->driver->name, &asus->platform_device->dev, asus, &asus_wmi_bl_ops, &props); if (IS_ERR(bd)) { pr_err("Could not register backlight device\n"); return PTR_ERR(bd); } asus->backlight_device = bd; if (asus->driver->quirks->store_backlight_power) asus->driver->panel_power = power; bd->props.brightness = read_brightness(bd); bd->props.power = power; backlight_update_status(bd); asus->driver->brightness = bd->props.brightness; return 0; } static void asus_wmi_backlight_exit(struct asus_wmi *asus) { backlight_device_unregister(asus->backlight_device); asus->backlight_device = NULL; } static int is_display_toggle(int code) { /* display toggle keys */ if ((code >= 0x61 && code <= 0x67) || (code >= 0x8c && code <= 0x93) || (code >= 0xa0 && code <= 0xa7) || (code >= 0xd0 && code <= 0xd5)) return 1; return 0; } /* Screenpad backlight *******************************************************/ static int read_screenpad_backlight_power(struct asus_wmi *asus) { int ret; ret = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_SCREENPAD_POWER); if (ret < 0) return ret; /* 1 == powered */ return ret ? FB_BLANK_UNBLANK : FB_BLANK_POWERDOWN; } static int read_screenpad_brightness(struct backlight_device *bd) { struct asus_wmi *asus = bl_get_data(bd); u32 retval; int err; err = read_screenpad_backlight_power(asus); if (err < 0) return err; /* The device brightness can only be read if powered, so return stored */ if (err == FB_BLANK_POWERDOWN) return asus->driver->screenpad_brightness - ASUS_SCREENPAD_BRIGHT_MIN; err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_SCREENPAD_LIGHT, &retval); if (err < 0) return err; return (retval & ASUS_WMI_DSTS_BRIGHTNESS_MASK) - ASUS_SCREENPAD_BRIGHT_MIN; } static int update_screenpad_bl_status(struct backlight_device *bd) { struct asus_wmi *asus = bl_get_data(bd); int power, err = 0; u32 ctrl_param; power = read_screenpad_backlight_power(asus); if (power < 0) return power; if (bd->props.power != power) { if (power != FB_BLANK_UNBLANK) { /* Only brightness > 0 can power it back on */ ctrl_param = asus->driver->screenpad_brightness - ASUS_SCREENPAD_BRIGHT_MIN; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_SCREENPAD_LIGHT, ctrl_param, NULL); } else { err = asus_wmi_set_devstate(ASUS_WMI_DEVID_SCREENPAD_POWER, 0, NULL); } } else if (power == FB_BLANK_UNBLANK) { /* Only set brightness if powered on or we get invalid/unsync state */ ctrl_param = bd->props.brightness + ASUS_SCREENPAD_BRIGHT_MIN; err = asus_wmi_set_devstate(ASUS_WMI_DEVID_SCREENPAD_LIGHT, ctrl_param, NULL); } /* Ensure brightness is stored to turn back on with */ if (err == 0) asus->driver->screenpad_brightness = bd->props.brightness + ASUS_SCREENPAD_BRIGHT_MIN; return err; } static const struct backlight_ops asus_screenpad_bl_ops = { .get_brightness = read_screenpad_brightness, .update_status = update_screenpad_bl_status, .options = BL_CORE_SUSPENDRESUME, }; static int asus_screenpad_init(struct asus_wmi *asus) { struct backlight_device *bd; struct backlight_properties props; int err, power; int brightness = 0; power = read_screenpad_backlight_power(asus); if (power < 0) return power; if (power != FB_BLANK_POWERDOWN) { err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_SCREENPAD_LIGHT, &brightness); if (err < 0) return err; } /* default to an acceptable min brightness on boot if too low */ if (brightness < ASUS_SCREENPAD_BRIGHT_MIN) brightness = ASUS_SCREENPAD_BRIGHT_DEFAULT; memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_RAW; /* ensure this bd is last to be picked */ props.max_brightness = ASUS_SCREENPAD_BRIGHT_MAX - ASUS_SCREENPAD_BRIGHT_MIN; bd = backlight_device_register("asus_screenpad", &asus->platform_device->dev, asus, &asus_screenpad_bl_ops, &props); if (IS_ERR(bd)) { pr_err("Could not register backlight device\n"); return PTR_ERR(bd); } asus->screenpad_backlight_device = bd; asus->driver->screenpad_brightness = brightness; bd->props.brightness = brightness - ASUS_SCREENPAD_BRIGHT_MIN; bd->props.power = power; backlight_update_status(bd); return 0; } static void asus_screenpad_exit(struct asus_wmi *asus) { backlight_device_unregister(asus->screenpad_backlight_device); asus->screenpad_backlight_device = NULL; } /* Fn-lock ********************************************************************/ static bool asus_wmi_has_fnlock_key(struct asus_wmi *asus) { u32 result; asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_FNLOCK, &result); return (result & ASUS_WMI_DSTS_PRESENCE_BIT) && !(result & ASUS_WMI_FNLOCK_BIOS_DISABLED); } static void asus_wmi_fnlock_update(struct asus_wmi *asus) { int mode = asus->fnlock_locked; asus_wmi_set_devstate(ASUS_WMI_DEVID_FNLOCK, mode, NULL); } /* WMI events *****************************************************************/ static int asus_wmi_get_event_code(u32 value) { struct acpi_buffer response = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; acpi_status status; int code; status = wmi_get_event_data(value, &response); if (ACPI_FAILURE(status)) { pr_warn("Failed to get WMI notify code: %s\n", acpi_format_exception(status)); return -EIO; } obj = (union acpi_object *)response.pointer; if (obj && obj->type == ACPI_TYPE_INTEGER) code = (int)(obj->integer.value & WMI_EVENT_MASK); else code = -EIO; kfree(obj); return code; } static void asus_wmi_handle_event_code(int code, struct asus_wmi *asus) { unsigned int key_value = 1; bool autorelease = 1; if (asus->driver->key_filter) { asus->driver->key_filter(asus->driver, &code, &key_value, &autorelease); if (code == ASUS_WMI_KEY_IGNORE) return; } if (acpi_video_get_backlight_type() == acpi_backlight_vendor && code >= NOTIFY_BRNUP_MIN && code <= NOTIFY_BRNDOWN_MAX) { asus_wmi_backlight_notify(asus, code); return; } if (code == NOTIFY_KBD_BRTUP) { kbd_led_set_by_kbd(asus, asus->kbd_led_wk + 1); return; } if (code == NOTIFY_KBD_BRTDWN) { kbd_led_set_by_kbd(asus, asus->kbd_led_wk - 1); return; } if (code == NOTIFY_KBD_BRTTOGGLE) { if (asus->kbd_led_wk == asus->kbd_led.max_brightness) kbd_led_set_by_kbd(asus, 0); else kbd_led_set_by_kbd(asus, asus->kbd_led_wk + 1); return; } if (code == NOTIFY_FNLOCK_TOGGLE) { asus->fnlock_locked = !asus->fnlock_locked; asus_wmi_fnlock_update(asus); return; } if (code == asus->tablet_switch_event_code) { asus_wmi_tablet_mode_get_state(asus); return; } if (code == NOTIFY_KBD_FBM || code == NOTIFY_KBD_TTP) { if (asus->fan_boost_mode_available) fan_boost_mode_switch_next(asus); if (asus->throttle_thermal_policy_available) throttle_thermal_policy_switch_next(asus); return; } if (is_display_toggle(code) && asus->driver->quirks->no_display_toggle) return; if (!sparse_keymap_report_event(asus->inputdev, code, key_value, autorelease)) pr_info("Unknown key code 0x%x\n", code); } static void asus_wmi_notify(u32 value, void *context) { struct asus_wmi *asus = context; int code = asus_wmi_get_event_code(value); if (code < 0) { pr_warn("Failed to get notify code: %d\n", code); return; } asus_wmi_handle_event_code(code, asus); } /* Sysfs **********************************************************************/ static ssize_t store_sys_wmi(struct asus_wmi *asus, int devid, const char *buf, size_t count) { u32 retval; int err, value; value = asus_wmi_get_devstate_simple(asus, devid); if (value < 0) return value; err = kstrtoint(buf, 0, &value); if (err) return err; err = asus_wmi_set_devstate(devid, value, &retval); if (err < 0) return err; return count; } static ssize_t show_sys_wmi(struct asus_wmi *asus, int devid, char *buf) { int value = asus_wmi_get_devstate_simple(asus, devid); if (value < 0) return value; return sysfs_emit(buf, "%d\n", value); } #define ASUS_WMI_CREATE_DEVICE_ATTR(_name, _mode, _cm) \ static ssize_t show_##_name(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct asus_wmi *asus = dev_get_drvdata(dev); \ \ return show_sys_wmi(asus, _cm, buf); \ } \ static ssize_t store_##_name(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ struct asus_wmi *asus = dev_get_drvdata(dev); \ \ return store_sys_wmi(asus, _cm, buf, count); \ } \ static struct device_attribute dev_attr_##_name = { \ .attr = { \ .name = __stringify(_name), \ .mode = _mode }, \ .show = show_##_name, \ .store = store_##_name, \ } ASUS_WMI_CREATE_DEVICE_ATTR(touchpad, 0644, ASUS_WMI_DEVID_TOUCHPAD); ASUS_WMI_CREATE_DEVICE_ATTR(camera, 0644, ASUS_WMI_DEVID_CAMERA); ASUS_WMI_CREATE_DEVICE_ATTR(cardr, 0644, ASUS_WMI_DEVID_CARDREADER); ASUS_WMI_CREATE_DEVICE_ATTR(lid_resume, 0644, ASUS_WMI_DEVID_LID_RESUME); ASUS_WMI_CREATE_DEVICE_ATTR(als_enable, 0644, ASUS_WMI_DEVID_ALS_ENABLE); static ssize_t cpufv_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value, rv; rv = kstrtoint(buf, 0, &value); if (rv) return rv; if (value < 0 || value > 2) return -EINVAL; rv = asus_wmi_evaluate_method(ASUS_WMI_METHODID_CFVS, value, 0, NULL); if (rv < 0) return rv; return count; } static DEVICE_ATTR_WO(cpufv); static struct attribute *platform_attributes[] = { &dev_attr_cpufv.attr, &dev_attr_camera.attr, &dev_attr_cardr.attr, &dev_attr_touchpad.attr, &dev_attr_charge_mode.attr, &dev_attr_egpu_enable.attr, &dev_attr_egpu_connected.attr, &dev_attr_dgpu_disable.attr, &dev_attr_gpu_mux_mode.attr, &dev_attr_lid_resume.attr, &dev_attr_als_enable.attr, &dev_attr_fan_boost_mode.attr, &dev_attr_throttle_thermal_policy.attr, &dev_attr_ppt_pl2_sppt.attr, &dev_attr_ppt_pl1_spl.attr, &dev_attr_ppt_fppt.attr, &dev_attr_ppt_apu_sppt.attr, &dev_attr_ppt_platform_sppt.attr, &dev_attr_nv_dynamic_boost.attr, &dev_attr_nv_temp_target.attr, &dev_attr_mcu_powersave.attr, &dev_attr_boot_sound.attr, &dev_attr_panel_od.attr, &dev_attr_mini_led_mode.attr, &dev_attr_available_mini_led_mode.attr, NULL }; static umode_t asus_sysfs_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct asus_wmi *asus = dev_get_drvdata(dev); bool ok = true; int devid = -1; if (attr == &dev_attr_camera.attr) devid = ASUS_WMI_DEVID_CAMERA; else if (attr == &dev_attr_cardr.attr) devid = ASUS_WMI_DEVID_CARDREADER; else if (attr == &dev_attr_touchpad.attr) devid = ASUS_WMI_DEVID_TOUCHPAD; else if (attr == &dev_attr_lid_resume.attr) devid = ASUS_WMI_DEVID_LID_RESUME; else if (attr == &dev_attr_als_enable.attr) devid = ASUS_WMI_DEVID_ALS_ENABLE; else if (attr == &dev_attr_charge_mode.attr) devid = ASUS_WMI_DEVID_CHARGE_MODE; else if (attr == &dev_attr_egpu_enable.attr) ok = asus->egpu_enable_available; else if (attr == &dev_attr_egpu_connected.attr) devid = ASUS_WMI_DEVID_EGPU_CONNECTED; else if (attr == &dev_attr_dgpu_disable.attr) ok = asus->dgpu_disable_available; else if (attr == &dev_attr_gpu_mux_mode.attr) ok = asus->gpu_mux_dev != 0; else if (attr == &dev_attr_fan_boost_mode.attr) ok = asus->fan_boost_mode_available; else if (attr == &dev_attr_throttle_thermal_policy.attr) ok = asus->throttle_thermal_policy_available; else if (attr == &dev_attr_ppt_pl2_sppt.attr) devid = ASUS_WMI_DEVID_PPT_PL2_SPPT; else if (attr == &dev_attr_ppt_pl1_spl.attr) devid = ASUS_WMI_DEVID_PPT_PL1_SPL; else if (attr == &dev_attr_ppt_fppt.attr) devid = ASUS_WMI_DEVID_PPT_FPPT; else if (attr == &dev_attr_ppt_apu_sppt.attr) devid = ASUS_WMI_DEVID_PPT_APU_SPPT; else if (attr == &dev_attr_ppt_platform_sppt.attr) devid = ASUS_WMI_DEVID_PPT_PLAT_SPPT; else if (attr == &dev_attr_nv_dynamic_boost.attr) devid = ASUS_WMI_DEVID_NV_DYN_BOOST; else if (attr == &dev_attr_nv_temp_target.attr) devid = ASUS_WMI_DEVID_NV_THERM_TARGET; else if (attr == &dev_attr_mcu_powersave.attr) devid = ASUS_WMI_DEVID_MCU_POWERSAVE; else if (attr == &dev_attr_boot_sound.attr) devid = ASUS_WMI_DEVID_BOOT_SOUND; else if (attr == &dev_attr_panel_od.attr) devid = ASUS_WMI_DEVID_PANEL_OD; else if (attr == &dev_attr_mini_led_mode.attr) ok = asus->mini_led_dev_id != 0; else if (attr == &dev_attr_available_mini_led_mode.attr) ok = asus->mini_led_dev_id != 0; if (devid != -1) ok = !(asus_wmi_get_devstate_simple(asus, devid) < 0); return ok ? attr->mode : 0; } static const struct attribute_group platform_attribute_group = { .is_visible = asus_sysfs_is_visible, .attrs = platform_attributes }; static void asus_wmi_sysfs_exit(struct platform_device *device) { sysfs_remove_group(&device->dev.kobj, &platform_attribute_group); } static int asus_wmi_sysfs_init(struct platform_device *device) { return sysfs_create_group(&device->dev.kobj, &platform_attribute_group); } /* Platform device ************************************************************/ static int asus_wmi_platform_init(struct asus_wmi *asus) { struct device *dev = &asus->platform_device->dev; char *wmi_uid; int rv; /* INIT enable hotkeys on some models */ if (!asus_wmi_evaluate_method(ASUS_WMI_METHODID_INIT, 0, 0, &rv)) pr_info("Initialization: %#x\n", rv); /* We don't know yet what to do with this version... */ if (!asus_wmi_evaluate_method(ASUS_WMI_METHODID_SPEC, 0, 0x9, &rv)) { pr_info("BIOS WMI version: %d.%d\n", rv >> 16, rv & 0xFF); asus->spec = rv; } /* * The SFUN method probably allows the original driver to get the list * of features supported by a given model. For now, 0x0100 or 0x0800 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card. * The significance of others is yet to be found. */ if (!asus_wmi_evaluate_method(ASUS_WMI_METHODID_SFUN, 0, 0, &rv)) { pr_info("SFUN value: %#x\n", rv); asus->sfun = rv; } /* * Eee PC and Notebooks seems to have different method_id for DSTS, * but it may also be related to the BIOS's SPEC. * Note, on most Eeepc, there is no way to check if a method exist * or note, while on notebooks, they returns 0xFFFFFFFE on failure, * but once again, SPEC may probably be used for that kind of things. * * Additionally at least TUF Gaming series laptops return nothing for * unknown methods, so the detection in this way is not possible. * * There is strong indication that only ACPI WMI devices that have _UID * equal to "ASUSWMI" use DCTS whereas those with "ATK" use DSTS. */ wmi_uid = wmi_get_acpi_device_uid(ASUS_WMI_MGMT_GUID); if (!wmi_uid) return -ENODEV; if (!strcmp(wmi_uid, ASUS_ACPI_UID_ASUSWMI)) { dev_info(dev, "Detected ASUSWMI, use DCTS\n"); asus->dsts_id = ASUS_WMI_METHODID_DCTS; } else { dev_info(dev, "Detected %s, not ASUSWMI, use DSTS\n", wmi_uid); asus->dsts_id = ASUS_WMI_METHODID_DSTS; } /* CWAP allow to define the behavior of the Fn+F2 key, * this method doesn't seems to be present on Eee PCs */ if (asus->driver->quirks->wapf >= 0) asus_wmi_set_devstate(ASUS_WMI_DEVID_CWAP, asus->driver->quirks->wapf, NULL); return 0; } /* debugfs ********************************************************************/ struct asus_wmi_debugfs_node { struct asus_wmi *asus; char *name; int (*show) (struct seq_file *m, void *data); }; static int show_dsts(struct seq_file *m, void *data) { struct asus_wmi *asus = m->private; int err; u32 retval = -1; err = asus_wmi_get_devstate(asus, asus->debug.dev_id, &retval); if (err < 0) return err; seq_printf(m, "DSTS(%#x) = %#x\n", asus->debug.dev_id, retval); return 0; } static int show_devs(struct seq_file *m, void *data) { struct asus_wmi *asus = m->private; int err; u32 retval = -1; err = asus_wmi_set_devstate(asus->debug.dev_id, asus->debug.ctrl_param, &retval); if (err < 0) return err; seq_printf(m, "DEVS(%#x, %#x) = %#x\n", asus->debug.dev_id, asus->debug.ctrl_param, retval); return 0; } static int show_call(struct seq_file *m, void *data) { struct asus_wmi *asus = m->private; struct bios_args args = { .arg0 = asus->debug.dev_id, .arg1 = asus->debug.ctrl_param, }; struct acpi_buffer input = { (acpi_size) sizeof(args), &args }; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; acpi_status status; status = wmi_evaluate_method(ASUS_WMI_MGMT_GUID, 0, asus->debug.method_id, &input, &output); if (ACPI_FAILURE(status)) return -EIO; obj = (union acpi_object *)output.pointer; if (obj && obj->type == ACPI_TYPE_INTEGER) seq_printf(m, "%#x(%#x, %#x) = %#x\n", asus->debug.method_id, asus->debug.dev_id, asus->debug.ctrl_param, (u32) obj->integer.value); else seq_printf(m, "%#x(%#x, %#x) = t:%d\n", asus->debug.method_id, asus->debug.dev_id, asus->debug.ctrl_param, obj ? obj->type : -1); kfree(obj); return 0; } static struct asus_wmi_debugfs_node asus_wmi_debug_files[] = { {NULL, "devs", show_devs}, {NULL, "dsts", show_dsts}, {NULL, "call", show_call}, }; static int asus_wmi_debugfs_open(struct inode *inode, struct file *file) { struct asus_wmi_debugfs_node *node = inode->i_private; return single_open(file, node->show, node->asus); } static const struct file_operations asus_wmi_debugfs_io_ops = { .owner = THIS_MODULE, .open = asus_wmi_debugfs_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void asus_wmi_debugfs_exit(struct asus_wmi *asus) { debugfs_remove_recursive(asus->debug.root); } static void asus_wmi_debugfs_init(struct asus_wmi *asus) { int i; asus->debug.root = debugfs_create_dir(asus->driver->name, NULL); debugfs_create_x32("method_id", S_IRUGO | S_IWUSR, asus->debug.root, &asus->debug.method_id); debugfs_create_x32("dev_id", S_IRUGO | S_IWUSR, asus->debug.root, &asus->debug.dev_id); debugfs_create_x32("ctrl_param", S_IRUGO | S_IWUSR, asus->debug.root, &asus->debug.ctrl_param); for (i = 0; i < ARRAY_SIZE(asus_wmi_debug_files); i++) { struct asus_wmi_debugfs_node *node = &asus_wmi_debug_files[i]; node->asus = asus; debugfs_create_file(node->name, S_IFREG | S_IRUGO, asus->debug.root, node, &asus_wmi_debugfs_io_ops); } } /* Init / exit ****************************************************************/ static int asus_wmi_add(struct platform_device *pdev) { struct platform_driver *pdrv = to_platform_driver(pdev->dev.driver); struct asus_wmi_driver *wdrv = to_asus_wmi_driver(pdrv); struct asus_wmi *asus; acpi_status status; int err; u32 result; asus = kzalloc(sizeof(struct asus_wmi), GFP_KERNEL); if (!asus) return -ENOMEM; asus->driver = wdrv; asus->platform_device = pdev; wdrv->platform_device = pdev; platform_set_drvdata(asus->platform_device, asus); if (wdrv->detect_quirks) wdrv->detect_quirks(asus->driver); err = asus_wmi_platform_init(asus); if (err) goto fail_platform; /* ensure defaults for tunables */ asus->ppt_pl2_sppt = 5; asus->ppt_pl1_spl = 5; asus->ppt_apu_sppt = 5; asus->ppt_platform_sppt = 5; asus->ppt_fppt = 5; asus->nv_dynamic_boost = 5; asus->nv_temp_target = 75; asus->egpu_enable_available = asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_EGPU); asus->dgpu_disable_available = asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_DGPU); asus->kbd_rgb_state_available = asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_TUF_RGB_STATE); asus->ally_mcu_usb_switch = acpi_has_method(NULL, ASUS_USB0_PWR_EC0_CSEE) && dmi_match(DMI_BOARD_NAME, "RC71L"); if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_MINI_LED_MODE)) asus->mini_led_dev_id = ASUS_WMI_DEVID_MINI_LED_MODE; else if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_MINI_LED_MODE2)) asus->mini_led_dev_id = ASUS_WMI_DEVID_MINI_LED_MODE2; if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_GPU_MUX)) asus->gpu_mux_dev = ASUS_WMI_DEVID_GPU_MUX; else if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_GPU_MUX_VIVO)) asus->gpu_mux_dev = ASUS_WMI_DEVID_GPU_MUX_VIVO; if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_TUF_RGB_MODE)) asus->kbd_rgb_dev = ASUS_WMI_DEVID_TUF_RGB_MODE; else if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_TUF_RGB_MODE2)) asus->kbd_rgb_dev = ASUS_WMI_DEVID_TUF_RGB_MODE2; err = fan_boost_mode_check_present(asus); if (err) goto fail_fan_boost_mode; err = throttle_thermal_policy_check_present(asus); if (err) goto fail_throttle_thermal_policy; else throttle_thermal_policy_set_default(asus); err = platform_profile_setup(asus); if (err) goto fail_platform_profile_setup; err = asus_wmi_sysfs_init(asus->platform_device); if (err) goto fail_sysfs; err = asus_wmi_input_init(asus); if (err) goto fail_input; err = asus_wmi_fan_init(asus); /* probably no problems on error */ err = asus_wmi_hwmon_init(asus); if (err) goto fail_hwmon; err = asus_wmi_custom_fan_curve_init(asus); if (err) goto fail_custom_fan_curve; err = asus_wmi_led_init(asus); if (err) goto fail_leds; asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_WLAN, &result); if (result & (ASUS_WMI_DSTS_PRESENCE_BIT | ASUS_WMI_DSTS_USER_BIT)) asus->driver->wlan_ctrl_by_user = 1; if (!(asus->driver->wlan_ctrl_by_user && ashs_present())) { err = asus_wmi_rfkill_init(asus); if (err) goto fail_rfkill; } if (asus->driver->quirks->wmi_force_als_set) asus_wmi_set_als(); if (asus->driver->quirks->xusb2pr) asus_wmi_set_xusb2pr(asus); if (acpi_video_get_backlight_type() == acpi_backlight_vendor) { err = asus_wmi_backlight_init(asus); if (err && err != -ENODEV) goto fail_backlight; } else if (asus->driver->quirks->wmi_backlight_set_devstate) err = asus_wmi_set_devstate(ASUS_WMI_DEVID_BACKLIGHT, 2, NULL); if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_SCREENPAD_LIGHT)) { err = asus_screenpad_init(asus); if (err && err != -ENODEV) goto fail_screenpad; } if (asus_wmi_has_fnlock_key(asus)) { asus->fnlock_locked = fnlock_default; asus_wmi_fnlock_update(asus); } status = wmi_install_notify_handler(asus->driver->event_guid, asus_wmi_notify, asus); if (ACPI_FAILURE(status)) { pr_err("Unable to register notify handler - %d\n", status); err = -ENODEV; goto fail_wmi_handler; } if (asus->driver->i8042_filter) { err = i8042_install_filter(asus->driver->i8042_filter); if (err) pr_warn("Unable to install key filter - %d\n", err); } asus_wmi_battery_init(asus); asus_wmi_debugfs_init(asus); return 0; fail_wmi_handler: asus_wmi_backlight_exit(asus); fail_backlight: asus_wmi_rfkill_exit(asus); fail_screenpad: asus_screenpad_exit(asus); fail_rfkill: asus_wmi_led_exit(asus); fail_leds: fail_hwmon: asus_wmi_input_exit(asus); fail_input: asus_wmi_sysfs_exit(asus->platform_device); fail_sysfs: fail_throttle_thermal_policy: fail_custom_fan_curve: fail_platform_profile_setup: if (asus->platform_profile_support) platform_profile_remove(); fail_fan_boost_mode: fail_platform: kfree(asus); return err; } static void asus_wmi_remove(struct platform_device *device) { struct asus_wmi *asus; asus = platform_get_drvdata(device); if (asus->driver->i8042_filter) i8042_remove_filter(asus->driver->i8042_filter); wmi_remove_notify_handler(asus->driver->event_guid); asus_wmi_backlight_exit(asus); asus_screenpad_exit(asus); asus_wmi_input_exit(asus); asus_wmi_led_exit(asus); asus_wmi_rfkill_exit(asus); asus_wmi_debugfs_exit(asus); asus_wmi_sysfs_exit(asus->platform_device); asus_fan_set_auto(asus); throttle_thermal_policy_set_default(asus); asus_wmi_battery_exit(asus); if (asus->platform_profile_support) platform_profile_remove(); kfree(asus); } /* Platform driver - hibernate/resume callbacks *******************************/ static int asus_hotk_thaw(struct device *device) { struct asus_wmi *asus = dev_get_drvdata(device); if (asus->wlan.rfkill) { bool wlan; /* * Work around bios bug - acpi _PTS turns off the wireless led * during suspend. Normally it restores it on resume, but * we should kick it ourselves in case hibernation is aborted. */ wlan = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_WLAN); asus_wmi_set_devstate(ASUS_WMI_DEVID_WLAN, wlan, NULL); } return 0; } static int asus_hotk_resume(struct device *device) { struct asus_wmi *asus = dev_get_drvdata(device); if (!IS_ERR_OR_NULL(asus->kbd_led.dev)) kbd_led_update(asus); if (asus_wmi_has_fnlock_key(asus)) asus_wmi_fnlock_update(asus); asus_wmi_tablet_mode_get_state(asus); return 0; } static int asus_hotk_resume_early(struct device *device) { struct asus_wmi *asus = dev_get_drvdata(device); if (asus->ally_mcu_usb_switch) { /* sleep required to prevent USB0 being yanked then reappearing rapidly */ if (ACPI_FAILURE(acpi_execute_simple_method(NULL, ASUS_USB0_PWR_EC0_CSEE, 0xB8))) dev_err(device, "ROG Ally MCU failed to connect USB dev\n"); else msleep(ASUS_USB0_PWR_EC0_CSEE_WAIT); } return 0; } static int asus_hotk_prepare(struct device *device) { struct asus_wmi *asus = dev_get_drvdata(device); if (asus->ally_mcu_usb_switch) { /* sleep required to ensure USB0 is disabled before sleep continues */ if (ACPI_FAILURE(acpi_execute_simple_method(NULL, ASUS_USB0_PWR_EC0_CSEE, 0xB7))) dev_err(device, "ROG Ally MCU failed to disconnect USB dev\n"); else msleep(ASUS_USB0_PWR_EC0_CSEE_WAIT); } return 0; } static int asus_hotk_restore(struct device *device) { struct asus_wmi *asus = dev_get_drvdata(device); int bl; /* Refresh both wlan rfkill state and pci hotplug */ if (asus->wlan.rfkill) asus_rfkill_hotplug(asus); if (asus->bluetooth.rfkill) { bl = !asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_BLUETOOTH); rfkill_set_sw_state(asus->bluetooth.rfkill, bl); } if (asus->wimax.rfkill) { bl = !asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_WIMAX); rfkill_set_sw_state(asus->wimax.rfkill, bl); } if (asus->wwan3g.rfkill) { bl = !asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_WWAN3G); rfkill_set_sw_state(asus->wwan3g.rfkill, bl); } if (asus->gps.rfkill) { bl = !asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_GPS); rfkill_set_sw_state(asus->gps.rfkill, bl); } if (asus->uwb.rfkill) { bl = !asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_UWB); rfkill_set_sw_state(asus->uwb.rfkill, bl); } if (!IS_ERR_OR_NULL(asus->kbd_led.dev)) kbd_led_update(asus); if (asus_wmi_has_fnlock_key(asus)) asus_wmi_fnlock_update(asus); asus_wmi_tablet_mode_get_state(asus); return 0; } static const struct dev_pm_ops asus_pm_ops = { .thaw = asus_hotk_thaw, .restore = asus_hotk_restore, .resume = asus_hotk_resume, .resume_early = asus_hotk_resume_early, .prepare = asus_hotk_prepare, }; /* Registration ***************************************************************/ static int asus_wmi_probe(struct platform_device *pdev) { struct platform_driver *pdrv = to_platform_driver(pdev->dev.driver); struct asus_wmi_driver *wdrv = to_asus_wmi_driver(pdrv); int ret; if (!wmi_has_guid(ASUS_WMI_MGMT_GUID)) { pr_warn("ASUS Management GUID not found\n"); return -ENODEV; } if (wdrv->event_guid && !wmi_has_guid(wdrv->event_guid)) { pr_warn("ASUS Event GUID not found\n"); return -ENODEV; } if (wdrv->probe) { ret = wdrv->probe(pdev); if (ret) return ret; } return asus_wmi_add(pdev); } static bool used; int __init_or_module asus_wmi_register_driver(struct asus_wmi_driver *driver) { struct platform_driver *platform_driver; struct platform_device *platform_device; if (used) return -EBUSY; platform_driver = &driver->platform_driver; platform_driver->remove_new = asus_wmi_remove; platform_driver->driver.owner = driver->owner; platform_driver->driver.name = driver->name; platform_driver->driver.pm = &asus_pm_ops; platform_device = platform_create_bundle(platform_driver, asus_wmi_probe, NULL, 0, NULL, 0); if (IS_ERR(platform_device)) return PTR_ERR(platform_device); used = true; return 0; } EXPORT_SYMBOL_GPL(asus_wmi_register_driver); void asus_wmi_unregister_driver(struct asus_wmi_driver *driver) { platform_device_unregister(driver->platform_device); platform_driver_unregister(&driver->platform_driver); used = false; } EXPORT_SYMBOL_GPL(asus_wmi_unregister_driver); static int __init asus_wmi_init(void) { pr_info("ASUS WMI generic driver loaded\n"); return 0; } static void __exit asus_wmi_exit(void) { pr_info("ASUS WMI generic driver unloaded\n"); } module_init(asus_wmi_init); module_exit(asus_wmi_exit);