// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "checksum.h" #include "compress.h" #include "extents.h" #include "io.h" #include "super-io.h" #include #include #include /* Bounce buffer: */ struct bbuf { void *b; enum { BB_NONE, BB_VMAP, BB_KMALLOC, BB_MEMPOOL, } type; int rw; }; static struct bbuf __bounce_alloc(struct bch_fs *c, unsigned size, int rw) { void *b; BUG_ON(size > c->sb.encoded_extent_max << 9); b = kmalloc(size, GFP_NOIO|__GFP_NOWARN); if (b) return (struct bbuf) { .b = b, .type = BB_KMALLOC, .rw = rw }; b = mempool_alloc(&c->compression_bounce[rw], GFP_NOIO); if (b) return (struct bbuf) { .b = b, .type = BB_MEMPOOL, .rw = rw }; BUG(); } static bool bio_phys_contig(struct bio *bio, struct bvec_iter start) { struct bio_vec bv; struct bvec_iter iter; void *expected_start = NULL; __bio_for_each_bvec(bv, bio, iter, start) { if (expected_start && expected_start != page_address(bv.bv_page) + bv.bv_offset) return false; expected_start = page_address(bv.bv_page) + bv.bv_offset + bv.bv_len; } return true; } static struct bbuf __bio_map_or_bounce(struct bch_fs *c, struct bio *bio, struct bvec_iter start, int rw) { struct bbuf ret; struct bio_vec bv; struct bvec_iter iter; unsigned nr_pages = 0; struct page *stack_pages[16]; struct page **pages = NULL; void *data; BUG_ON(bvec_iter_sectors(start) > c->sb.encoded_extent_max); if (!IS_ENABLED(CONFIG_HIGHMEM) && bio_phys_contig(bio, start)) return (struct bbuf) { .b = page_address(bio_iter_page(bio, start)) + bio_iter_offset(bio, start), .type = BB_NONE, .rw = rw }; /* check if we can map the pages contiguously: */ __bio_for_each_segment(bv, bio, iter, start) { if (iter.bi_size != start.bi_size && bv.bv_offset) goto bounce; if (bv.bv_len < iter.bi_size && bv.bv_offset + bv.bv_len < PAGE_SIZE) goto bounce; nr_pages++; } BUG_ON(DIV_ROUND_UP(start.bi_size, PAGE_SIZE) > nr_pages); pages = nr_pages > ARRAY_SIZE(stack_pages) ? kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOIO) : stack_pages; if (!pages) goto bounce; nr_pages = 0; __bio_for_each_segment(bv, bio, iter, start) pages[nr_pages++] = bv.bv_page; data = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL); if (pages != stack_pages) kfree(pages); if (data) return (struct bbuf) { .b = data + bio_iter_offset(bio, start), .type = BB_VMAP, .rw = rw }; bounce: ret = __bounce_alloc(c, start.bi_size, rw); if (rw == READ) memcpy_from_bio(ret.b, bio, start); return ret; } static struct bbuf bio_map_or_bounce(struct bch_fs *c, struct bio *bio, int rw) { return __bio_map_or_bounce(c, bio, bio->bi_iter, rw); } static void bio_unmap_or_unbounce(struct bch_fs *c, struct bbuf buf) { switch (buf.type) { case BB_NONE: break; case BB_VMAP: vunmap((void *) ((unsigned long) buf.b & PAGE_MASK)); break; case BB_KMALLOC: kfree(buf.b); break; case BB_MEMPOOL: mempool_free(buf.b, &c->compression_bounce[buf.rw]); break; } } static inline void zlib_set_workspace(z_stream *strm, void *workspace) { #ifdef __KERNEL__ strm->workspace = workspace; #endif } static int __bio_uncompress(struct bch_fs *c, struct bio *src, void *dst_data, struct bch_extent_crc_unpacked crc) { struct bbuf src_data = { NULL }; size_t src_len = src->bi_iter.bi_size; size_t dst_len = crc.uncompressed_size << 9; void *workspace; int ret; src_data = bio_map_or_bounce(c, src, READ); switch (crc.compression_type) { case BCH_COMPRESSION_TYPE_lz4_old: case BCH_COMPRESSION_TYPE_lz4: ret = LZ4_decompress_safe_partial(src_data.b, dst_data, src_len, dst_len, dst_len); if (ret != dst_len) goto err; break; case BCH_COMPRESSION_TYPE_gzip: { z_stream strm = { .next_in = src_data.b, .avail_in = src_len, .next_out = dst_data, .avail_out = dst_len, }; workspace = mempool_alloc(&c->decompress_workspace, GFP_NOIO); zlib_set_workspace(&strm, workspace); zlib_inflateInit2(&strm, -MAX_WBITS); ret = zlib_inflate(&strm, Z_FINISH); mempool_free(workspace, &c->decompress_workspace); if (ret != Z_STREAM_END) goto err; break; } case BCH_COMPRESSION_TYPE_zstd: { ZSTD_DCtx *ctx; size_t real_src_len = le32_to_cpup(src_data.b); if (real_src_len > src_len - 4) goto err; workspace = mempool_alloc(&c->decompress_workspace, GFP_NOIO); ctx = zstd_init_dctx(workspace, zstd_dctx_workspace_bound()); ret = zstd_decompress_dctx(ctx, dst_data, dst_len, src_data.b + 4, real_src_len); mempool_free(workspace, &c->decompress_workspace); if (ret != dst_len) goto err; break; } default: BUG(); } ret = 0; out: bio_unmap_or_unbounce(c, src_data); return ret; err: ret = -EIO; goto out; } int bch2_bio_uncompress_inplace(struct bch_fs *c, struct bio *bio, struct bch_extent_crc_unpacked *crc) { struct bbuf data = { NULL }; size_t dst_len = crc->uncompressed_size << 9; /* bio must own its pages: */ BUG_ON(!bio->bi_vcnt); BUG_ON(DIV_ROUND_UP(crc->live_size, PAGE_SECTORS) > bio->bi_max_vecs); if (crc->uncompressed_size > c->sb.encoded_extent_max || crc->compressed_size > c->sb.encoded_extent_max) { bch_err(c, "error rewriting existing data: extent too big"); return -EIO; } data = __bounce_alloc(c, dst_len, WRITE); if (__bio_uncompress(c, bio, data.b, *crc)) { bch_err(c, "error rewriting existing data: decompression error"); bio_unmap_or_unbounce(c, data); return -EIO; } /* * XXX: don't have a good way to assert that the bio was allocated with * enough space, we depend on bch2_move_extent doing the right thing */ bio->bi_iter.bi_size = crc->live_size << 9; memcpy_to_bio(bio, bio->bi_iter, data.b + (crc->offset << 9)); crc->csum_type = 0; crc->compression_type = 0; crc->compressed_size = crc->live_size; crc->uncompressed_size = crc->live_size; crc->offset = 0; crc->csum = (struct bch_csum) { 0, 0 }; bio_unmap_or_unbounce(c, data); return 0; } int bch2_bio_uncompress(struct bch_fs *c, struct bio *src, struct bio *dst, struct bvec_iter dst_iter, struct bch_extent_crc_unpacked crc) { struct bbuf dst_data = { NULL }; size_t dst_len = crc.uncompressed_size << 9; int ret = -ENOMEM; if (crc.uncompressed_size > c->sb.encoded_extent_max || crc.compressed_size > c->sb.encoded_extent_max) return -EIO; dst_data = dst_len == dst_iter.bi_size ? __bio_map_or_bounce(c, dst, dst_iter, WRITE) : __bounce_alloc(c, dst_len, WRITE); ret = __bio_uncompress(c, src, dst_data.b, crc); if (ret) goto err; if (dst_data.type != BB_NONE && dst_data.type != BB_VMAP) memcpy_to_bio(dst, dst_iter, dst_data.b + (crc.offset << 9)); err: bio_unmap_or_unbounce(c, dst_data); return ret; } static int attempt_compress(struct bch_fs *c, void *workspace, void *dst, size_t dst_len, void *src, size_t src_len, enum bch_compression_type compression_type) { switch (compression_type) { case BCH_COMPRESSION_TYPE_lz4: { int len = src_len; int ret = LZ4_compress_destSize( src, dst, &len, dst_len, workspace); if (len < src_len) return -len; return ret; } case BCH_COMPRESSION_TYPE_gzip: { z_stream strm = { .next_in = src, .avail_in = src_len, .next_out = dst, .avail_out = dst_len, }; zlib_set_workspace(&strm, workspace); zlib_deflateInit2(&strm, Z_DEFAULT_COMPRESSION, Z_DEFLATED, -MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY); if (zlib_deflate(&strm, Z_FINISH) != Z_STREAM_END) return 0; if (zlib_deflateEnd(&strm) != Z_OK) return 0; return strm.total_out; } case BCH_COMPRESSION_TYPE_zstd: { ZSTD_CCtx *ctx = zstd_init_cctx(workspace, zstd_cctx_workspace_bound(&c->zstd_params.cParams)); size_t len = zstd_compress_cctx(ctx, dst + 4, dst_len - 4, src, src_len, &c->zstd_params); if (zstd_is_error(len)) return 0; *((__le32 *) dst) = cpu_to_le32(len); return len + 4; } default: BUG(); } } static unsigned __bio_compress(struct bch_fs *c, struct bio *dst, size_t *dst_len, struct bio *src, size_t *src_len, enum bch_compression_type compression_type) { struct bbuf src_data = { NULL }, dst_data = { NULL }; void *workspace; unsigned pad; int ret = 0; BUG_ON(compression_type >= BCH_COMPRESSION_TYPE_NR); BUG_ON(!mempool_initialized(&c->compress_workspace[compression_type])); /* If it's only one block, don't bother trying to compress: */ if (bio_sectors(src) <= c->opts.block_size) return 0; dst_data = bio_map_or_bounce(c, dst, WRITE); src_data = bio_map_or_bounce(c, src, READ); workspace = mempool_alloc(&c->compress_workspace[compression_type], GFP_NOIO); *src_len = src->bi_iter.bi_size; *dst_len = dst->bi_iter.bi_size; /* * XXX: this algorithm sucks when the compression code doesn't tell us * how much would fit, like LZ4 does: */ while (1) { if (*src_len <= block_bytes(c)) { ret = -1; break; } ret = attempt_compress(c, workspace, dst_data.b, *dst_len, src_data.b, *src_len, compression_type); if (ret > 0) { *dst_len = ret; ret = 0; break; } /* Didn't fit: should we retry with a smaller amount? */ if (*src_len <= *dst_len) { ret = -1; break; } /* * If ret is negative, it's a hint as to how much data would fit */ BUG_ON(-ret >= *src_len); if (ret < 0) *src_len = -ret; else *src_len -= (*src_len - *dst_len) / 2; *src_len = round_down(*src_len, block_bytes(c)); } mempool_free(workspace, &c->compress_workspace[compression_type]); if (ret) goto err; /* Didn't get smaller: */ if (round_up(*dst_len, block_bytes(c)) >= *src_len) goto err; pad = round_up(*dst_len, block_bytes(c)) - *dst_len; memset(dst_data.b + *dst_len, 0, pad); *dst_len += pad; if (dst_data.type != BB_NONE && dst_data.type != BB_VMAP) memcpy_to_bio(dst, dst->bi_iter, dst_data.b); BUG_ON(!*dst_len || *dst_len > dst->bi_iter.bi_size); BUG_ON(!*src_len || *src_len > src->bi_iter.bi_size); BUG_ON(*dst_len & (block_bytes(c) - 1)); BUG_ON(*src_len & (block_bytes(c) - 1)); out: bio_unmap_or_unbounce(c, src_data); bio_unmap_or_unbounce(c, dst_data); return compression_type; err: compression_type = BCH_COMPRESSION_TYPE_incompressible; goto out; } unsigned bch2_bio_compress(struct bch_fs *c, struct bio *dst, size_t *dst_len, struct bio *src, size_t *src_len, unsigned compression_type) { unsigned orig_dst = dst->bi_iter.bi_size; unsigned orig_src = src->bi_iter.bi_size; /* Don't consume more than BCH_ENCODED_EXTENT_MAX from @src: */ src->bi_iter.bi_size = min_t(unsigned, src->bi_iter.bi_size, c->sb.encoded_extent_max << 9); /* Don't generate a bigger output than input: */ dst->bi_iter.bi_size = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); if (compression_type == BCH_COMPRESSION_TYPE_lz4_old) compression_type = BCH_COMPRESSION_TYPE_lz4; compression_type = __bio_compress(c, dst, dst_len, src, src_len, compression_type); dst->bi_iter.bi_size = orig_dst; src->bi_iter.bi_size = orig_src; return compression_type; } static int __bch2_fs_compress_init(struct bch_fs *, u64); #define BCH_FEATURE_none 0 static const unsigned bch2_compression_opt_to_feature[] = { #define x(t, n) [BCH_COMPRESSION_OPT_##t] = BCH_FEATURE_##t, BCH_COMPRESSION_OPTS() #undef x }; #undef BCH_FEATURE_none static int __bch2_check_set_has_compressed_data(struct bch_fs *c, u64 f) { int ret = 0; if ((c->sb.features & f) == f) return 0; mutex_lock(&c->sb_lock); if ((c->sb.features & f) == f) { mutex_unlock(&c->sb_lock); return 0; } ret = __bch2_fs_compress_init(c, c->sb.features|f); if (ret) { mutex_unlock(&c->sb_lock); return ret; } c->disk_sb.sb->features[0] |= cpu_to_le64(f); bch2_write_super(c); mutex_unlock(&c->sb_lock); return 0; } int bch2_check_set_has_compressed_data(struct bch_fs *c, unsigned compression_type) { BUG_ON(compression_type >= ARRAY_SIZE(bch2_compression_opt_to_feature)); return compression_type ? __bch2_check_set_has_compressed_data(c, 1ULL << bch2_compression_opt_to_feature[compression_type]) : 0; } void bch2_fs_compress_exit(struct bch_fs *c) { unsigned i; mempool_exit(&c->decompress_workspace); for (i = 0; i < ARRAY_SIZE(c->compress_workspace); i++) mempool_exit(&c->compress_workspace[i]); mempool_exit(&c->compression_bounce[WRITE]); mempool_exit(&c->compression_bounce[READ]); } static int __bch2_fs_compress_init(struct bch_fs *c, u64 features) { size_t max_extent = c->sb.encoded_extent_max << 9; size_t decompress_workspace_size = 0; bool decompress_workspace_needed; ZSTD_parameters params = zstd_get_params(0, max_extent); struct { unsigned feature; unsigned type; size_t compress_workspace; size_t decompress_workspace; } compression_types[] = { { BCH_FEATURE_lz4, BCH_COMPRESSION_TYPE_lz4, LZ4_MEM_COMPRESS, 0 }, { BCH_FEATURE_gzip, BCH_COMPRESSION_TYPE_gzip, zlib_deflate_workspacesize(MAX_WBITS, DEF_MEM_LEVEL), zlib_inflate_workspacesize(), }, { BCH_FEATURE_zstd, BCH_COMPRESSION_TYPE_zstd, zstd_cctx_workspace_bound(¶ms.cParams), zstd_dctx_workspace_bound() }, }, *i; int ret = 0; pr_verbose_init(c->opts, ""); c->zstd_params = params; for (i = compression_types; i < compression_types + ARRAY_SIZE(compression_types); i++) if (features & (1 << i->feature)) goto have_compressed; goto out; have_compressed: if (!mempool_initialized(&c->compression_bounce[READ])) { ret = mempool_init_kvpmalloc_pool(&c->compression_bounce[READ], 1, max_extent); if (ret) goto out; } if (!mempool_initialized(&c->compression_bounce[WRITE])) { ret = mempool_init_kvpmalloc_pool(&c->compression_bounce[WRITE], 1, max_extent); if (ret) goto out; } for (i = compression_types; i < compression_types + ARRAY_SIZE(compression_types); i++) { decompress_workspace_size = max(decompress_workspace_size, i->decompress_workspace); if (!(features & (1 << i->feature))) continue; if (i->decompress_workspace) decompress_workspace_needed = true; if (mempool_initialized(&c->compress_workspace[i->type])) continue; ret = mempool_init_kvpmalloc_pool( &c->compress_workspace[i->type], 1, i->compress_workspace); if (ret) goto out; } if (!mempool_initialized(&c->decompress_workspace)) { ret = mempool_init_kvpmalloc_pool( &c->decompress_workspace, 1, decompress_workspace_size); if (ret) goto out; } out: pr_verbose_init(c->opts, "ret %i", ret); return ret; } int bch2_fs_compress_init(struct bch_fs *c) { u64 f = c->sb.features; if (c->opts.compression) f |= 1ULL << bch2_compression_opt_to_feature[c->opts.compression]; if (c->opts.background_compression) f |= 1ULL << bch2_compression_opt_to_feature[c->opts.background_compression]; return __bch2_fs_compress_init(c, f); }