// SPDX-License-Identifier: GPL-2.0 /* * bcachefs setup/teardown code, and some metadata io - read a superblock and * figure out what to do with it. * * Copyright 2010, 2011 Kent Overstreet * Copyright 2012 Google, Inc. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "bkey_sort.h" #include "btree_cache.h" #include "btree_gc.h" #include "btree_update_interior.h" #include "btree_io.h" #include "chardev.h" #include "checksum.h" #include "clock.h" #include "compress.h" #include "debug.h" #include "disk_groups.h" #include "ec.h" #include "error.h" #include "fs.h" #include "fs-io.h" #include "fsck.h" #include "inode.h" #include "io.h" #include "journal.h" #include "journal_reclaim.h" #include "journal_seq_blacklist.h" #include "move.h" #include "migrate.h" #include "movinggc.h" #include "quota.h" #include "rebalance.h" #include "recovery.h" #include "replicas.h" #include "super.h" #include "super-io.h" #include "sysfs.h" #include "trace.h" #include #include #include #include #include #include #include #include #include #include #include MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kent Overstreet "); #define KTYPE(type) \ static const struct attribute_group type ## _group = { \ .attrs = type ## _files \ }; \ \ static const struct attribute_group *type ## _groups[] = { \ &type ## _group, \ NULL \ }; \ \ static const struct kobj_type type ## _ktype = { \ .release = type ## _release, \ .sysfs_ops = &type ## _sysfs_ops, \ .default_groups = type ## _groups \ } static void bch2_fs_release(struct kobject *); static void bch2_dev_release(struct kobject *); static void bch2_fs_internal_release(struct kobject *k) { } static void bch2_fs_opts_dir_release(struct kobject *k) { } static void bch2_fs_time_stats_release(struct kobject *k) { } KTYPE(bch2_fs); KTYPE(bch2_fs_internal); KTYPE(bch2_fs_opts_dir); KTYPE(bch2_fs_time_stats); KTYPE(bch2_dev); static struct kset *bcachefs_kset; static LIST_HEAD(bch_fs_list); static DEFINE_MUTEX(bch_fs_list_lock); static DECLARE_WAIT_QUEUE_HEAD(bch_read_only_wait); static void bch2_dev_free(struct bch_dev *); static int bch2_dev_alloc(struct bch_fs *, unsigned); static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); struct bch_fs *bch2_dev_to_fs(dev_t dev) { struct bch_fs *c; struct bch_dev *ca; unsigned i; mutex_lock(&bch_fs_list_lock); rcu_read_lock(); list_for_each_entry(c, &bch_fs_list, list) for_each_member_device_rcu(ca, c, i, NULL) if (ca->disk_sb.bdev->bd_dev == dev) { closure_get(&c->cl); goto found; } c = NULL; found: rcu_read_unlock(); mutex_unlock(&bch_fs_list_lock); return c; } static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) { struct bch_fs *c; lockdep_assert_held(&bch_fs_list_lock); list_for_each_entry(c, &bch_fs_list, list) if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) return c; return NULL; } struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) { struct bch_fs *c; mutex_lock(&bch_fs_list_lock); c = __bch2_uuid_to_fs(uuid); if (c) closure_get(&c->cl); mutex_unlock(&bch_fs_list_lock); return c; } /* Filesystem RO/RW: */ /* * For startup/shutdown of RW stuff, the dependencies are: * * - foreground writes depend on copygc and rebalance (to free up space) * * - copygc and rebalance depend on mark and sweep gc (they actually probably * don't because they either reserve ahead of time or don't block if * allocations fail, but allocations can require mark and sweep gc to run * because of generation number wraparound) * * - all of the above depends on the allocator threads * * - allocator depends on the journal (when it rewrites prios and gens) */ static void __bch2_fs_read_only(struct bch_fs *c) { struct bch_dev *ca; bool wrote; unsigned i, clean_passes = 0; int ret; bch2_rebalance_stop(c); for_each_member_device(ca, c, i) bch2_copygc_stop(ca); bch2_gc_thread_stop(c); /* * Flush journal before stopping allocators, because flushing journal * blacklist entries involves allocating new btree nodes: */ bch2_journal_flush_all_pins(&c->journal); if (!test_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags)) goto allocator_not_running; do { wrote = false; ret = bch2_stripes_write(c, BTREE_INSERT_NOCHECK_RW, &wrote) ?: bch2_alloc_write(c, BTREE_INSERT_NOCHECK_RW, &wrote); if (ret && !test_bit(BCH_FS_EMERGENCY_RO, &c->flags)) bch2_fs_inconsistent(c, "error writing out alloc info %i", ret); if (ret) break; for_each_member_device(ca, c, i) bch2_dev_allocator_quiesce(c, ca); bch2_journal_flush_all_pins(&c->journal); /* * We need to explicitly wait on btree interior updates to complete * before stopping the journal, flushing all journal pins isn't * sufficient, because in the BTREE_INTERIOR_UPDATING_ROOT case btree * interior updates have to drop their journal pin before they're * fully complete: */ closure_wait_event(&c->btree_interior_update_wait, !bch2_btree_interior_updates_nr_pending(c)); clean_passes = wrote ? 0 : clean_passes + 1; } while (clean_passes < 2); allocator_not_running: for_each_member_device(ca, c, i) bch2_dev_allocator_stop(ca); clear_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags); bch2_fs_journal_stop(&c->journal); /* XXX: mark super that alloc info is persistent */ /* * the journal kicks off btree writes via reclaim - wait for in flight * writes after stopping journal: */ if (test_bit(BCH_FS_EMERGENCY_RO, &c->flags)) bch2_btree_flush_all_writes(c); else bch2_btree_verify_flushed(c); /* * After stopping journal: */ for_each_member_device(ca, c, i) bch2_dev_allocator_remove(c, ca); } static void bch2_writes_disabled(struct percpu_ref *writes) { struct bch_fs *c = container_of(writes, struct bch_fs, writes); set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); wake_up(&bch_read_only_wait); } void bch2_fs_read_only(struct bch_fs *c) { if (!test_bit(BCH_FS_RW, &c->flags)) { cancel_delayed_work_sync(&c->journal.reclaim_work); return; } BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags)); /* * Block new foreground-end write operations from starting - any new * writes will return -EROFS: * * (This is really blocking new _allocations_, writes to previously * allocated space can still happen until stopping the allocator in * bch2_dev_allocator_stop()). */ percpu_ref_kill(&c->writes); cancel_work_sync(&c->ec_stripe_delete_work); cancel_delayed_work(&c->pd_controllers_update); /* * If we're not doing an emergency shutdown, we want to wait on * outstanding writes to complete so they don't see spurious errors due * to shutting down the allocator: * * If we are doing an emergency shutdown outstanding writes may * hang until we shutdown the allocator so we don't want to wait * on outstanding writes before shutting everything down - but * we do need to wait on them before returning and signalling * that going RO is complete: */ wait_event(bch_read_only_wait, test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) || test_bit(BCH_FS_EMERGENCY_RO, &c->flags)); __bch2_fs_read_only(c); wait_event(bch_read_only_wait, test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags)); clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); if (!bch2_journal_error(&c->journal) && !test_bit(BCH_FS_ERROR, &c->flags) && !test_bit(BCH_FS_EMERGENCY_RO, &c->flags) && test_bit(BCH_FS_STARTED, &c->flags) && !c->opts.norecovery) bch2_fs_mark_clean(c); clear_bit(BCH_FS_RW, &c->flags); } static void bch2_fs_read_only_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, read_only_work); mutex_lock(&c->state_lock); bch2_fs_read_only(c); mutex_unlock(&c->state_lock); } static void bch2_fs_read_only_async(struct bch_fs *c) { queue_work(system_long_wq, &c->read_only_work); } bool bch2_fs_emergency_read_only(struct bch_fs *c) { bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags); bch2_fs_read_only_async(c); bch2_journal_halt(&c->journal); wake_up(&bch_read_only_wait); return ret; } static int bch2_fs_read_write_late(struct bch_fs *c) { struct bch_dev *ca; unsigned i; int ret; ret = bch2_gc_thread_start(c); if (ret) { bch_err(c, "error starting gc thread"); return ret; } for_each_rw_member(ca, c, i) { ret = bch2_copygc_start(c, ca); if (ret) { bch_err(c, "error starting copygc threads"); percpu_ref_put(&ca->io_ref); return ret; } } ret = bch2_rebalance_start(c); if (ret) { bch_err(c, "error starting rebalance thread"); return ret; } schedule_delayed_work(&c->pd_controllers_update, 5 * HZ); schedule_work(&c->ec_stripe_delete_work); return 0; } int __bch2_fs_read_write(struct bch_fs *c, bool early) { struct bch_dev *ca; unsigned i; int ret; if (test_bit(BCH_FS_RW, &c->flags)) return 0; /* * nochanges is used for fsck -n mode - we have to allow going rw * during recovery for that to work: */ if (c->opts.norecovery || (c->opts.nochanges && (!early || c->opts.read_only))) return -EROFS; ret = bch2_fs_mark_dirty(c); if (ret) goto err; for_each_rw_member(ca, c, i) bch2_dev_allocator_add(c, ca); bch2_recalc_capacity(c); if (!test_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags)) { ret = bch2_fs_allocator_start(c); if (ret) { bch_err(c, "error initializing allocator"); goto err; } set_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags); } for_each_rw_member(ca, c, i) { ret = bch2_dev_allocator_start(ca); if (ret) { bch_err(c, "error starting allocator threads"); percpu_ref_put(&ca->io_ref); goto err; } } set_bit(BCH_FS_ALLOCATOR_RUNNING, &c->flags); if (!early) { ret = bch2_fs_read_write_late(c); if (ret) goto err; } percpu_ref_reinit(&c->writes); set_bit(BCH_FS_RW, &c->flags); queue_delayed_work(c->journal_reclaim_wq, &c->journal.reclaim_work, 0); return 0; err: __bch2_fs_read_only(c); return ret; } int bch2_fs_read_write(struct bch_fs *c) { return __bch2_fs_read_write(c, false); } int bch2_fs_read_write_early(struct bch_fs *c) { lockdep_assert_held(&c->state_lock); return __bch2_fs_read_write(c, true); } /* Filesystem startup/shutdown: */ static void bch2_fs_free(struct bch_fs *c) { unsigned i; for (i = 0; i < BCH_TIME_STAT_NR; i++) bch2_time_stats_exit(&c->times[i]); bch2_fs_quota_exit(c); bch2_fs_fsio_exit(c); bch2_fs_ec_exit(c); bch2_fs_encryption_exit(c); bch2_fs_io_exit(c); bch2_fs_btree_cache_exit(c); bch2_fs_journal_exit(&c->journal); bch2_io_clock_exit(&c->io_clock[WRITE]); bch2_io_clock_exit(&c->io_clock[READ]); bch2_fs_compress_exit(c); percpu_free_rwsem(&c->mark_lock); free_percpu(c->online_reserved); kfree(c->usage_scratch); free_percpu(c->usage[1]); free_percpu(c->usage[0]); kfree(c->usage_base); free_percpu(c->pcpu); mempool_exit(&c->btree_iters_pool); mempool_exit(&c->btree_bounce_pool); bioset_exit(&c->btree_bio); mempool_exit(&c->btree_interior_update_pool); mempool_exit(&c->btree_reserve_pool); mempool_exit(&c->fill_iter); percpu_ref_exit(&c->writes); kfree(c->replicas.entries); kfree(c->replicas_gc.entries); kfree(rcu_dereference_protected(c->disk_groups, 1)); kfree(c->journal_seq_blacklist_table); if (c->journal_reclaim_wq) destroy_workqueue(c->journal_reclaim_wq); if (c->copygc_wq) destroy_workqueue(c->copygc_wq); if (c->wq) destroy_workqueue(c->wq); free_pages((unsigned long) c->disk_sb.sb, c->disk_sb.page_order); kvpfree(c, sizeof(*c)); module_put(THIS_MODULE); } static void bch2_fs_release(struct kobject *kobj) { struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); bch2_fs_free(c); } void bch2_fs_stop(struct bch_fs *c) { struct bch_dev *ca; unsigned i; bch_verbose(c, "shutting down"); set_bit(BCH_FS_STOPPING, &c->flags); cancel_work_sync(&c->journal_seq_blacklist_gc_work); for_each_member_device(ca, c, i) if (ca->kobj.state_in_sysfs && ca->disk_sb.bdev) sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); if (c->kobj.state_in_sysfs) kobject_del(&c->kobj); bch2_fs_debug_exit(c); bch2_fs_chardev_exit(c); kobject_put(&c->time_stats); kobject_put(&c->opts_dir); kobject_put(&c->internal); mutex_lock(&bch_fs_list_lock); list_del(&c->list); mutex_unlock(&bch_fs_list_lock); closure_sync(&c->cl); closure_debug_destroy(&c->cl); mutex_lock(&c->state_lock); bch2_fs_read_only(c); mutex_unlock(&c->state_lock); /* btree prefetch might have kicked off reads in the background: */ bch2_btree_flush_all_reads(c); for_each_member_device(ca, c, i) cancel_work_sync(&ca->io_error_work); cancel_work_sync(&c->btree_write_error_work); cancel_delayed_work_sync(&c->pd_controllers_update); cancel_work_sync(&c->read_only_work); for (i = 0; i < c->sb.nr_devices; i++) if (c->devs[i]) bch2_dev_free(rcu_dereference_protected(c->devs[i], 1)); bch_verbose(c, "shutdown complete"); kobject_put(&c->kobj); } static const char *bch2_fs_online(struct bch_fs *c) { struct bch_dev *ca; const char *err = NULL; unsigned i; int ret; lockdep_assert_held(&bch_fs_list_lock); if (!list_empty(&c->list)) return NULL; if (__bch2_uuid_to_fs(c->sb.uuid)) return "filesystem UUID already open"; ret = bch2_fs_chardev_init(c); if (ret) return "error creating character device"; bch2_fs_debug_init(c); if (kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) || kobject_add(&c->internal, &c->kobj, "internal") || kobject_add(&c->opts_dir, &c->kobj, "options") || kobject_add(&c->time_stats, &c->kobj, "time_stats") || bch2_opts_create_sysfs_files(&c->opts_dir)) return "error creating sysfs objects"; mutex_lock(&c->state_lock); err = "error creating sysfs objects"; __for_each_member_device(ca, c, i, NULL) if (bch2_dev_sysfs_online(c, ca)) goto err; list_add(&c->list, &bch_fs_list); err = NULL; err: mutex_unlock(&c->state_lock); return err; } static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) { struct bch_sb_field_members *mi; struct bch_fs *c; unsigned i, iter_size; const char *err; pr_verbose_init(opts, ""); c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); if (!c) goto out; __module_get(THIS_MODULE); c->minor = -1; c->disk_sb.fs_sb = true; mutex_init(&c->state_lock); mutex_init(&c->sb_lock); mutex_init(&c->replicas_gc_lock); mutex_init(&c->btree_root_lock); INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); init_rwsem(&c->gc_lock); for (i = 0; i < BCH_TIME_STAT_NR; i++) bch2_time_stats_init(&c->times[i]); bch2_fs_allocator_background_init(c); bch2_fs_allocator_foreground_init(c); bch2_fs_rebalance_init(c); bch2_fs_quota_init(c); INIT_LIST_HEAD(&c->list); INIT_LIST_HEAD(&c->btree_interior_update_list); mutex_init(&c->btree_reserve_cache_lock); mutex_init(&c->btree_interior_update_lock); mutex_init(&c->usage_scratch_lock); mutex_init(&c->bio_bounce_pages_lock); bio_list_init(&c->btree_write_error_list); spin_lock_init(&c->btree_write_error_lock); INIT_WORK(&c->btree_write_error_work, bch2_btree_write_error_work); INIT_WORK(&c->journal_seq_blacklist_gc_work, bch2_blacklist_entries_gc); INIT_LIST_HEAD(&c->fsck_errors); mutex_init(&c->fsck_error_lock); INIT_LIST_HEAD(&c->ec_new_stripe_list); mutex_init(&c->ec_new_stripe_lock); mutex_init(&c->ec_stripe_create_lock); spin_lock_init(&c->ec_stripes_heap_lock); seqcount_init(&c->gc_pos_lock); seqcount_init(&c->usage_lock); c->copy_gc_enabled = 1; c->rebalance.enabled = 1; c->promote_whole_extents = true; c->journal.write_time = &c->times[BCH_TIME_journal_write]; c->journal.delay_time = &c->times[BCH_TIME_journal_delay]; c->journal.blocked_time = &c->times[BCH_TIME_blocked_journal]; c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; bch2_fs_btree_cache_init_early(&c->btree_cache); mutex_init(&c->sectors_available_lock); if (percpu_init_rwsem(&c->mark_lock)) goto err; mutex_lock(&c->sb_lock); if (bch2_sb_to_fs(c, sb)) { mutex_unlock(&c->sb_lock); goto err; } mutex_unlock(&c->sb_lock); scnprintf(c->name, sizeof(c->name), "%pU", &c->sb.user_uuid); c->opts = bch2_opts_default; bch2_opts_apply(&c->opts, bch2_opts_from_sb(sb)); bch2_opts_apply(&c->opts, opts); c->block_bits = ilog2(c->opts.block_size); c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); if (bch2_fs_init_fault("fs_alloc")) goto err; iter_size = sizeof(struct btree_node_iter_large) + (btree_blocks(c) + 1) * 2 * sizeof(struct btree_node_iter_set); if (!(c->wq = alloc_workqueue("bcachefs", WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) || !(c->copygc_wq = alloc_workqueue("bcache_copygc", WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) || !(c->journal_reclaim_wq = alloc_workqueue("bcache_journal", WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) || percpu_ref_init(&c->writes, bch2_writes_disabled, PERCPU_REF_INIT_DEAD, GFP_KERNEL) || mempool_init_kmalloc_pool(&c->btree_reserve_pool, 1, sizeof(struct btree_reserve)) || mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, sizeof(struct btree_update)) || mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || bioset_init(&c->btree_bio, 1, max(offsetof(struct btree_read_bio, bio), offsetof(struct btree_write_bio, wbio.bio)), BIOSET_NEED_BVECS) || !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || !(c->online_reserved = alloc_percpu(u64)) || mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1, btree_bytes(c)) || mempool_init_kmalloc_pool(&c->btree_iters_pool, 1, sizeof(struct btree_iter) * BTREE_ITER_MAX + sizeof(struct btree_insert_entry) * (BTREE_ITER_MAX + 4)) || bch2_io_clock_init(&c->io_clock[READ]) || bch2_io_clock_init(&c->io_clock[WRITE]) || bch2_fs_journal_init(&c->journal) || bch2_fs_replicas_init(c) || bch2_fs_btree_cache_init(c) || bch2_fs_io_init(c) || bch2_fs_encryption_init(c) || bch2_fs_compress_init(c) || bch2_fs_ec_init(c) || bch2_fs_fsio_init(c)) goto err; mi = bch2_sb_get_members(c->disk_sb.sb); for (i = 0; i < c->sb.nr_devices; i++) if (bch2_dev_exists(c->disk_sb.sb, mi, i) && bch2_dev_alloc(c, i)) goto err; /* * Now that all allocations have succeeded, init various refcounty * things that let us shutdown: */ closure_init(&c->cl, NULL); c->kobj.kset = bcachefs_kset; kobject_init(&c->kobj, &bch2_fs_ktype); kobject_init(&c->internal, &bch2_fs_internal_ktype); kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); mutex_lock(&bch_fs_list_lock); err = bch2_fs_online(c); mutex_unlock(&bch_fs_list_lock); if (err) { bch_err(c, "bch2_fs_online() error: %s", err); goto err; } out: pr_verbose_init(opts, "ret %i", c ? 0 : -ENOMEM); return c; err: bch2_fs_free(c); c = NULL; goto out; } noinline_for_stack static void print_mount_opts(struct bch_fs *c) { enum bch_opt_id i; char buf[512]; struct printbuf p = PBUF(buf); bool first = true; strcpy(buf, "(null)"); if (c->opts.read_only) { pr_buf(&p, "ro"); first = false; } for (i = 0; i < bch2_opts_nr; i++) { const struct bch_option *opt = &bch2_opt_table[i]; u64 v = bch2_opt_get_by_id(&c->opts, i); if (!(opt->mode & OPT_MOUNT)) continue; if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) continue; if (!first) pr_buf(&p, ","); first = false; bch2_opt_to_text(&p, c, opt, v, OPT_SHOW_MOUNT_STYLE); } bch_info(c, "mounted with opts: %s", buf); } int bch2_fs_start(struct bch_fs *c) { const char *err = "cannot allocate memory"; struct bch_sb_field_members *mi; struct bch_dev *ca; time64_t now = ktime_get_real_seconds(); unsigned i; int ret = -EINVAL; mutex_lock(&c->state_lock); BUG_ON(test_bit(BCH_FS_STARTED, &c->flags)); mutex_lock(&c->sb_lock); for_each_online_member(ca, c, i) bch2_sb_from_fs(c, ca); mi = bch2_sb_get_members(c->disk_sb.sb); for_each_online_member(ca, c, i) mi->members[ca->dev_idx].last_mount = cpu_to_le64(now); mutex_unlock(&c->sb_lock); for_each_rw_member(ca, c, i) bch2_dev_allocator_add(c, ca); bch2_recalc_capacity(c); ret = BCH_SB_INITIALIZED(c->disk_sb.sb) ? bch2_fs_recovery(c) : bch2_fs_initialize(c); if (ret) goto err; ret = bch2_opts_check_may_set(c); if (ret) goto err; err = "dynamic fault"; ret = -EINVAL; if (bch2_fs_init_fault("fs_start")) goto err; if (c->opts.read_only || c->opts.nochanges) { bch2_fs_read_only(c); } else { err = "error going read write"; ret = !test_bit(BCH_FS_RW, &c->flags) ? bch2_fs_read_write(c) : bch2_fs_read_write_late(c); if (ret) goto err; } set_bit(BCH_FS_STARTED, &c->flags); print_mount_opts(c); ret = 0; out: mutex_unlock(&c->state_lock); return ret; err: switch (ret) { case BCH_FSCK_ERRORS_NOT_FIXED: bch_err(c, "filesystem contains errors: please report this to the developers"); pr_cont("mount with -o fix_errors to repair\n"); err = "fsck error"; break; case BCH_FSCK_REPAIR_UNIMPLEMENTED: bch_err(c, "filesystem contains errors: please report this to the developers"); pr_cont("repair unimplemented: inform the developers so that it can be added\n"); err = "fsck error"; break; case BCH_FSCK_REPAIR_IMPOSSIBLE: bch_err(c, "filesystem contains errors, but repair impossible"); err = "fsck error"; break; case BCH_FSCK_UNKNOWN_VERSION: err = "unknown metadata version";; break; case -ENOMEM: err = "cannot allocate memory"; break; case -EIO: err = "IO error"; break; } if (ret >= 0) ret = -EIO; goto out; } static const char *bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) { struct bch_sb_field_members *sb_mi; sb_mi = bch2_sb_get_members(sb); if (!sb_mi) return "Invalid superblock: member info area missing"; if (le16_to_cpu(sb->block_size) != c->opts.block_size) return "mismatched block size"; if (le16_to_cpu(sb_mi->members[sb->dev_idx].bucket_size) < BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) return "new cache bucket size is too small"; return NULL; } static const char *bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb) { struct bch_sb *newest = le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb; struct bch_sb_field_members *mi = bch2_sb_get_members(newest); if (!uuid_equal(&fs->uuid, &sb->uuid)) return "device not a member of filesystem"; if (!bch2_dev_exists(newest, mi, sb->dev_idx)) return "device has been removed"; if (fs->block_size != sb->block_size) return "mismatched block size"; return NULL; } /* Device startup/shutdown: */ static void bch2_dev_release(struct kobject *kobj) { struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); kfree(ca); } static void bch2_dev_free(struct bch_dev *ca) { cancel_work_sync(&ca->io_error_work); if (ca->kobj.state_in_sysfs && ca->disk_sb.bdev) sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); if (ca->kobj.state_in_sysfs) kobject_del(&ca->kobj); bch2_free_super(&ca->disk_sb); bch2_dev_journal_exit(ca); free_percpu(ca->io_done); bioset_exit(&ca->replica_set); bch2_dev_buckets_free(ca); free_page((unsigned long) ca->sb_read_scratch); bch2_time_stats_exit(&ca->io_latency[WRITE]); bch2_time_stats_exit(&ca->io_latency[READ]); percpu_ref_exit(&ca->io_ref); percpu_ref_exit(&ca->ref); kobject_put(&ca->kobj); } static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) { lockdep_assert_held(&c->state_lock); if (percpu_ref_is_zero(&ca->io_ref)) return; __bch2_dev_read_only(c, ca); reinit_completion(&ca->io_ref_completion); percpu_ref_kill(&ca->io_ref); wait_for_completion(&ca->io_ref_completion); if (ca->kobj.state_in_sysfs) { sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); sysfs_remove_link(&ca->kobj, "block"); } bch2_free_super(&ca->disk_sb); bch2_dev_journal_exit(ca); } static void bch2_dev_ref_complete(struct percpu_ref *ref) { struct bch_dev *ca = container_of(ref, struct bch_dev, ref); complete(&ca->ref_completion); } static void bch2_dev_io_ref_complete(struct percpu_ref *ref) { struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); complete(&ca->io_ref_completion); } static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) { int ret; if (!c->kobj.state_in_sysfs) return 0; if (!ca->kobj.state_in_sysfs) { ret = kobject_add(&ca->kobj, &c->kobj, "dev-%u", ca->dev_idx); if (ret) return ret; } if (ca->disk_sb.bdev) { struct kobject *block = bdev_kobj(ca->disk_sb.bdev); ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); if (ret) return ret; ret = sysfs_create_link(&ca->kobj, block, "block"); if (ret) return ret; } return 0; } static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, struct bch_member *member) { struct bch_dev *ca; ca = kzalloc(sizeof(*ca), GFP_KERNEL); if (!ca) return NULL; kobject_init(&ca->kobj, &bch2_dev_ktype); init_completion(&ca->ref_completion); init_completion(&ca->io_ref_completion); init_rwsem(&ca->bucket_lock); writepoint_init(&ca->copygc_write_point, BCH_DATA_USER); spin_lock_init(&ca->freelist_lock); bch2_dev_copygc_init(ca); INIT_WORK(&ca->io_error_work, bch2_io_error_work); bch2_time_stats_init(&ca->io_latency[READ]); bch2_time_stats_init(&ca->io_latency[WRITE]); ca->mi = bch2_mi_to_cpu(member); ca->uuid = member->uuid; if (opt_defined(c->opts, discard)) ca->mi.discard = opt_get(c->opts, discard); if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL) || percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, PERCPU_REF_INIT_DEAD, GFP_KERNEL) || !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || bch2_dev_buckets_alloc(c, ca) || bioset_init(&ca->replica_set, 4, offsetof(struct bch_write_bio, bio), 0) || !(ca->io_done = alloc_percpu(*ca->io_done))) goto err; return ca; err: bch2_dev_free(ca); return NULL; } static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, unsigned dev_idx) { ca->dev_idx = dev_idx; __set_bit(ca->dev_idx, ca->self.d); scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); ca->fs = c; rcu_assign_pointer(c->devs[ca->dev_idx], ca); if (bch2_dev_sysfs_online(c, ca)) pr_warn("error creating sysfs objects"); } static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) { struct bch_member *member = bch2_sb_get_members(c->disk_sb.sb)->members + dev_idx; struct bch_dev *ca = NULL; int ret = 0; pr_verbose_init(c->opts, ""); if (bch2_fs_init_fault("dev_alloc")) goto err; ca = __bch2_dev_alloc(c, member); if (!ca) goto err; bch2_dev_attach(c, ca, dev_idx); out: pr_verbose_init(c->opts, "ret %i", ret); return ret; err: if (ca) bch2_dev_free(ca); ret = -ENOMEM; goto out; } static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) { unsigned ret; if (bch2_dev_is_online(ca)) { bch_err(ca, "already have device online in slot %u", sb->sb->dev_idx); return -EINVAL; } if (get_capacity(sb->bdev->bd_disk) < ca->mi.bucket_size * ca->mi.nbuckets) { bch_err(ca, "cannot online: device too small"); return -EINVAL; } BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); if (get_capacity(sb->bdev->bd_disk) < ca->mi.bucket_size * ca->mi.nbuckets) { bch_err(ca, "device too small"); return -EINVAL; } ret = bch2_dev_journal_init(ca, sb->sb); if (ret) return ret; /* Commit: */ ca->disk_sb = *sb; memset(sb, 0, sizeof(*sb)); percpu_ref_reinit(&ca->io_ref); return 0; } static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) { struct bch_dev *ca; int ret; lockdep_assert_held(&c->state_lock); if (le64_to_cpu(sb->sb->seq) > le64_to_cpu(c->disk_sb.sb->seq)) bch2_sb_to_fs(c, sb->sb); BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices || !c->devs[sb->sb->dev_idx]); ca = bch_dev_locked(c, sb->sb->dev_idx); ret = __bch2_dev_attach_bdev(ca, sb); if (ret) return ret; if (test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags) && !percpu_u64_get(&ca->usage[0]->buckets[BCH_DATA_SB])) { mutex_lock(&c->sb_lock); bch2_mark_dev_superblock(ca->fs, ca, 0); mutex_unlock(&c->sb_lock); } bch2_dev_sysfs_online(c, ca); if (c->sb.nr_devices == 1) snprintf(c->name, sizeof(c->name), "%pg", ca->disk_sb.bdev); snprintf(ca->name, sizeof(ca->name), "%pg", ca->disk_sb.bdev); rebalance_wakeup(c); return 0; } /* Device management: */ /* * Note: this function is also used by the error paths - when a particular * device sees an error, we call it to determine whether we can just set the * device RO, or - if this function returns false - we'll set the whole * filesystem RO: * * XXX: maybe we should be more explicit about whether we're changing state * because we got an error or what have you? */ bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, enum bch_member_state new_state, int flags) { struct bch_devs_mask new_online_devs; struct replicas_status s; struct bch_dev *ca2; int i, nr_rw = 0, required; lockdep_assert_held(&c->state_lock); switch (new_state) { case BCH_MEMBER_STATE_RW: return true; case BCH_MEMBER_STATE_RO: if (ca->mi.state != BCH_MEMBER_STATE_RW) return true; /* do we have enough devices to write to? */ for_each_member_device(ca2, c, i) if (ca2 != ca) nr_rw += ca2->mi.state == BCH_MEMBER_STATE_RW; required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) ? c->opts.metadata_replicas : c->opts.metadata_replicas_required, !(flags & BCH_FORCE_IF_DATA_DEGRADED) ? c->opts.data_replicas : c->opts.data_replicas_required); return nr_rw >= required; case BCH_MEMBER_STATE_FAILED: case BCH_MEMBER_STATE_SPARE: if (ca->mi.state != BCH_MEMBER_STATE_RW && ca->mi.state != BCH_MEMBER_STATE_RO) return true; /* do we have enough devices to read from? */ new_online_devs = bch2_online_devs(c); __clear_bit(ca->dev_idx, new_online_devs.d); s = __bch2_replicas_status(c, new_online_devs); return bch2_have_enough_devs(s, flags); default: BUG(); } } static bool bch2_fs_may_start(struct bch_fs *c) { struct replicas_status s; struct bch_sb_field_members *mi; struct bch_dev *ca; unsigned i, flags = c->opts.degraded ? BCH_FORCE_IF_DEGRADED : 0; if (!c->opts.degraded) { mutex_lock(&c->sb_lock); mi = bch2_sb_get_members(c->disk_sb.sb); for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { if (!bch2_dev_exists(c->disk_sb.sb, mi, i)) continue; ca = bch_dev_locked(c, i); if (!bch2_dev_is_online(ca) && (ca->mi.state == BCH_MEMBER_STATE_RW || ca->mi.state == BCH_MEMBER_STATE_RO)) { mutex_unlock(&c->sb_lock); return false; } } mutex_unlock(&c->sb_lock); } s = bch2_replicas_status(c); return bch2_have_enough_devs(s, flags); } static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) { bch2_copygc_stop(ca); /* * The allocator thread itself allocates btree nodes, so stop it first: */ bch2_dev_allocator_stop(ca); bch2_dev_allocator_remove(c, ca); bch2_dev_journal_stop(&c->journal, ca); } static const char *__bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) { lockdep_assert_held(&c->state_lock); BUG_ON(ca->mi.state != BCH_MEMBER_STATE_RW); bch2_dev_allocator_add(c, ca); bch2_recalc_capacity(c); if (bch2_dev_allocator_start(ca)) return "error starting allocator thread"; if (bch2_copygc_start(c, ca)) return "error starting copygc thread"; return NULL; } int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, enum bch_member_state new_state, int flags) { struct bch_sb_field_members *mi; int ret = 0; if (ca->mi.state == new_state) return 0; if (!bch2_dev_state_allowed(c, ca, new_state, flags)) return -EINVAL; if (new_state != BCH_MEMBER_STATE_RW) __bch2_dev_read_only(c, ca); bch_notice(ca, "%s", bch2_dev_state[new_state]); mutex_lock(&c->sb_lock); mi = bch2_sb_get_members(c->disk_sb.sb); SET_BCH_MEMBER_STATE(&mi->members[ca->dev_idx], new_state); bch2_write_super(c); mutex_unlock(&c->sb_lock); if (new_state == BCH_MEMBER_STATE_RW && __bch2_dev_read_write(c, ca)) ret = -ENOMEM; rebalance_wakeup(c); return ret; } int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, enum bch_member_state new_state, int flags) { int ret; mutex_lock(&c->state_lock); ret = __bch2_dev_set_state(c, ca, new_state, flags); mutex_unlock(&c->state_lock); return ret; } /* Device add/removal: */ int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) { struct bch_sb_field_members *mi; unsigned dev_idx = ca->dev_idx, data; int ret = -EINVAL; mutex_lock(&c->state_lock); percpu_ref_put(&ca->ref); /* XXX */ if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) { bch_err(ca, "Cannot remove without losing data"); goto err; } __bch2_dev_read_only(c, ca); /* * XXX: verify that dev_idx is really not in use anymore, anywhere * * flag_data_bad() does not check btree pointers */ ret = bch2_dev_data_drop(c, ca->dev_idx, flags); if (ret) { bch_err(ca, "Remove failed: error %i dropping data", ret); goto err; } ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); if (ret) { bch_err(ca, "Remove failed: error %i flushing journal", ret); goto err; } data = bch2_dev_has_data(c, ca); if (data) { char data_has_str[100]; bch2_flags_to_text(&PBUF(data_has_str), bch2_data_types, data); bch_err(ca, "Remove failed, still has data (%s)", data_has_str); ret = -EBUSY; goto err; } ret = bch2_btree_delete_range(c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0), POS(ca->dev_idx + 1, 0), NULL); if (ret) { bch_err(ca, "Remove failed, error deleting alloc info"); goto err; } /* * must flush all existing journal entries, they might have * (overwritten) keys that point to the device we're removing: */ bch2_journal_flush_all_pins(&c->journal); ret = bch2_journal_error(&c->journal); if (ret) { bch_err(ca, "Remove failed, journal error"); goto err; } __bch2_dev_offline(c, ca); mutex_lock(&c->sb_lock); rcu_assign_pointer(c->devs[ca->dev_idx], NULL); mutex_unlock(&c->sb_lock); percpu_ref_kill(&ca->ref); wait_for_completion(&ca->ref_completion); bch2_dev_free(ca); /* * Free this device's slot in the bch_member array - all pointers to * this device must be gone: */ mutex_lock(&c->sb_lock); mi = bch2_sb_get_members(c->disk_sb.sb); memset(&mi->members[dev_idx].uuid, 0, sizeof(mi->members[dev_idx].uuid)); bch2_write_super(c); mutex_unlock(&c->sb_lock); mutex_unlock(&c->state_lock); return 0; err: if (ca->mi.state == BCH_MEMBER_STATE_RW && !percpu_ref_is_zero(&ca->io_ref)) __bch2_dev_read_write(c, ca); mutex_unlock(&c->state_lock); return ret; } static void dev_usage_clear(struct bch_dev *ca) { struct bucket_array *buckets; percpu_memset(ca->usage[0], 0, sizeof(*ca->usage[0])); down_read(&ca->bucket_lock); buckets = bucket_array(ca); memset(buckets->b, 0, sizeof(buckets->b[0]) * buckets->nbuckets); up_read(&ca->bucket_lock); } /* Add new device to running filesystem: */ int bch2_dev_add(struct bch_fs *c, const char *path) { struct bch_opts opts = bch2_opts_empty(); struct bch_sb_handle sb; const char *err; struct bch_dev *ca = NULL; struct bch_sb_field_members *mi; struct bch_member dev_mi; unsigned dev_idx, nr_devices, u64s; int ret; ret = bch2_read_super(path, &opts, &sb); if (ret) return ret; err = bch2_sb_validate(&sb); if (err) return -EINVAL; dev_mi = bch2_sb_get_members(sb.sb)->members[sb.sb->dev_idx]; err = bch2_dev_may_add(sb.sb, c); if (err) return -EINVAL; ca = __bch2_dev_alloc(c, &dev_mi); if (!ca) { bch2_free_super(&sb); return -ENOMEM; } ret = __bch2_dev_attach_bdev(ca, &sb); if (ret) { bch2_dev_free(ca); return ret; } /* * We want to allocate journal on the new device before adding the new * device to the filesystem because allocating after we attach requires * spinning up the allocator thread, and the allocator thread requires * doing btree writes, which if the existing devices are RO isn't going * to work * * So we have to mark where the superblocks are, but marking allocated * data normally updates the filesystem usage too, so we have to mark, * allocate the journal, reset all the marks, then remark after we * attach... */ bch2_mark_dev_superblock(ca->fs, ca, 0); err = "journal alloc failed"; ret = bch2_dev_journal_alloc(ca); if (ret) goto err; dev_usage_clear(ca); mutex_lock(&c->state_lock); mutex_lock(&c->sb_lock); err = "insufficient space in new superblock"; ret = bch2_sb_from_fs(c, ca); if (ret) goto err_unlock; mi = bch2_sb_get_members(ca->disk_sb.sb); if (!bch2_sb_resize_members(&ca->disk_sb, le32_to_cpu(mi->field.u64s) + sizeof(dev_mi) / sizeof(u64))) { ret = -ENOSPC; goto err_unlock; } if (dynamic_fault("bcachefs:add:no_slot")) goto no_slot; mi = bch2_sb_get_members(c->disk_sb.sb); for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) if (!bch2_dev_exists(c->disk_sb.sb, mi, dev_idx)) goto have_slot; no_slot: err = "no slots available in superblock"; ret = -ENOSPC; goto err_unlock; have_slot: nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); u64s = (sizeof(struct bch_sb_field_members) + sizeof(struct bch_member) * nr_devices) / sizeof(u64); err = "no space in superblock for member info"; ret = -ENOSPC; mi = bch2_sb_resize_members(&c->disk_sb, u64s); if (!mi) goto err_unlock; /* success: */ mi->members[dev_idx] = dev_mi; mi->members[dev_idx].last_mount = cpu_to_le64(ktime_get_real_seconds()); c->disk_sb.sb->nr_devices = nr_devices; ca->disk_sb.sb->dev_idx = dev_idx; bch2_dev_attach(c, ca, dev_idx); bch2_mark_dev_superblock(c, ca, 0); bch2_write_super(c); mutex_unlock(&c->sb_lock); if (ca->mi.state == BCH_MEMBER_STATE_RW) { err = __bch2_dev_read_write(c, ca); if (err) goto err_late; } mutex_unlock(&c->state_lock); return 0; err_unlock: mutex_unlock(&c->sb_lock); mutex_unlock(&c->state_lock); err: if (ca) bch2_dev_free(ca); bch2_free_super(&sb); bch_err(c, "Unable to add device: %s", err); return ret; err_late: bch_err(c, "Error going rw after adding device: %s", err); return -EINVAL; } /* Hot add existing device to running filesystem: */ int bch2_dev_online(struct bch_fs *c, const char *path) { struct bch_opts opts = bch2_opts_empty(); struct bch_sb_handle sb = { NULL }; struct bch_sb_field_members *mi; struct bch_dev *ca; unsigned dev_idx; const char *err; int ret; mutex_lock(&c->state_lock); ret = bch2_read_super(path, &opts, &sb); if (ret) { mutex_unlock(&c->state_lock); return ret; } dev_idx = sb.sb->dev_idx; err = bch2_dev_in_fs(c->disk_sb.sb, sb.sb); if (err) goto err; if (bch2_dev_attach_bdev(c, &sb)) { err = "bch2_dev_attach_bdev() error"; goto err; } ca = bch_dev_locked(c, dev_idx); if (ca->mi.state == BCH_MEMBER_STATE_RW) { err = __bch2_dev_read_write(c, ca); if (err) goto err; } mutex_lock(&c->sb_lock); mi = bch2_sb_get_members(c->disk_sb.sb); mi->members[ca->dev_idx].last_mount = cpu_to_le64(ktime_get_real_seconds()); bch2_write_super(c); mutex_unlock(&c->sb_lock); mutex_unlock(&c->state_lock); return 0; err: mutex_unlock(&c->state_lock); bch2_free_super(&sb); bch_err(c, "error bringing %s online: %s", path, err); return -EINVAL; } int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) { mutex_lock(&c->state_lock); if (!bch2_dev_is_online(ca)) { bch_err(ca, "Already offline"); mutex_unlock(&c->state_lock); return 0; } if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) { bch_err(ca, "Cannot offline required disk"); mutex_unlock(&c->state_lock); return -EINVAL; } __bch2_dev_offline(c, ca); mutex_unlock(&c->state_lock); return 0; } int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) { struct bch_member *mi; int ret = 0; mutex_lock(&c->state_lock); if (nbuckets < ca->mi.nbuckets) { bch_err(ca, "Cannot shrink yet"); ret = -EINVAL; goto err; } if (bch2_dev_is_online(ca) && get_capacity(ca->disk_sb.bdev->bd_disk) < ca->mi.bucket_size * nbuckets) { bch_err(ca, "New size larger than device"); ret = -EINVAL; goto err; } ret = bch2_dev_buckets_resize(c, ca, nbuckets); if (ret) { bch_err(ca, "Resize error: %i", ret); goto err; } mutex_lock(&c->sb_lock); mi = &bch2_sb_get_members(c->disk_sb.sb)->members[ca->dev_idx]; mi->nbuckets = cpu_to_le64(nbuckets); bch2_write_super(c); mutex_unlock(&c->sb_lock); bch2_recalc_capacity(c); err: mutex_unlock(&c->state_lock); return ret; } /* return with ref on ca->ref: */ struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *path) { struct bch_dev *ca; dev_t dev; unsigned i; int ret; ret = lookup_bdev(path, &dev); if (ret) return ERR_PTR(ret); for_each_member_device(ca, c, i) if (ca->disk_sb.bdev->bd_dev == dev) goto found; ca = ERR_PTR(-ENOENT); found: return ca; } /* Filesystem open: */ struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, struct bch_opts opts) { struct bch_sb_handle *sb = NULL; struct bch_fs *c = NULL; unsigned i, best_sb = 0; const char *err; int ret = -ENOMEM; pr_verbose_init(opts, ""); if (!nr_devices) { c = ERR_PTR(-EINVAL); goto out2; } if (!try_module_get(THIS_MODULE)) { c = ERR_PTR(-ENODEV); goto out2; } sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL); if (!sb) goto err; for (i = 0; i < nr_devices; i++) { ret = bch2_read_super(devices[i], &opts, &sb[i]); if (ret) goto err; err = bch2_sb_validate(&sb[i]); if (err) goto err_print; } for (i = 1; i < nr_devices; i++) if (le64_to_cpu(sb[i].sb->seq) > le64_to_cpu(sb[best_sb].sb->seq)) best_sb = i; for (i = 0; i < nr_devices; i++) { err = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb); if (err) goto err_print; } ret = -ENOMEM; c = bch2_fs_alloc(sb[best_sb].sb, opts); if (!c) goto err; err = "bch2_dev_online() error"; mutex_lock(&c->state_lock); for (i = 0; i < nr_devices; i++) if (bch2_dev_attach_bdev(c, &sb[i])) { mutex_unlock(&c->state_lock); goto err_print; } mutex_unlock(&c->state_lock); err = "insufficient devices"; if (!bch2_fs_may_start(c)) goto err_print; if (!c->opts.nostart) { ret = bch2_fs_start(c); if (ret) goto err; } out: kfree(sb); module_put(THIS_MODULE); out2: pr_verbose_init(opts, "ret %i", PTR_ERR_OR_ZERO(c)); return c; err_print: pr_err("bch_fs_open err opening %s: %s", devices[0], err); ret = -EINVAL; err: if (c) bch2_fs_stop(c); for (i = 0; i < nr_devices; i++) bch2_free_super(&sb[i]); c = ERR_PTR(ret); goto out; } static const char *__bch2_fs_open_incremental(struct bch_sb_handle *sb, struct bch_opts opts) { const char *err; struct bch_fs *c; bool allocated_fs = false; int ret; err = bch2_sb_validate(sb); if (err) return err; mutex_lock(&bch_fs_list_lock); c = __bch2_uuid_to_fs(sb->sb->uuid); if (c) { closure_get(&c->cl); err = bch2_dev_in_fs(c->disk_sb.sb, sb->sb); if (err) goto err; } else { c = bch2_fs_alloc(sb->sb, opts); err = "cannot allocate memory"; if (!c) goto err; allocated_fs = true; } err = "bch2_dev_online() error"; mutex_lock(&c->sb_lock); if (bch2_dev_attach_bdev(c, sb)) { mutex_unlock(&c->sb_lock); goto err; } mutex_unlock(&c->sb_lock); if (!c->opts.nostart && bch2_fs_may_start(c)) { err = "error starting filesystem"; ret = bch2_fs_start(c); if (ret) goto err; } closure_put(&c->cl); mutex_unlock(&bch_fs_list_lock); return NULL; err: mutex_unlock(&bch_fs_list_lock); if (allocated_fs) bch2_fs_stop(c); else if (c) closure_put(&c->cl); return err; } const char *bch2_fs_open_incremental(const char *path) { struct bch_sb_handle sb; struct bch_opts opts = bch2_opts_empty(); const char *err; if (bch2_read_super(path, &opts, &sb)) return "error reading superblock"; err = __bch2_fs_open_incremental(&sb, opts); bch2_free_super(&sb); return err; } /* Global interfaces/init */ static void bcachefs_exit(void) { bch2_debug_exit(); bch2_vfs_exit(); bch2_chardev_exit(); if (bcachefs_kset) kset_unregister(bcachefs_kset); } static int __init bcachefs_init(void) { bch2_bkey_pack_test(); bch2_inode_pack_test(); if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || bch2_chardev_init() || bch2_vfs_init() || bch2_debug_init()) goto err; return 0; err: bcachefs_exit(); return -ENOMEM; } #define BCH_DEBUG_PARAM(name, description) \ bool bch2_##name; \ module_param_named(name, bch2_##name, bool, 0644); \ MODULE_PARM_DESC(name, description); BCH_DEBUG_PARAMS() #undef BCH_DEBUG_PARAM unsigned bch2_metadata_version = bcachefs_metadata_version_current; module_param_named(version, bch2_metadata_version, uint, 0400); module_exit(bcachefs_exit); module_init(bcachefs_init);