/* * linux/fs/buffer.c * * Copyright (C) 1991, 1992, 2002 Linus Torvalds */ /* * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 * * Removed a lot of unnecessary code and simplified things now that * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 * * Speed up hash, lru, and free list operations. Use gfp() for allocating * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM * * Added 32k buffer block sizes - these are required older ARM systems. - RMK * * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> */ #include <linux/kernel.h> #include <linux/syscalls.h> #include <linux/fs.h> #include <linux/iomap.h> #include <linux/mm.h> #include <linux/percpu.h> #include <linux/slab.h> #include <linux/capability.h> #include <linux/blkdev.h> #include <linux/file.h> #include <linux/quotaops.h> #include <linux/highmem.h> #include <linux/export.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #include <linux/hash.h> #include <linux/suspend.h> #include <linux/buffer_head.h> #include <linux/task_io_accounting_ops.h> #include <linux/bio.h> #include <linux/notifier.h> #include <linux/cpu.h> #include <linux/bitops.h> #include <linux/mpage.h> #include <linux/bit_spinlock.h> #include <trace/events/block.h> static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, unsigned long bio_flags, struct writeback_control *wbc); #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) { bh->b_end_io = handler; bh->b_private = private; } EXPORT_SYMBOL(init_buffer); inline void touch_buffer(struct buffer_head *bh) { trace_block_touch_buffer(bh); mark_page_accessed(bh->b_page); } EXPORT_SYMBOL(touch_buffer); void __lock_buffer(struct buffer_head *bh) { wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(__lock_buffer); void unlock_buffer(struct buffer_head *bh) { clear_bit_unlock(BH_Lock, &bh->b_state); smp_mb__after_atomic(); wake_up_bit(&bh->b_state, BH_Lock); } EXPORT_SYMBOL(unlock_buffer); /* * Returns if the page has dirty or writeback buffers. If all the buffers * are unlocked and clean then the PageDirty information is stale. If * any of the pages are locked, it is assumed they are locked for IO. */ void buffer_check_dirty_writeback(struct page *page, bool *dirty, bool *writeback) { struct buffer_head *head, *bh; *dirty = false; *writeback = false; BUG_ON(!PageLocked(page)); if (!page_has_buffers(page)) return; if (PageWriteback(page)) *writeback = true; head = page_buffers(page); bh = head; do { if (buffer_locked(bh)) *writeback = true; if (buffer_dirty(bh)) *dirty = true; bh = bh->b_this_page; } while (bh != head); } EXPORT_SYMBOL(buffer_check_dirty_writeback); /* * Block until a buffer comes unlocked. This doesn't stop it * from becoming locked again - you have to lock it yourself * if you want to preserve its state. */ void __wait_on_buffer(struct buffer_head * bh) { wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(__wait_on_buffer); static void __clear_page_buffers(struct page *page) { ClearPagePrivate(page); set_page_private(page, 0); put_page(page); } static void buffer_io_error(struct buffer_head *bh, char *msg) { if (!test_bit(BH_Quiet, &bh->b_state)) printk_ratelimited(KERN_ERR "Buffer I/O error on dev %pg, logical block %llu%s\n", bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); } /* * End-of-IO handler helper function which does not touch the bh after * unlocking it. * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but * a race there is benign: unlock_buffer() only use the bh's address for * hashing after unlocking the buffer, so it doesn't actually touch the bh * itself. */ static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) { if (uptodate) { set_buffer_uptodate(bh); } else { /* This happens, due to failed read-ahead attempts. */ clear_buffer_uptodate(bh); } unlock_buffer(bh); } /* * Default synchronous end-of-IO handler.. Just mark it up-to-date and * unlock the buffer. This is what ll_rw_block uses too. */ void end_buffer_read_sync(struct buffer_head *bh, int uptodate) { __end_buffer_read_notouch(bh, uptodate); put_bh(bh); } EXPORT_SYMBOL(end_buffer_read_sync); void end_buffer_write_sync(struct buffer_head *bh, int uptodate) { if (uptodate) { set_buffer_uptodate(bh); } else { buffer_io_error(bh, ", lost sync page write"); set_buffer_write_io_error(bh); clear_buffer_uptodate(bh); } unlock_buffer(bh); put_bh(bh); } EXPORT_SYMBOL(end_buffer_write_sync); /* * Various filesystems appear to want __find_get_block to be non-blocking. * But it's the page lock which protects the buffers. To get around this, * we get exclusion from try_to_free_buffers with the blockdev mapping's * private_lock. * * Hack idea: for the blockdev mapping, i_bufferlist_lock contention * may be quite high. This code could TryLock the page, and if that * succeeds, there is no need to take private_lock. (But if * private_lock is contended then so is mapping->tree_lock). */ static struct buffer_head * __find_get_block_slow(struct block_device *bdev, sector_t block) { struct inode *bd_inode = bdev->bd_inode; struct address_space *bd_mapping = bd_inode->i_mapping; struct buffer_head *ret = NULL; pgoff_t index; struct buffer_head *bh; struct buffer_head *head; struct page *page; int all_mapped = 1; index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); if (!page) goto out; spin_lock(&bd_mapping->private_lock); if (!page_has_buffers(page)) goto out_unlock; head = page_buffers(page); bh = head; do { if (!buffer_mapped(bh)) all_mapped = 0; else if (bh->b_blocknr == block) { ret = bh; get_bh(bh); goto out_unlock; } bh = bh->b_this_page; } while (bh != head); /* we might be here because some of the buffers on this page are * not mapped. This is due to various races between * file io on the block device and getblk. It gets dealt with * elsewhere, don't buffer_error if we had some unmapped buffers */ if (all_mapped) { printk("__find_get_block_slow() failed. " "block=%llu, b_blocknr=%llu\n", (unsigned long long)block, (unsigned long long)bh->b_blocknr); printk("b_state=0x%08lx, b_size=%zu\n", bh->b_state, bh->b_size); printk("device %pg blocksize: %d\n", bdev, 1 << bd_inode->i_blkbits); } out_unlock: spin_unlock(&bd_mapping->private_lock); put_page(page); out: return ret; } /* * Kick the writeback threads then try to free up some ZONE_NORMAL memory. */ static void free_more_memory(void) { struct zoneref *z; int nid; wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); yield(); for_each_online_node(nid) { z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS), gfp_zone(GFP_NOFS), NULL); if (z->zone) try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, GFP_NOFS, NULL); } } /* * I/O completion handler for block_read_full_page() - pages * which come unlocked at the end of I/O. */ static void end_buffer_async_read(struct buffer_head *bh, int uptodate) { unsigned long flags; struct buffer_head *first; struct buffer_head *tmp; struct page *page; int page_uptodate = 1; BUG_ON(!buffer_async_read(bh)); page = bh->b_page; if (uptodate) { set_buffer_uptodate(bh); } else { clear_buffer_uptodate(bh); buffer_io_error(bh, ", async page read"); SetPageError(page); } /* * Be _very_ careful from here on. Bad things can happen if * two buffer heads end IO at almost the same time and both * decide that the page is now completely done. */ first = page_buffers(page); local_irq_save(flags); bit_spin_lock(BH_Uptodate_Lock, &first->b_state); clear_buffer_async_read(bh); unlock_buffer(bh); tmp = bh; do { if (!buffer_uptodate(tmp)) page_uptodate = 0; if (buffer_async_read(tmp)) { BUG_ON(!buffer_locked(tmp)); goto still_busy; } tmp = tmp->b_this_page; } while (tmp != bh); bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); local_irq_restore(flags); /* * If none of the buffers had errors and they are all * uptodate then we can set the page uptodate. */ if (page_uptodate && !PageError(page)) SetPageUptodate(page); unlock_page(page); return; still_busy: bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); local_irq_restore(flags); return; } /* * Completion handler for block_write_full_page() - pages which are unlocked * during I/O, and which have PageWriteback cleared upon I/O completion. */ void end_buffer_async_write(struct buffer_head *bh, int uptodate) { unsigned long flags; struct buffer_head *first; struct buffer_head *tmp; struct page *page; BUG_ON(!buffer_async_write(bh)); page = bh->b_page; if (uptodate) { set_buffer_uptodate(bh); } else { buffer_io_error(bh, ", lost async page write"); mapping_set_error(page->mapping, -EIO); set_buffer_write_io_error(bh); clear_buffer_uptodate(bh); SetPageError(page); } first = page_buffers(page); local_irq_save(flags); bit_spin_lock(BH_Uptodate_Lock, &first->b_state); clear_buffer_async_write(bh); unlock_buffer(bh); tmp = bh->b_this_page; while (tmp != bh) { if (buffer_async_write(tmp)) { BUG_ON(!buffer_locked(tmp)); goto still_busy; } tmp = tmp->b_this_page; } bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); local_irq_restore(flags); end_page_writeback(page); return; still_busy: bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); local_irq_restore(flags); return; } EXPORT_SYMBOL(end_buffer_async_write); /* * If a page's buffers are under async readin (end_buffer_async_read * completion) then there is a possibility that another thread of * control could lock one of the buffers after it has completed * but while some of the other buffers have not completed. This * locked buffer would confuse end_buffer_async_read() into not unlocking * the page. So the absence of BH_Async_Read tells end_buffer_async_read() * that this buffer is not under async I/O. * * The page comes unlocked when it has no locked buffer_async buffers * left. * * PageLocked prevents anyone starting new async I/O reads any of * the buffers. * * PageWriteback is used to prevent simultaneous writeout of the same * page. * * PageLocked prevents anyone from starting writeback of a page which is * under read I/O (PageWriteback is only ever set against a locked page). */ static void mark_buffer_async_read(struct buffer_head *bh) { bh->b_end_io = end_buffer_async_read; set_buffer_async_read(bh); } static void mark_buffer_async_write_endio(struct buffer_head *bh, bh_end_io_t *handler) { bh->b_end_io = handler; set_buffer_async_write(bh); } void mark_buffer_async_write(struct buffer_head *bh) { mark_buffer_async_write_endio(bh, end_buffer_async_write); } EXPORT_SYMBOL(mark_buffer_async_write); /* * fs/buffer.c contains helper functions for buffer-backed address space's * fsync functions. A common requirement for buffer-based filesystems is * that certain data from the backing blockdev needs to be written out for * a successful fsync(). For example, ext2 indirect blocks need to be * written back and waited upon before fsync() returns. * * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), * inode_has_buffers() and invalidate_inode_buffers() are provided for the * management of a list of dependent buffers at ->i_mapping->private_list. * * Locking is a little subtle: try_to_free_buffers() will remove buffers * from their controlling inode's queue when they are being freed. But * try_to_free_buffers() will be operating against the *blockdev* mapping * at the time, not against the S_ISREG file which depends on those buffers. * So the locking for private_list is via the private_lock in the address_space * which backs the buffers. Which is different from the address_space * against which the buffers are listed. So for a particular address_space, * mapping->private_lock does *not* protect mapping->private_list! In fact, * mapping->private_list will always be protected by the backing blockdev's * ->private_lock. * * Which introduces a requirement: all buffers on an address_space's * ->private_list must be from the same address_space: the blockdev's. * * address_spaces which do not place buffers at ->private_list via these * utility functions are free to use private_lock and private_list for * whatever they want. The only requirement is that list_empty(private_list) * be true at clear_inode() time. * * FIXME: clear_inode should not call invalidate_inode_buffers(). The * filesystems should do that. invalidate_inode_buffers() should just go * BUG_ON(!list_empty). * * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should * take an address_space, not an inode. And it should be called * mark_buffer_dirty_fsync() to clearly define why those buffers are being * queued up. * * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the * list if it is already on a list. Because if the buffer is on a list, * it *must* already be on the right one. If not, the filesystem is being * silly. This will save a ton of locking. But first we have to ensure * that buffers are taken *off* the old inode's list when they are freed * (presumably in truncate). That requires careful auditing of all * filesystems (do it inside bforget()). It could also be done by bringing * b_inode back. */ /* * The buffer's backing address_space's private_lock must be held */ static void __remove_assoc_queue(struct buffer_head *bh) { list_del_init(&bh->b_assoc_buffers); WARN_ON(!bh->b_assoc_map); if (buffer_write_io_error(bh)) set_bit(AS_EIO, &bh->b_assoc_map->flags); bh->b_assoc_map = NULL; } int inode_has_buffers(struct inode *inode) { return !list_empty(&inode->i_data.private_list); } /* * osync is designed to support O_SYNC io. It waits synchronously for * all already-submitted IO to complete, but does not queue any new * writes to the disk. * * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as * you dirty the buffers, and then use osync_inode_buffers to wait for * completion. Any other dirty buffers which are not yet queued for * write will not be flushed to disk by the osync. */ static int osync_buffers_list(spinlock_t *lock, struct list_head *list) { struct buffer_head *bh; struct list_head *p; int err = 0; spin_lock(lock); repeat: list_for_each_prev(p, list) { bh = BH_ENTRY(p); if (buffer_locked(bh)) { get_bh(bh); spin_unlock(lock); wait_on_buffer(bh); if (!buffer_uptodate(bh)) err = -EIO; brelse(bh); spin_lock(lock); goto repeat; } } spin_unlock(lock); return err; } static void do_thaw_one(struct super_block *sb, void *unused) { while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); } static void do_thaw_all(struct work_struct *work) { iterate_supers(do_thaw_one, NULL); kfree(work); printk(KERN_WARNING "Emergency Thaw complete\n"); } /** * emergency_thaw_all -- forcibly thaw every frozen filesystem * * Used for emergency unfreeze of all filesystems via SysRq */ void emergency_thaw_all(void) { struct work_struct *work; work = kmalloc(sizeof(*work), GFP_ATOMIC); if (work) { INIT_WORK(work, do_thaw_all); schedule_work(work); } } /** * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers * @mapping: the mapping which wants those buffers written * * Starts I/O against the buffers at mapping->private_list, and waits upon * that I/O. * * Basically, this is a convenience function for fsync(). * @mapping is a file or directory which needs those buffers to be written for * a successful fsync(). */ int sync_mapping_buffers(struct address_space *mapping) { struct address_space *buffer_mapping = mapping->private_data; if (buffer_mapping == NULL || list_empty(&mapping->private_list)) return 0; return fsync_buffers_list(&buffer_mapping->private_lock, &mapping->private_list); } EXPORT_SYMBOL(sync_mapping_buffers); /* * Called when we've recently written block `bblock', and it is known that * `bblock' was for a buffer_boundary() buffer. This means that the block at * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's * dirty, schedule it for IO. So that indirects merge nicely with their data. */ void write_boundary_block(struct block_device *bdev, sector_t bblock, unsigned blocksize) { struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); if (bh) { if (buffer_dirty(bh)) ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); put_bh(bh); } } void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) { struct address_space *mapping = inode->i_mapping; struct address_space *buffer_mapping = bh->b_page->mapping; mark_buffer_dirty(bh); if (!mapping->private_data) { mapping->private_data = buffer_mapping; } else { BUG_ON(mapping->private_data != buffer_mapping); } if (!bh->b_assoc_map) { spin_lock(&buffer_mapping->private_lock); list_move_tail(&bh->b_assoc_buffers, &mapping->private_list); bh->b_assoc_map = mapping; spin_unlock(&buffer_mapping->private_lock); } } EXPORT_SYMBOL(mark_buffer_dirty_inode); /* * Mark the page dirty, and set it dirty in the radix tree, and mark the inode * dirty. * * If warn is true, then emit a warning if the page is not uptodate and has * not been truncated. * * The caller must hold lock_page_memcg(). */ static void __set_page_dirty(struct page *page, struct address_space *mapping, int warn) { unsigned long flags; spin_lock_irqsave(&mapping->tree_lock, flags); if (page->mapping) { /* Race with truncate? */ WARN_ON_ONCE(warn && !PageUptodate(page)); account_page_dirtied(page, mapping); radix_tree_tag_set(&mapping->page_tree, page_index(page), PAGECACHE_TAG_DIRTY); } spin_unlock_irqrestore(&mapping->tree_lock, flags); } /* * Add a page to the dirty page list. * * It is a sad fact of life that this function is called from several places * deeply under spinlocking. It may not sleep. * * If the page has buffers, the uptodate buffers are set dirty, to preserve * dirty-state coherency between the page and the buffers. It the page does * not have buffers then when they are later attached they will all be set * dirty. * * The buffers are dirtied before the page is dirtied. There's a small race * window in which a writepage caller may see the page cleanness but not the * buffer dirtiness. That's fine. If this code were to set the page dirty * before the buffers, a concurrent writepage caller could clear the page dirty * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean * page on the dirty page list. * * We use private_lock to lock against try_to_free_buffers while using the * page's buffer list. Also use this to protect against clean buffers being * added to the page after it was set dirty. * * FIXME: may need to call ->reservepage here as well. That's rather up to the * address_space though. */ int __set_page_dirty_buffers(struct page *page) { int newly_dirty; struct address_space *mapping = page_mapping(page); if (unlikely(!mapping)) return !TestSetPageDirty(page); spin_lock(&mapping->private_lock); if (page_has_buffers(page)) { struct buffer_head *head = page_buffers(page); struct buffer_head *bh = head; do { set_buffer_dirty(bh); bh = bh->b_this_page; } while (bh != head); } /* * Lock out page->mem_cgroup migration to keep PageDirty * synchronized with per-memcg dirty page counters. */ lock_page_memcg(page); newly_dirty = !TestSetPageDirty(page); spin_unlock(&mapping->private_lock); if (newly_dirty) __set_page_dirty(page, mapping, 1); unlock_page_memcg(page); if (newly_dirty) __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); return newly_dirty; } EXPORT_SYMBOL(__set_page_dirty_buffers); /* * Write out and wait upon a list of buffers. * * We have conflicting pressures: we want to make sure that all * initially dirty buffers get waited on, but that any subsequently * dirtied buffers don't. After all, we don't want fsync to last * forever if somebody is actively writing to the file. * * Do this in two main stages: first we copy dirty buffers to a * temporary inode list, queueing the writes as we go. Then we clean * up, waiting for those writes to complete. * * During this second stage, any subsequent updates to the file may end * up refiling the buffer on the original inode's dirty list again, so * there is a chance we will end up with a buffer queued for write but * not yet completed on that list. So, as a final cleanup we go through * the osync code to catch these locked, dirty buffers without requeuing * any newly dirty buffers for write. */ static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) { struct buffer_head *bh; struct list_head tmp; struct address_space *mapping; int err = 0, err2; struct blk_plug plug; INIT_LIST_HEAD(&tmp); blk_start_plug(&plug); spin_lock(lock); while (!list_empty(list)) { bh = BH_ENTRY(list->next); mapping = bh->b_assoc_map; __remove_assoc_queue(bh); /* Avoid race with mark_buffer_dirty_inode() which does * a lockless check and we rely on seeing the dirty bit */ smp_mb(); if (buffer_dirty(bh) || buffer_locked(bh)) { list_add(&bh->b_assoc_buffers, &tmp); bh->b_assoc_map = mapping; if (buffer_dirty(bh)) { get_bh(bh); spin_unlock(lock); /* * Ensure any pending I/O completes so that * write_dirty_buffer() actually writes the * current contents - it is a noop if I/O is * still in flight on potentially older * contents. */ write_dirty_buffer(bh, WRITE_SYNC); /* * Kick off IO for the previous mapping. Note * that we will not run the very last mapping, * wait_on_buffer() will do that for us * through sync_buffer(). */ brelse(bh); spin_lock(lock); } } } spin_unlock(lock); blk_finish_plug(&plug); spin_lock(lock); while (!list_empty(&tmp)) { bh = BH_ENTRY(tmp.prev); get_bh(bh); mapping = bh->b_assoc_map; __remove_assoc_queue(bh); /* Avoid race with mark_buffer_dirty_inode() which does * a lockless check and we rely on seeing the dirty bit */ smp_mb(); if (buffer_dirty(bh)) { list_add(&bh->b_assoc_buffers, &mapping->private_list); bh->b_assoc_map = mapping; } spin_unlock(lock); wait_on_buffer(bh); if (!buffer_uptodate(bh)) err = -EIO; brelse(bh); spin_lock(lock); } spin_unlock(lock); err2 = osync_buffers_list(lock, list); if (err) return err; else return err2; } /* * Invalidate any and all dirty buffers on a given inode. We are * probably unmounting the fs, but that doesn't mean we have already * done a sync(). Just drop the buffers from the inode list. * * NOTE: we take the inode's blockdev's mapping's private_lock. Which * assumes that all the buffers are against the blockdev. Not true * for reiserfs. */ void invalidate_inode_buffers(struct inode *inode) { if (inode_has_buffers(inode)) { struct address_space *mapping = &inode->i_data; struct list_head *list = &mapping->private_list; struct address_space *buffer_mapping = mapping->private_data; spin_lock(&buffer_mapping->private_lock); while (!list_empty(list)) __remove_assoc_queue(BH_ENTRY(list->next)); spin_unlock(&buffer_mapping->private_lock); } } EXPORT_SYMBOL(invalidate_inode_buffers); /* * Remove any clean buffers from the inode's buffer list. This is called * when we're trying to free the inode itself. Those buffers can pin it. * * Returns true if all buffers were removed. */ int remove_inode_buffers(struct inode *inode) { int ret = 1; if (inode_has_buffers(inode)) { struct address_space *mapping = &inode->i_data; struct list_head *list = &mapping->private_list; struct address_space *buffer_mapping = mapping->private_data; spin_lock(&buffer_mapping->private_lock); while (!list_empty(list)) { struct buffer_head *bh = BH_ENTRY(list->next); if (buffer_dirty(bh)) { ret = 0; break; } __remove_assoc_queue(bh); } spin_unlock(&buffer_mapping->private_lock); } return ret; } /* * Create the appropriate buffers when given a page for data area and * the size of each buffer.. Use the bh->b_this_page linked list to * follow the buffers created. Return NULL if unable to create more * buffers. * * The retry flag is used to differentiate async IO (paging, swapping) * which may not fail from ordinary buffer allocations. */ struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, int retry) { struct buffer_head *bh, *head; long offset; try_again: head = NULL; offset = PAGE_SIZE; while ((offset -= size) >= 0) { bh = alloc_buffer_head(GFP_NOFS); if (!bh) goto no_grow; bh->b_this_page = head; bh->b_blocknr = -1; head = bh; bh->b_size = size; /* Link the buffer to its page */ set_bh_page(bh, page, offset); } return head; /* * In case anything failed, we just free everything we got. */ no_grow: if (head) { do { bh = head; head = head->b_this_page; free_buffer_head(bh); } while (head); } /* * Return failure for non-async IO requests. Async IO requests * are not allowed to fail, so we have to wait until buffer heads * become available. But we don't want tasks sleeping with * partially complete buffers, so all were released above. */ if (!retry) return NULL; /* We're _really_ low on memory. Now we just * wait for old buffer heads to become free due to * finishing IO. Since this is an async request and * the reserve list is empty, we're sure there are * async buffer heads in use. */ free_more_memory(); goto try_again; } EXPORT_SYMBOL_GPL(alloc_page_buffers); static inline void link_dev_buffers(struct page *page, struct buffer_head *head) { struct buffer_head *bh, *tail; bh = head; do { tail = bh; bh = bh->b_this_page; } while (bh); tail->b_this_page = head; attach_page_buffers(page, head); } static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) { sector_t retval = ~((sector_t)0); loff_t sz = i_size_read(bdev->bd_inode); if (sz) { unsigned int sizebits = blksize_bits(size); retval = (sz >> sizebits); } return retval; } /* * Initialise the state of a blockdev page's buffers. */ static sector_t init_page_buffers(struct page *page, struct block_device *bdev, sector_t block, int size) { struct buffer_head *head = page_buffers(page); struct buffer_head *bh = head; int uptodate = PageUptodate(page); sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); do { if (!buffer_mapped(bh)) { init_buffer(bh, NULL, NULL); bh->b_bdev = bdev; bh->b_blocknr = block; if (uptodate) set_buffer_uptodate(bh); if (block < end_block) set_buffer_mapped(bh); } block++; bh = bh->b_this_page; } while (bh != head); /* * Caller needs to validate requested block against end of device. */ return end_block; } /* * Create the page-cache page that contains the requested block. * * This is used purely for blockdev mappings. */ static int grow_dev_page(struct block_device *bdev, sector_t block, pgoff_t index, int size, int sizebits, gfp_t gfp) { struct inode *inode = bdev->bd_inode; struct page *page; struct buffer_head *bh; sector_t end_block; int ret = 0; /* Will call free_more_memory() */ gfp_t gfp_mask; gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; /* * XXX: __getblk_slow() can not really deal with failure and * will endlessly loop on improvised global reclaim. Prefer * looping in the allocator rather than here, at least that * code knows what it's doing. */ gfp_mask |= __GFP_NOFAIL; page = find_or_create_page(inode->i_mapping, index, gfp_mask); if (!page) return ret; BUG_ON(!PageLocked(page)); if (page_has_buffers(page)) { bh = page_buffers(page); if (bh->b_size == size) { end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, size); goto done; } if (!try_to_free_buffers(page)) goto failed; } /* * Allocate some buffers for this page */ bh = alloc_page_buffers(page, size, 0); if (!bh) goto failed; /* * Link the page to the buffers and initialise them. Take the * lock to be atomic wrt __find_get_block(), which does not * run under the page lock. */ spin_lock(&inode->i_mapping->private_lock); link_dev_buffers(page, bh); end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, size); spin_unlock(&inode->i_mapping->private_lock); done: ret = (block < end_block) ? 1 : -ENXIO; failed: unlock_page(page); put_page(page); return ret; } /* * Create buffers for the specified block device block's page. If * that page was dirty, the buffers are set dirty also. */ static int grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) { pgoff_t index; int sizebits; sizebits = -1; do { sizebits++; } while ((size << sizebits) < PAGE_SIZE); index = block >> sizebits; /* * Check for a block which wants to lie outside our maximum possible * pagecache index. (this comparison is done using sector_t types). */ if (unlikely(index != block >> sizebits)) { printk(KERN_ERR "%s: requested out-of-range block %llu for " "device %pg\n", __func__, (unsigned long long)block, bdev); return -EIO; } /* Create a page with the proper size buffers.. */ return grow_dev_page(bdev, block, index, size, sizebits, gfp); } static struct buffer_head * __getblk_slow(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp) { /* Size must be multiple of hard sectorsize */ if (unlikely(size & (bdev_logical_block_size(bdev)-1) || (size < 512 || size > PAGE_SIZE))) { printk(KERN_ERR "getblk(): invalid block size %d requested\n", size); printk(KERN_ERR "logical block size: %d\n", bdev_logical_block_size(bdev)); dump_stack(); return NULL; } for (;;) { struct buffer_head *bh; int ret; bh = __find_get_block(bdev, block, size); if (bh) return bh; ret = grow_buffers(bdev, block, size, gfp); if (ret < 0) return NULL; if (ret == 0) free_more_memory(); } } /* * The relationship between dirty buffers and dirty pages: * * Whenever a page has any dirty buffers, the page's dirty bit is set, and * the page is tagged dirty in its radix tree. * * At all times, the dirtiness of the buffers represents the dirtiness of * subsections of the page. If the page has buffers, the page dirty bit is * merely a hint about the true dirty state. * * When a page is set dirty in its entirety, all its buffers are marked dirty * (if the page has buffers). * * When a buffer is marked dirty, its page is dirtied, but the page's other * buffers are not. * * Also. When blockdev buffers are explicitly read with bread(), they * individually become uptodate. But their backing page remains not * uptodate - even if all of its buffers are uptodate. A subsequent * block_read_full_page() against that page will discover all the uptodate * buffers, will set the page uptodate and will perform no I/O. */ /** * mark_buffer_dirty - mark a buffer_head as needing writeout * @bh: the buffer_head to mark dirty * * mark_buffer_dirty() will set the dirty bit against the buffer, then set its * backing page dirty, then tag the page as dirty in its address_space's radix * tree and then attach the address_space's inode to its superblock's dirty * inode list. * * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, * mapping->tree_lock and mapping->host->i_lock. */ void mark_buffer_dirty(struct buffer_head *bh) { WARN_ON_ONCE(!buffer_uptodate(bh)); trace_block_dirty_buffer(bh); /* * Very *carefully* optimize the it-is-already-dirty case. * * Don't let the final "is it dirty" escape to before we * perhaps modified the buffer. */ if (buffer_dirty(bh)) { smp_mb(); if (buffer_dirty(bh)) return; } if (!test_set_buffer_dirty(bh)) { struct page *page = bh->b_page; struct address_space *mapping = NULL; lock_page_memcg(page); if (!TestSetPageDirty(page)) { mapping = page_mapping(page); if (mapping) __set_page_dirty(page, mapping, 0); } unlock_page_memcg(page); if (mapping) __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); } } EXPORT_SYMBOL(mark_buffer_dirty); /* * Decrement a buffer_head's reference count. If all buffers against a page * have zero reference count, are clean and unlocked, and if the page is clean * and unlocked then try_to_free_buffers() may strip the buffers from the page * in preparation for freeing it (sometimes, rarely, buffers are removed from * a page but it ends up not being freed, and buffers may later be reattached). */ void __brelse(struct buffer_head * buf) { if (atomic_read(&buf->b_count)) { put_bh(buf); return; } WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); } EXPORT_SYMBOL(__brelse); /* * bforget() is like brelse(), except it discards any * potentially dirty data. */ void __bforget(struct buffer_head *bh) { clear_buffer_dirty(bh); if (bh->b_assoc_map) { struct address_space *buffer_mapping = bh->b_page->mapping; spin_lock(&buffer_mapping->private_lock); list_del_init(&bh->b_assoc_buffers); bh->b_assoc_map = NULL; spin_unlock(&buffer_mapping->private_lock); } __brelse(bh); } EXPORT_SYMBOL(__bforget); static struct buffer_head *__bread_slow(struct buffer_head *bh) { lock_buffer(bh); if (buffer_uptodate(bh)) { unlock_buffer(bh); return bh; } else { get_bh(bh); bh->b_end_io = end_buffer_read_sync; submit_bh(REQ_OP_READ, 0, bh); wait_on_buffer(bh); if (buffer_uptodate(bh)) return bh; } brelse(bh); return NULL; } /* * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their * refcount elevated by one when they're in an LRU. A buffer can only appear * once in a particular CPU's LRU. A single buffer can be present in multiple * CPU's LRUs at the same time. * * This is a transparent caching front-end to sb_bread(), sb_getblk() and * sb_find_get_block(). * * The LRUs themselves only need locking against invalidate_bh_lrus. We use * a local interrupt disable for that. */ #define BH_LRU_SIZE 16 struct bh_lru { struct buffer_head *bhs[BH_LRU_SIZE]; }; static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; #ifdef CONFIG_SMP #define bh_lru_lock() local_irq_disable() #define bh_lru_unlock() local_irq_enable() #else #define bh_lru_lock() preempt_disable() #define bh_lru_unlock() preempt_enable() #endif static inline void check_irqs_on(void) { #ifdef irqs_disabled BUG_ON(irqs_disabled()); #endif } /* * The LRU management algorithm is dopey-but-simple. Sorry. */ static void bh_lru_install(struct buffer_head *bh) { struct buffer_head *evictee = NULL; check_irqs_on(); bh_lru_lock(); if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { struct buffer_head *bhs[BH_LRU_SIZE]; int in; int out = 0; get_bh(bh); bhs[out++] = bh; for (in = 0; in < BH_LRU_SIZE; in++) { struct buffer_head *bh2 = __this_cpu_read(bh_lrus.bhs[in]); if (bh2 == bh) { __brelse(bh2); } else { if (out >= BH_LRU_SIZE) { BUG_ON(evictee != NULL); evictee = bh2; } else { bhs[out++] = bh2; } } } while (out < BH_LRU_SIZE) bhs[out++] = NULL; memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); } bh_lru_unlock(); if (evictee) __brelse(evictee); } /* * Look up the bh in this cpu's LRU. If it's there, move it to the head. */ static struct buffer_head * lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) { struct buffer_head *ret = NULL; unsigned int i; check_irqs_on(); bh_lru_lock(); for (i = 0; i < BH_LRU_SIZE; i++) { struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && bh->b_size == size) { if (i) { while (i) { __this_cpu_write(bh_lrus.bhs[i], __this_cpu_read(bh_lrus.bhs[i - 1])); i--; } __this_cpu_write(bh_lrus.bhs[0], bh); } get_bh(bh); ret = bh; break; } } bh_lru_unlock(); return ret; } /* * Perform a pagecache lookup for the matching buffer. If it's there, refresh * it in the LRU and mark it as accessed. If it is not present then return * NULL */ struct buffer_head * __find_get_block(struct block_device *bdev, sector_t block, unsigned size) { struct buffer_head *bh = lookup_bh_lru(bdev, block, size); if (bh == NULL) { /* __find_get_block_slow will mark the page accessed */ bh = __find_get_block_slow(bdev, block); if (bh) bh_lru_install(bh); } else touch_buffer(bh); return bh; } EXPORT_SYMBOL(__find_get_block); /* * __getblk_gfp() will locate (and, if necessary, create) the buffer_head * which corresponds to the passed block_device, block and size. The * returned buffer has its reference count incremented. * * __getblk_gfp() will lock up the machine if grow_dev_page's * try_to_free_buffers() attempt is failing. FIXME, perhaps? */ struct buffer_head * __getblk_gfp(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp) { struct buffer_head *bh = __find_get_block(bdev, block, size); might_sleep(); if (bh == NULL) bh = __getblk_slow(bdev, block, size, gfp); return bh; } EXPORT_SYMBOL(__getblk_gfp); /* * Do async read-ahead on a buffer.. */ void __breadahead(struct block_device *bdev, sector_t block, unsigned size) { struct buffer_head *bh = __getblk(bdev, block, size); if (likely(bh)) { ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); brelse(bh); } } EXPORT_SYMBOL(__breadahead); /** * __bread_gfp() - reads a specified block and returns the bh * @bdev: the block_device to read from * @block: number of block * @size: size (in bytes) to read * @gfp: page allocation flag * * Reads a specified block, and returns buffer head that contains it. * The page cache can be allocated from non-movable area * not to prevent page migration if you set gfp to zero. * It returns NULL if the block was unreadable. */ struct buffer_head * __bread_gfp(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp) { struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); if (likely(bh) && !buffer_uptodate(bh)) bh = __bread_slow(bh); return bh; } EXPORT_SYMBOL(__bread_gfp); /* * invalidate_bh_lrus() is called rarely - but not only at unmount. * This doesn't race because it runs in each cpu either in irq * or with preempt disabled. */ static void invalidate_bh_lru(void *arg) { struct bh_lru *b = &get_cpu_var(bh_lrus); int i; for (i = 0; i < BH_LRU_SIZE; i++) { brelse(b->bhs[i]); b->bhs[i] = NULL; } put_cpu_var(bh_lrus); } static bool has_bh_in_lru(int cpu, void *dummy) { struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); int i; for (i = 0; i < BH_LRU_SIZE; i++) { if (b->bhs[i]) return 1; } return 0; } void invalidate_bh_lrus(void) { on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); } EXPORT_SYMBOL_GPL(invalidate_bh_lrus); void set_bh_page(struct buffer_head *bh, struct page *page, unsigned long offset) { bh->b_page = page; BUG_ON(offset >= PAGE_SIZE); if (PageHighMem(page)) /* * This catches illegal uses and preserves the offset: */ bh->b_data = (char *)(0 + offset); else bh->b_data = page_address(page) + offset; } EXPORT_SYMBOL(set_bh_page); /* * Called when truncating a buffer on a page completely. */ /* Bits that are cleared during an invalidate */ #define BUFFER_FLAGS_DISCARD \ (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1 << BH_Delay | 1 << BH_Unwritten) static void discard_buffer(struct buffer_head * bh) { unsigned long b_state, b_state_old; lock_buffer(bh); clear_buffer_dirty(bh); bh->b_bdev = NULL; b_state = bh->b_state; for (;;) { b_state_old = cmpxchg(&bh->b_state, b_state, (b_state & ~BUFFER_FLAGS_DISCARD)); if (b_state_old == b_state) break; b_state = b_state_old; } unlock_buffer(bh); } /** * block_invalidatepage - invalidate part or all of a buffer-backed page * * @page: the page which is affected * @offset: start of the range to invalidate * @length: length of the range to invalidate * * block_invalidatepage() is called when all or part of the page has become * invalidated by a truncate operation. * * block_invalidatepage() does not have to release all buffers, but it must * ensure that no dirty buffer is left outside @offset and that no I/O * is underway against any of the blocks which are outside the truncation * point. Because the caller is about to free (and possibly reuse) those * blocks on-disk. */ void block_invalidatepage(struct page *page, unsigned int offset, unsigned int length) { struct buffer_head *head, *bh, *next; unsigned int curr_off = 0; unsigned int stop = length + offset; BUG_ON(!PageLocked(page)); if (!page_has_buffers(page)) goto out; /* * Check for overflow */ BUG_ON(stop > PAGE_SIZE || stop < length); head = page_buffers(page); bh = head; do { unsigned int next_off = curr_off + bh->b_size; next = bh->b_this_page; /* * Are we still fully in range ? */ if (next_off > stop) goto out; /* * is this block fully invalidated? */ if (offset <= curr_off) discard_buffer(bh); curr_off = next_off; bh = next; } while (bh != head); /* * We release buffers only if the entire page is being invalidated. * The get_block cached value has been unconditionally invalidated, * so real IO is not possible anymore. */ if (offset == 0) try_to_release_page(page, 0); out: return; } EXPORT_SYMBOL(block_invalidatepage); /* * We attach and possibly dirty the buffers atomically wrt * __set_page_dirty_buffers() via private_lock. try_to_free_buffers * is already excluded via the page lock. */ void create_empty_buffers(struct page *page, unsigned long blocksize, unsigned long b_state) { struct buffer_head *bh, *head, *tail; head = alloc_page_buffers(page, blocksize, 1); bh = head; do { bh->b_state |= b_state; tail = bh; bh = bh->b_this_page; } while (bh); tail->b_this_page = head; spin_lock(&page->mapping->private_lock); if (PageUptodate(page) || PageDirty(page)) { bh = head; do { if (PageDirty(page)) set_buffer_dirty(bh); if (PageUptodate(page)) set_buffer_uptodate(bh); bh = bh->b_this_page; } while (bh != head); } attach_page_buffers(page, head); spin_unlock(&page->mapping->private_lock); } EXPORT_SYMBOL(create_empty_buffers); /* * We are taking a block for data and we don't want any output from any * buffer-cache aliases starting from return from that function and * until the moment when something will explicitly mark the buffer * dirty (hopefully that will not happen until we will free that block ;-) * We don't even need to mark it not-uptodate - nobody can expect * anything from a newly allocated buffer anyway. We used to used * unmap_buffer() for such invalidation, but that was wrong. We definitely * don't want to mark the alias unmapped, for example - it would confuse * anyone who might pick it with bread() afterwards... * * Also.. Note that bforget() doesn't lock the buffer. So there can * be writeout I/O going on against recently-freed buffers. We don't * wait on that I/O in bforget() - it's more efficient to wait on the I/O * only if we really need to. That happens here. */ void unmap_underlying_metadata(struct block_device *bdev, sector_t block) { struct buffer_head *old_bh; might_sleep(); old_bh = __find_get_block_slow(bdev, block); if (old_bh) { clear_buffer_dirty(old_bh); wait_on_buffer(old_bh); clear_buffer_req(old_bh); __brelse(old_bh); } } EXPORT_SYMBOL(unmap_underlying_metadata); /* * Size is a power-of-two in the range 512..PAGE_SIZE, * and the case we care about most is PAGE_SIZE. * * So this *could* possibly be written with those * constraints in mind (relevant mostly if some * architecture has a slow bit-scan instruction) */ static inline int block_size_bits(unsigned int blocksize) { return ilog2(blocksize); } static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) { BUG_ON(!PageLocked(page)); if (!page_has_buffers(page)) create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); return page_buffers(page); } /* * NOTE! All mapped/uptodate combinations are valid: * * Mapped Uptodate Meaning * * No No "unknown" - must do get_block() * No Yes "hole" - zero-filled * Yes No "allocated" - allocated on disk, not read in * Yes Yes "valid" - allocated and up-to-date in memory. * * "Dirty" is valid only with the last case (mapped+uptodate). */ /* * While block_write_full_page is writing back the dirty buffers under * the page lock, whoever dirtied the buffers may decide to clean them * again at any time. We handle that by only looking at the buffer * state inside lock_buffer(). * * If block_write_full_page() is called for regular writeback * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a * locked buffer. This only can happen if someone has written the buffer * directly, with submit_bh(). At the address_space level PageWriteback * prevents this contention from occurring. * * If block_write_full_page() is called with wbc->sync_mode == * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this * causes the writes to be flagged as synchronous writes. */ int __block_write_full_page(struct inode *inode, struct page *page, get_block_t *get_block, struct writeback_control *wbc, bh_end_io_t *handler) { int err; sector_t block; sector_t last_block; struct buffer_head *bh, *head; unsigned int blocksize, bbits; int nr_underway = 0; int write_flags = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : 0); head = create_page_buffers(page, inode, (1 << BH_Dirty)|(1 << BH_Uptodate)); /* * Be very careful. We have no exclusion from __set_page_dirty_buffers * here, and the (potentially unmapped) buffers may become dirty at * any time. If a buffer becomes dirty here after we've inspected it * then we just miss that fact, and the page stays dirty. * * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; * handle that here by just cleaning them. */ bh = head; blocksize = bh->b_size; bbits = block_size_bits(blocksize); block = (sector_t)page->index << (PAGE_SHIFT - bbits); last_block = (i_size_read(inode) - 1) >> bbits; /* * Get all the dirty buffers mapped to disk addresses and * handle any aliases from the underlying blockdev's mapping. */ do { if (block > last_block) { /* * mapped buffers outside i_size will occur, because * this page can be outside i_size when there is a * truncate in progress. */ /* * The buffer was zeroed by block_write_full_page() */ clear_buffer_dirty(bh); set_buffer_uptodate(bh); } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)) { WARN_ON(bh->b_size != blocksize); err = get_block(inode, block, bh, 1); if (err) goto recover; clear_buffer_delay(bh); if (buffer_new(bh)) { /* blockdev mappings never come here */ clear_buffer_new(bh); unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); } } bh = bh->b_this_page; block++; } while (bh != head); do { if (!buffer_mapped(bh)) continue; /* * If it's a fully non-blocking write attempt and we cannot * lock the buffer then redirty the page. Note that this can * potentially cause a busy-wait loop from writeback threads * and kswapd activity, but those code paths have their own * higher-level throttling. */ if (wbc->sync_mode != WB_SYNC_NONE) { lock_buffer(bh); } else if (!trylock_buffer(bh)) { redirty_page_for_writepage(wbc, page); continue; } if (test_clear_buffer_dirty(bh)) { mark_buffer_async_write_endio(bh, handler); } else { unlock_buffer(bh); } } while ((bh = bh->b_this_page) != head); /* * The page and its buffers are protected by PageWriteback(), so we can * drop the bh refcounts early. */ BUG_ON(PageWriteback(page)); set_page_writeback(page); do { struct buffer_head *next = bh->b_this_page; if (buffer_async_write(bh)) { submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc); nr_underway++; } bh = next; } while (bh != head); unlock_page(page); err = 0; done: if (nr_underway == 0) { /* * The page was marked dirty, but the buffers were * clean. Someone wrote them back by hand with * ll_rw_block/submit_bh. A rare case. */ end_page_writeback(page); /* * The page and buffer_heads can be released at any time from * here on. */ } return err; recover: /* * ENOSPC, or some other error. We may already have added some * blocks to the file, so we need to write these out to avoid * exposing stale data. * The page is currently locked and not marked for writeback */ bh = head; /* Recovery: lock and submit the mapped buffers */ do { if (buffer_mapped(bh) && buffer_dirty(bh) && !buffer_delay(bh)) { lock_buffer(bh); mark_buffer_async_write_endio(bh, handler); } else { /* * The buffer may have been set dirty during * attachment to a dirty page. */ clear_buffer_dirty(bh); } } while ((bh = bh->b_this_page) != head); SetPageError(page); BUG_ON(PageWriteback(page)); mapping_set_error(page->mapping, err); set_page_writeback(page); do { struct buffer_head *next = bh->b_this_page; if (buffer_async_write(bh)) { clear_buffer_dirty(bh); submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc); nr_underway++; } bh = next; } while (bh != head); unlock_page(page); goto done; } EXPORT_SYMBOL(__block_write_full_page); /* * If a page has any new buffers, zero them out here, and mark them uptodate * and dirty so they'll be written out (in order to prevent uninitialised * block data from leaking). And clear the new bit. */ void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) { unsigned int block_start, block_end; struct buffer_head *head, *bh; BUG_ON(!PageLocked(page)); if (!page_has_buffers(page)) return; bh = head = page_buffers(page); block_start = 0; do { block_end = block_start + bh->b_size; if (buffer_new(bh)) { if (block_end > from && block_start < to) { if (!PageUptodate(page)) { unsigned start, size; start = max(from, block_start); size = min(to, block_end) - start; zero_user(page, start, size); set_buffer_uptodate(bh); } clear_buffer_new(bh); mark_buffer_dirty(bh); } } block_start = block_end; bh = bh->b_this_page; } while (bh != head); } EXPORT_SYMBOL(page_zero_new_buffers); static void iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, struct iomap *iomap) { loff_t offset = block << inode->i_blkbits; bh->b_bdev = iomap->bdev; /* * Block points to offset in file we need to map, iomap contains * the offset at which the map starts. If the map ends before the * current block, then do not map the buffer and let the caller * handle it. */ BUG_ON(offset >= iomap->offset + iomap->length); switch (iomap->type) { case IOMAP_HOLE: /* * If the buffer is not up to date or beyond the current EOF, * we need to mark it as new to ensure sub-block zeroing is * executed if necessary. */ if (!buffer_uptodate(bh) || (offset >= i_size_read(inode))) set_buffer_new(bh); break; case IOMAP_DELALLOC: if (!buffer_uptodate(bh) || (offset >= i_size_read(inode))) set_buffer_new(bh); set_buffer_uptodate(bh); set_buffer_mapped(bh); set_buffer_delay(bh); break; case IOMAP_UNWRITTEN: /* * For unwritten regions, we always need to ensure that * sub-block writes cause the regions in the block we are not * writing to are zeroed. Set the buffer as new to ensure this. */ set_buffer_new(bh); set_buffer_unwritten(bh); /* FALLTHRU */ case IOMAP_MAPPED: if (offset >= i_size_read(inode)) set_buffer_new(bh); bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) + ((offset - iomap->offset) >> inode->i_blkbits); set_buffer_mapped(bh); break; } } int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, get_block_t *get_block, struct iomap *iomap) { unsigned from = pos & (PAGE_SIZE - 1); unsigned to = from + len; struct inode *inode = page->mapping->host; unsigned block_start, block_end; sector_t block; int err = 0; unsigned blocksize, bbits; struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; BUG_ON(!PageLocked(page)); BUG_ON(from > PAGE_SIZE); BUG_ON(to > PAGE_SIZE); BUG_ON(from > to); head = create_page_buffers(page, inode, 0); blocksize = head->b_size; bbits = block_size_bits(blocksize); block = (sector_t)page->index << (PAGE_SHIFT - bbits); for(bh = head, block_start = 0; bh != head || !block_start; block++, block_start=block_end, bh = bh->b_this_page) { block_end = block_start + blocksize; if (block_end <= from || block_start >= to) { if (PageUptodate(page)) { if (!buffer_uptodate(bh)) set_buffer_uptodate(bh); } continue; } if (buffer_new(bh)) clear_buffer_new(bh); if (!buffer_mapped(bh)) { WARN_ON(bh->b_size != blocksize); if (get_block) { err = get_block(inode, block, bh, 1); if (err) break; } else { iomap_to_bh(inode, block, bh, iomap); } if (buffer_new(bh)) { unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); if (PageUptodate(page)) { clear_buffer_new(bh); set_buffer_uptodate(bh); mark_buffer_dirty(bh); continue; } if (block_end > to || block_start < from) zero_user_segments(page, to, block_end, block_start, from); continue; } } if (PageUptodate(page)) { if (!buffer_uptodate(bh)) set_buffer_uptodate(bh); continue; } if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh) && (block_start < from || block_end > to)) { ll_rw_block(REQ_OP_READ, 0, 1, &bh); *wait_bh++=bh; } } /* * If we issued read requests - let them complete. */ while(wait_bh > wait) { wait_on_buffer(*--wait_bh); if (!buffer_uptodate(*wait_bh)) err = -EIO; } if (unlikely(err)) page_zero_new_buffers(page, from, to); return err; } int __block_write_begin(struct page *page, loff_t pos, unsigned len, get_block_t *get_block) { return __block_write_begin_int(page, pos, len, get_block, NULL); } EXPORT_SYMBOL(__block_write_begin); static int __block_commit_write(struct inode *inode, struct page *page, unsigned from, unsigned to) { unsigned block_start, block_end; int partial = 0; unsigned blocksize; struct buffer_head *bh, *head; bh = head = page_buffers(page); blocksize = bh->b_size; block_start = 0; do { block_end = block_start + blocksize; if (block_end <= from || block_start >= to) { if (!buffer_uptodate(bh)) partial = 1; } else { set_buffer_uptodate(bh); mark_buffer_dirty(bh); } clear_buffer_new(bh); block_start = block_end; bh = bh->b_this_page; } while (bh != head); /* * If this is a partial write which happened to make all buffers * uptodate then we can optimize away a bogus readpage() for * the next read(). Here we 'discover' whether the page went * uptodate as a result of this (potentially partial) write. */ if (!partial) SetPageUptodate(page); return 0; } /* * block_write_begin takes care of the basic task of block allocation and * bringing partial write blocks uptodate first. * * The filesystem needs to handle block truncation upon failure. */ int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, get_block_t *get_block) { pgoff_t index = pos >> PAGE_SHIFT; struct page *page; int status; page = grab_cache_page_write_begin(mapping, index, flags); if (!page) return -ENOMEM; status = __block_write_begin(page, pos, len, get_block); if (unlikely(status)) { unlock_page(page); put_page(page); page = NULL; } *pagep = page; return status; } EXPORT_SYMBOL(block_write_begin); int block_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = mapping->host; unsigned start; start = pos & (PAGE_SIZE - 1); if (unlikely(copied < len)) { /* * The buffers that were written will now be uptodate, so we * don't have to worry about a readpage reading them and * overwriting a partial write. However if we have encountered * a short write and only partially written into a buffer, it * will not be marked uptodate, so a readpage might come in and * destroy our partial write. * * Do the simplest thing, and just treat any short write to a * non uptodate page as a zero-length write, and force the * caller to redo the whole thing. */ if (!PageUptodate(page)) copied = 0; page_zero_new_buffers(page, start+copied, start+len); } flush_dcache_page(page); /* This could be a short (even 0-length) commit */ __block_commit_write(inode, page, start, start+copied); return copied; } EXPORT_SYMBOL(block_write_end); int generic_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = mapping->host; loff_t old_size = inode->i_size; int i_size_changed = 0; copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); /* * No need to use i_size_read() here, the i_size * cannot change under us because we hold i_mutex. * * But it's important to update i_size while still holding page lock: * page writeout could otherwise come in and zero beyond i_size. */ if (pos+copied > inode->i_size) { i_size_write(inode, pos+copied); i_size_changed = 1; } unlock_page(page); put_page(page); if (old_size < pos) pagecache_isize_extended(inode, old_size, pos); /* * Don't mark the inode dirty under page lock. First, it unnecessarily * makes the holding time of page lock longer. Second, it forces lock * ordering of page lock and transaction start for journaling * filesystems. */ if (i_size_changed) mark_inode_dirty(inode); return copied; } EXPORT_SYMBOL(generic_write_end); /* * block_is_partially_uptodate checks whether buffers within a page are * uptodate or not. * * Returns true if all buffers which correspond to a file portion * we want to read are uptodate. */ int block_is_partially_uptodate(struct page *page, unsigned long from, unsigned long count) { unsigned block_start, block_end, blocksize; unsigned to; struct buffer_head *bh, *head; int ret = 1; if (!page_has_buffers(page)) return 0; head = page_buffers(page); blocksize = head->b_size; to = min_t(unsigned, PAGE_SIZE - from, count); to = from + to; if (from < blocksize && to > PAGE_SIZE - blocksize) return 0; bh = head; block_start = 0; do { block_end = block_start + blocksize; if (block_end > from && block_start < to) { if (!buffer_uptodate(bh)) { ret = 0; break; } if (block_end >= to) break; } block_start = block_end; bh = bh->b_this_page; } while (bh != head); return ret; } EXPORT_SYMBOL(block_is_partially_uptodate); /* * Generic "read page" function for block devices that have the normal * get_block functionality. This is most of the block device filesystems. * Reads the page asynchronously --- the unlock_buffer() and * set/clear_buffer_uptodate() functions propagate buffer state into the * page struct once IO has completed. */ int block_read_full_page(struct page *page, get_block_t *get_block) { struct inode *inode = page->mapping->host; sector_t iblock, lblock; struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; unsigned int blocksize, bbits; int nr, i; int fully_mapped = 1; head = create_page_buffers(page, inode, 0); blocksize = head->b_size; bbits = block_size_bits(blocksize); iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); lblock = (i_size_read(inode)+blocksize-1) >> bbits; bh = head; nr = 0; i = 0; do { if (buffer_uptodate(bh)) continue; if (!buffer_mapped(bh)) { int err = 0; fully_mapped = 0; if (iblock < lblock) { WARN_ON(bh->b_size != blocksize); err = get_block(inode, iblock, bh, 0); if (err) SetPageError(page); } if (!buffer_mapped(bh)) { zero_user(page, i * blocksize, blocksize); if (!err) set_buffer_uptodate(bh); continue; } /* * get_block() might have updated the buffer * synchronously */ if (buffer_uptodate(bh)) continue; } arr[nr++] = bh; } while (i++, iblock++, (bh = bh->b_this_page) != head); if (fully_mapped) SetPageMappedToDisk(page); if (!nr) { /* * All buffers are uptodate - we can set the page uptodate * as well. But not if get_block() returned an error. */ if (!PageError(page)) SetPageUptodate(page); unlock_page(page); return 0; } /* Stage two: lock the buffers */ for (i = 0; i < nr; i++) { bh = arr[i]; lock_buffer(bh); mark_buffer_async_read(bh); } /* * Stage 3: start the IO. Check for uptodateness * inside the buffer lock in case another process reading * the underlying blockdev brought it uptodate (the sct fix). */ for (i = 0; i < nr; i++) { bh = arr[i]; if (buffer_uptodate(bh)) end_buffer_async_read(bh, 1); else submit_bh(REQ_OP_READ, 0, bh); } return 0; } EXPORT_SYMBOL(block_read_full_page); /* utility function for filesystems that need to do work on expanding * truncates. Uses filesystem pagecache writes to allow the filesystem to * deal with the hole. */ int generic_cont_expand_simple(struct inode *inode, loff_t size) { struct address_space *mapping = inode->i_mapping; struct page *page; void *fsdata; int err; err = inode_newsize_ok(inode, size); if (err) goto out; err = pagecache_write_begin(NULL, mapping, size, 0, AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, &page, &fsdata); if (err) goto out; err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); BUG_ON(err > 0); out: return err; } EXPORT_SYMBOL(generic_cont_expand_simple); static int cont_expand_zero(struct file *file, struct address_space *mapping, loff_t pos, loff_t *bytes) { struct inode *inode = mapping->host; unsigned int blocksize = i_blocksize(inode); struct page *page; void *fsdata; pgoff_t index, curidx; loff_t curpos; unsigned zerofrom, offset, len; int err = 0; index = pos >> PAGE_SHIFT; offset = pos & ~PAGE_MASK; while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { zerofrom = curpos & ~PAGE_MASK; if (zerofrom & (blocksize-1)) { *bytes |= (blocksize-1); (*bytes)++; } len = PAGE_SIZE - zerofrom; err = pagecache_write_begin(file, mapping, curpos, len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); if (err) goto out; zero_user(page, zerofrom, len); err = pagecache_write_end(file, mapping, curpos, len, len, page, fsdata); if (err < 0) goto out; BUG_ON(err != len); err = 0; balance_dirty_pages_ratelimited(mapping); if (unlikely(fatal_signal_pending(current))) { err = -EINTR; goto out; } } /* page covers the boundary, find the boundary offset */ if (index == curidx) { zerofrom = curpos & ~PAGE_MASK; /* if we will expand the thing last block will be filled */ if (offset <= zerofrom) { goto out; } if (zerofrom & (blocksize-1)) { *bytes |= (blocksize-1); (*bytes)++; } len = offset - zerofrom; err = pagecache_write_begin(file, mapping, curpos, len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); if (err) goto out; zero_user(page, zerofrom, len); err = pagecache_write_end(file, mapping, curpos, len, len, page, fsdata); if (err < 0) goto out; BUG_ON(err != len); err = 0; } out: return err; } /* * For moronic filesystems that do not allow holes in file. * We may have to extend the file. */ int cont_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata, get_block_t *get_block, loff_t *bytes) { struct inode *inode = mapping->host; unsigned int blocksize = i_blocksize(inode); unsigned int zerofrom; int err; err = cont_expand_zero(file, mapping, pos, bytes); if (err) return err; zerofrom = *bytes & ~PAGE_MASK; if (pos+len > *bytes && zerofrom & (blocksize-1)) { *bytes |= (blocksize-1); (*bytes)++; } return block_write_begin(mapping, pos, len, flags, pagep, get_block); } EXPORT_SYMBOL(cont_write_begin); int block_commit_write(struct page *page, unsigned from, unsigned to) { struct inode *inode = page->mapping->host; __block_commit_write(inode,page,from,to); return 0; } EXPORT_SYMBOL(block_commit_write); /* * block_page_mkwrite() is not allowed to change the file size as it gets * called from a page fault handler when a page is first dirtied. Hence we must * be careful to check for EOF conditions here. We set the page up correctly * for a written page which means we get ENOSPC checking when writing into * holes and correct delalloc and unwritten extent mapping on filesystems that * support these features. * * We are not allowed to take the i_mutex here so we have to play games to * protect against truncate races as the page could now be beyond EOF. Because * truncate writes the inode size before removing pages, once we have the * page lock we can determine safely if the page is beyond EOF. If it is not * beyond EOF, then the page is guaranteed safe against truncation until we * unlock the page. * * Direct callers of this function should protect against filesystem freezing * using sb_start_pagefault() - sb_end_pagefault() functions. */ int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, get_block_t get_block) { struct page *page = vmf->page; struct inode *inode = file_inode(vma->vm_file); unsigned long end; loff_t size; int ret; lock_page(page); size = i_size_read(inode); if ((page->mapping != inode->i_mapping) || (page_offset(page) > size)) { /* We overload EFAULT to mean page got truncated */ ret = -EFAULT; goto out_unlock; } /* page is wholly or partially inside EOF */ if (((page->index + 1) << PAGE_SHIFT) > size) end = size & ~PAGE_MASK; else end = PAGE_SIZE; ret = __block_write_begin(page, 0, end, get_block); if (!ret) ret = block_commit_write(page, 0, end); if (unlikely(ret < 0)) goto out_unlock; set_page_dirty(page); wait_for_stable_page(page); return 0; out_unlock: unlock_page(page); return ret; } EXPORT_SYMBOL(block_page_mkwrite); /* * nobh_write_begin()'s prereads are special: the buffer_heads are freed * immediately, while under the page lock. So it needs a special end_io * handler which does not touch the bh after unlocking it. */ static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) { __end_buffer_read_notouch(bh, uptodate); } /* * Attach the singly-linked list of buffers created by nobh_write_begin, to * the page (converting it to circular linked list and taking care of page * dirty races). */ static void attach_nobh_buffers(struct page *page, struct buffer_head *head) { struct buffer_head *bh; BUG_ON(!PageLocked(page)); spin_lock(&page->mapping->private_lock); bh = head; do { if (PageDirty(page)) set_buffer_dirty(bh); if (!bh->b_this_page) bh->b_this_page = head; bh = bh->b_this_page; } while (bh != head); attach_page_buffers(page, head); spin_unlock(&page->mapping->private_lock); } /* * On entry, the page is fully not uptodate. * On exit the page is fully uptodate in the areas outside (from,to) * The filesystem needs to handle block truncation upon failure. */ int nobh_write_begin(struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata, get_block_t *get_block) { struct inode *inode = mapping->host; const unsigned blkbits = inode->i_blkbits; const unsigned blocksize = 1 << blkbits; struct buffer_head *head, *bh; struct page *page; pgoff_t index; unsigned from, to; unsigned block_in_page; unsigned block_start, block_end; sector_t block_in_file; int nr_reads = 0; int ret = 0; int is_mapped_to_disk = 1; index = pos >> PAGE_SHIFT; from = pos & (PAGE_SIZE - 1); to = from + len; page = grab_cache_page_write_begin(mapping, index, flags); if (!page) return -ENOMEM; *pagep = page; *fsdata = NULL; if (page_has_buffers(page)) { ret = __block_write_begin(page, pos, len, get_block); if (unlikely(ret)) goto out_release; return ret; } if (PageMappedToDisk(page)) return 0; /* * Allocate buffers so that we can keep track of state, and potentially * attach them to the page if an error occurs. In the common case of * no error, they will just be freed again without ever being attached * to the page (which is all OK, because we're under the page lock). * * Be careful: the buffer linked list is a NULL terminated one, rather * than the circular one we're used to. */ head = alloc_page_buffers(page, blocksize, 0); if (!head) { ret = -ENOMEM; goto out_release; } block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); /* * We loop across all blocks in the page, whether or not they are * part of the affected region. This is so we can discover if the * page is fully mapped-to-disk. */ for (block_start = 0, block_in_page = 0, bh = head; block_start < PAGE_SIZE; block_in_page++, block_start += blocksize, bh = bh->b_this_page) { int create; block_end = block_start + blocksize; bh->b_state = 0; create = 1; if (block_start >= to) create = 0; ret = get_block(inode, block_in_file + block_in_page, bh, create); if (ret) goto failed; if (!buffer_mapped(bh)) is_mapped_to_disk = 0; if (buffer_new(bh)) unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); if (PageUptodate(page)) { set_buffer_uptodate(bh); continue; } if (buffer_new(bh) || !buffer_mapped(bh)) { zero_user_segments(page, block_start, from, to, block_end); continue; } if (buffer_uptodate(bh)) continue; /* reiserfs does this */ if (block_start < from || block_end > to) { lock_buffer(bh); bh->b_end_io = end_buffer_read_nobh; submit_bh(REQ_OP_READ, 0, bh); nr_reads++; } } if (nr_reads) { /* * The page is locked, so these buffers are protected from * any VM or truncate activity. Hence we don't need to care * for the buffer_head refcounts. */ for (bh = head; bh; bh = bh->b_this_page) { wait_on_buffer(bh); if (!buffer_uptodate(bh)) ret = -EIO; } if (ret) goto failed; } if (is_mapped_to_disk) SetPageMappedToDisk(page); *fsdata = head; /* to be released by nobh_write_end */ return 0; failed: BUG_ON(!ret); /* * Error recovery is a bit difficult. We need to zero out blocks that * were newly allocated, and dirty them to ensure they get written out. * Buffers need to be attached to the page at this point, otherwise * the handling of potential IO errors during writeout would be hard * (could try doing synchronous writeout, but what if that fails too?) */ attach_nobh_buffers(page, head); page_zero_new_buffers(page, from, to); out_release: unlock_page(page); put_page(page); *pagep = NULL; return ret; } EXPORT_SYMBOL(nobh_write_begin); int nobh_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = page->mapping->host; struct buffer_head *head = fsdata; struct buffer_head *bh; BUG_ON(fsdata != NULL && page_has_buffers(page)); if (unlikely(copied < len) && head) attach_nobh_buffers(page, head); if (page_has_buffers(page)) return generic_write_end(file, mapping, pos, len, copied, page, fsdata); SetPageUptodate(page); set_page_dirty(page); if (pos+copied > inode->i_size) { i_size_write(inode, pos+copied); mark_inode_dirty(inode); } unlock_page(page); put_page(page); while (head) { bh = head; head = head->b_this_page; free_buffer_head(bh); } return copied; } EXPORT_SYMBOL(nobh_write_end); /* * nobh_writepage() - based on block_full_write_page() except * that it tries to operate without attaching bufferheads to * the page. */ int nobh_writepage(struct page *page, get_block_t *get_block, struct writeback_control *wbc) { struct inode * const inode = page->mapping->host; loff_t i_size = i_size_read(inode); const pgoff_t end_index = i_size >> PAGE_SHIFT; unsigned offset; int ret; /* Is the page fully inside i_size? */ if (page->index < end_index) goto out; /* Is the page fully outside i_size? (truncate in progress) */ offset = i_size & (PAGE_SIZE-1); if (page->index >= end_index+1 || !offset) { /* * The page may have dirty, unmapped buffers. For example, * they may have been added in ext3_writepage(). Make them * freeable here, so the page does not leak. */ #if 0 /* Not really sure about this - do we need this ? */ if (page->mapping->a_ops->invalidatepage) page->mapping->a_ops->invalidatepage(page, offset); #endif unlock_page(page); return 0; /* don't care */ } /* * The page straddles i_size. It must be zeroed out on each and every * writepage invocation because it may be mmapped. "A file is mapped * in multiples of the page size. For a file that is not a multiple of * the page size, the remaining memory is zeroed when mapped, and * writes to that region are not written out to the file." */ zero_user_segment(page, offset, PAGE_SIZE); out: ret = mpage_writepage(page, get_block, wbc); if (ret == -EAGAIN) ret = __block_write_full_page(inode, page, get_block, wbc, end_buffer_async_write); return ret; } EXPORT_SYMBOL(nobh_writepage); int nobh_truncate_page(struct address_space *mapping, loff_t from, get_block_t *get_block) { pgoff_t index = from >> PAGE_SHIFT; unsigned offset = from & (PAGE_SIZE-1); unsigned blocksize; sector_t iblock; unsigned length, pos; struct inode *inode = mapping->host; struct page *page; struct buffer_head map_bh; int err; blocksize = i_blocksize(inode); length = offset & (blocksize - 1); /* Block boundary? Nothing to do */ if (!length) return 0; length = blocksize - length; iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); page = grab_cache_page(mapping, index); err = -ENOMEM; if (!page) goto out; if (page_has_buffers(page)) { has_buffers: unlock_page(page); put_page(page); return block_truncate_page(mapping, from, get_block); } /* Find the buffer that contains "offset" */ pos = blocksize; while (offset >= pos) { iblock++; pos += blocksize; } map_bh.b_size = blocksize; map_bh.b_state = 0; err = get_block(inode, iblock, &map_bh, 0); if (err) goto unlock; /* unmapped? It's a hole - nothing to do */ if (!buffer_mapped(&map_bh)) goto unlock; /* Ok, it's mapped. Make sure it's up-to-date */ if (!PageUptodate(page)) { err = mapping->a_ops->readpage(NULL, page); if (err) { put_page(page); goto out; } lock_page(page); if (!PageUptodate(page)) { err = -EIO; goto unlock; } if (page_has_buffers(page)) goto has_buffers; } zero_user(page, offset, length); set_page_dirty(page); err = 0; unlock: unlock_page(page); put_page(page); out: return err; } EXPORT_SYMBOL(nobh_truncate_page); int block_truncate_page(struct address_space *mapping, loff_t from, get_block_t *get_block) { pgoff_t index = from >> PAGE_SHIFT; unsigned offset = from & (PAGE_SIZE-1); unsigned blocksize; sector_t iblock; unsigned length, pos; struct inode *inode = mapping->host; struct page *page; struct buffer_head *bh; int err; blocksize = i_blocksize(inode); length = offset & (blocksize - 1); /* Block boundary? Nothing to do */ if (!length) return 0; length = blocksize - length; iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); page = grab_cache_page(mapping, index); err = -ENOMEM; if (!page) goto out; if (!page_has_buffers(page)) create_empty_buffers(page, blocksize, 0); /* Find the buffer that contains "offset" */ bh = page_buffers(page); pos = blocksize; while (offset >= pos) { bh = bh->b_this_page; iblock++; pos += blocksize; } err = 0; if (!buffer_mapped(bh)) { WARN_ON(bh->b_size != blocksize); err = get_block(inode, iblock, bh, 0); if (err) goto unlock; /* unmapped? It's a hole - nothing to do */ if (!buffer_mapped(bh)) goto unlock; } /* Ok, it's mapped. Make sure it's up-to-date */ if (PageUptodate(page)) set_buffer_uptodate(bh); if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { err = -EIO; ll_rw_block(REQ_OP_READ, 0, 1, &bh); wait_on_buffer(bh); /* Uhhuh. Read error. Complain and punt. */ if (!buffer_uptodate(bh)) goto unlock; } zero_user(page, offset, length); mark_buffer_dirty(bh); err = 0; unlock: unlock_page(page); put_page(page); out: return err; } EXPORT_SYMBOL(block_truncate_page); /* * The generic ->writepage function for buffer-backed address_spaces */ int block_write_full_page(struct page *page, get_block_t *get_block, struct writeback_control *wbc) { struct inode * const inode = page->mapping->host; loff_t i_size = i_size_read(inode); const pgoff_t end_index = i_size >> PAGE_SHIFT; unsigned offset; /* Is the page fully inside i_size? */ if (page->index < end_index) return __block_write_full_page(inode, page, get_block, wbc, end_buffer_async_write); /* Is the page fully outside i_size? (truncate in progress) */ offset = i_size & (PAGE_SIZE-1); if (page->index >= end_index+1 || !offset) { /* * The page may have dirty, unmapped buffers. For example, * they may have been added in ext3_writepage(). Make them * freeable here, so the page does not leak. */ do_invalidatepage(page, 0, PAGE_SIZE); unlock_page(page); return 0; /* don't care */ } /* * The page straddles i_size. It must be zeroed out on each and every * writepage invocation because it may be mmapped. "A file is mapped * in multiples of the page size. For a file that is not a multiple of * the page size, the remaining memory is zeroed when mapped, and * writes to that region are not written out to the file." */ zero_user_segment(page, offset, PAGE_SIZE); return __block_write_full_page(inode, page, get_block, wbc, end_buffer_async_write); } EXPORT_SYMBOL(block_write_full_page); sector_t generic_block_bmap(struct address_space *mapping, sector_t block, get_block_t *get_block) { struct buffer_head tmp; struct inode *inode = mapping->host; tmp.b_state = 0; tmp.b_blocknr = 0; tmp.b_size = i_blocksize(inode); get_block(inode, block, &tmp, 0); return tmp.b_blocknr; } EXPORT_SYMBOL(generic_block_bmap); static void end_bio_bh_io_sync(struct bio *bio) { struct buffer_head *bh = bio->bi_private; if (unlikely(bio_flagged(bio, BIO_QUIET))) set_bit(BH_Quiet, &bh->b_state); bh->b_end_io(bh, !bio->bi_error); bio_put(bio); } /* * This allows us to do IO even on the odd last sectors * of a device, even if the block size is some multiple * of the physical sector size. * * We'll just truncate the bio to the size of the device, * and clear the end of the buffer head manually. * * Truly out-of-range accesses will turn into actual IO * errors, this only handles the "we need to be able to * do IO at the final sector" case. */ void guard_bio_eod(int op, struct bio *bio) { sector_t maxsector; struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; unsigned truncated_bytes; maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; if (!maxsector) return; /* * If the *whole* IO is past the end of the device, * let it through, and the IO layer will turn it into * an EIO. */ if (unlikely(bio->bi_iter.bi_sector >= maxsector)) return; maxsector -= bio->bi_iter.bi_sector; if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) return; /* Uhhuh. We've got a bio that straddles the device size! */ truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); /* Truncate the bio.. */ bio->bi_iter.bi_size -= truncated_bytes; bvec->bv_len -= truncated_bytes; /* ..and clear the end of the buffer for reads */ if (op == REQ_OP_READ) { zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, truncated_bytes); } } static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, unsigned long bio_flags, struct writeback_control *wbc) { struct bio *bio; BUG_ON(!buffer_locked(bh)); BUG_ON(!buffer_mapped(bh)); BUG_ON(!bh->b_end_io); BUG_ON(buffer_delay(bh)); BUG_ON(buffer_unwritten(bh)); /* * Only clear out a write error when rewriting */ if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) clear_buffer_write_io_error(bh); /* * from here on down, it's all bio -- do the initial mapping, * submit_bio -> generic_make_request may further map this bio around */ bio = bio_alloc(GFP_NOIO, 1); if (wbc) { wbc_init_bio(wbc, bio); wbc_account_io(wbc, bh->b_page, bh->b_size); } bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); bio->bi_bdev = bh->b_bdev; bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); BUG_ON(bio->bi_iter.bi_size != bh->b_size); bio->bi_end_io = end_bio_bh_io_sync; bio->bi_private = bh; bio->bi_flags |= bio_flags; /* Take care of bh's that straddle the end of the device */ guard_bio_eod(op, bio); if (buffer_meta(bh)) op_flags |= REQ_META; if (buffer_prio(bh)) op_flags |= REQ_PRIO; bio_set_op_attrs(bio, op, op_flags); submit_bio(bio); return 0; } int _submit_bh(int op, int op_flags, struct buffer_head *bh, unsigned long bio_flags) { return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL); } EXPORT_SYMBOL_GPL(_submit_bh); int submit_bh(int op, int op_flags, struct buffer_head *bh) { return submit_bh_wbc(op, op_flags, bh, 0, NULL); } EXPORT_SYMBOL(submit_bh); /** * ll_rw_block: low-level access to block devices (DEPRECATED) * @op: whether to %READ or %WRITE * @op_flags: rq_flag_bits * @nr: number of &struct buffer_heads in the array * @bhs: array of pointers to &struct buffer_head * * ll_rw_block() takes an array of pointers to &struct buffer_heads, and * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. * @op_flags contains flags modifying the detailed I/O behavior, most notably * %REQ_RAHEAD. * * This function drops any buffer that it cannot get a lock on (with the * BH_Lock state bit), any buffer that appears to be clean when doing a write * request, and any buffer that appears to be up-to-date when doing read * request. Further it marks as clean buffers that are processed for * writing (the buffer cache won't assume that they are actually clean * until the buffer gets unlocked). * * ll_rw_block sets b_end_io to simple completion handler that marks * the buffer up-to-date (if appropriate), unlocks the buffer and wakes * any waiters. * * All of the buffers must be for the same device, and must also be a * multiple of the current approved size for the device. */ void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) { int i; for (i = 0; i < nr; i++) { struct buffer_head *bh = bhs[i]; if (!trylock_buffer(bh)) continue; if (op == WRITE) { if (test_clear_buffer_dirty(bh)) { bh->b_end_io = end_buffer_write_sync; get_bh(bh); submit_bh(op, op_flags, bh); continue; } } else { if (!buffer_uptodate(bh)) { bh->b_end_io = end_buffer_read_sync; get_bh(bh); submit_bh(op, op_flags, bh); continue; } } unlock_buffer(bh); } } EXPORT_SYMBOL(ll_rw_block); void write_dirty_buffer(struct buffer_head *bh, int op_flags) { lock_buffer(bh); if (!test_clear_buffer_dirty(bh)) { unlock_buffer(bh); return; } bh->b_end_io = end_buffer_write_sync; get_bh(bh); submit_bh(REQ_OP_WRITE, op_flags, bh); } EXPORT_SYMBOL(write_dirty_buffer); /* * For a data-integrity writeout, we need to wait upon any in-progress I/O * and then start new I/O and then wait upon it. The caller must have a ref on * the buffer_head. */ int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) { int ret = 0; WARN_ON(atomic_read(&bh->b_count) < 1); lock_buffer(bh); if (test_clear_buffer_dirty(bh)) { get_bh(bh); bh->b_end_io = end_buffer_write_sync; ret = submit_bh(REQ_OP_WRITE, op_flags, bh); wait_on_buffer(bh); if (!ret && !buffer_uptodate(bh)) ret = -EIO; } else { unlock_buffer(bh); } return ret; } EXPORT_SYMBOL(__sync_dirty_buffer); int sync_dirty_buffer(struct buffer_head *bh) { return __sync_dirty_buffer(bh, WRITE_SYNC); } EXPORT_SYMBOL(sync_dirty_buffer); /* * try_to_free_buffers() checks if all the buffers on this particular page * are unused, and releases them if so. * * Exclusion against try_to_free_buffers may be obtained by either * locking the page or by holding its mapping's private_lock. * * If the page is dirty but all the buffers are clean then we need to * be sure to mark the page clean as well. This is because the page * may be against a block device, and a later reattachment of buffers * to a dirty page will set *all* buffers dirty. Which would corrupt * filesystem data on the same device. * * The same applies to regular filesystem pages: if all the buffers are * clean then we set the page clean and proceed. To do that, we require * total exclusion from __set_page_dirty_buffers(). That is obtained with * private_lock. * * try_to_free_buffers() is non-blocking. */ static inline int buffer_busy(struct buffer_head *bh) { return atomic_read(&bh->b_count) | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); } static int drop_buffers(struct page *page, struct buffer_head **buffers_to_free) { struct buffer_head *head = page_buffers(page); struct buffer_head *bh; bh = head; do { if (buffer_write_io_error(bh) && page->mapping) mapping_set_error(page->mapping, -EIO); if (buffer_busy(bh)) goto failed; bh = bh->b_this_page; } while (bh != head); do { struct buffer_head *next = bh->b_this_page; if (bh->b_assoc_map) __remove_assoc_queue(bh); bh = next; } while (bh != head); *buffers_to_free = head; __clear_page_buffers(page); return 1; failed: return 0; } int try_to_free_buffers(struct page *page) { struct address_space * const mapping = page->mapping; struct buffer_head *buffers_to_free = NULL; int ret = 0; BUG_ON(!PageLocked(page)); if (PageWriteback(page)) return 0; if (mapping == NULL) { /* can this still happen? */ ret = drop_buffers(page, &buffers_to_free); goto out; } spin_lock(&mapping->private_lock); ret = drop_buffers(page, &buffers_to_free); /* * If the filesystem writes its buffers by hand (eg ext3) * then we can have clean buffers against a dirty page. We * clean the page here; otherwise the VM will never notice * that the filesystem did any IO at all. * * Also, during truncate, discard_buffer will have marked all * the page's buffers clean. We discover that here and clean * the page also. * * private_lock must be held over this entire operation in order * to synchronise against __set_page_dirty_buffers and prevent the * dirty bit from being lost. */ if (ret) cancel_dirty_page(page); spin_unlock(&mapping->private_lock); out: if (buffers_to_free) { struct buffer_head *bh = buffers_to_free; do { struct buffer_head *next = bh->b_this_page; free_buffer_head(bh); bh = next; } while (bh != buffers_to_free); } return ret; } EXPORT_SYMBOL(try_to_free_buffers); /* * There are no bdflush tunables left. But distributions are * still running obsolete flush daemons, so we terminate them here. * * Use of bdflush() is deprecated and will be removed in a future kernel. * The `flush-X' kernel threads fully replace bdflush daemons and this call. */ SYSCALL_DEFINE2(bdflush, int, func, long, data) { static int msg_count; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (msg_count < 5) { msg_count++; printk(KERN_INFO "warning: process `%s' used the obsolete bdflush" " system call\n", current->comm); printk(KERN_INFO "Fix your initscripts?\n"); } if (func == 1) do_exit(0); return 0; } /* * Buffer-head allocation */ static struct kmem_cache *bh_cachep __read_mostly; /* * Once the number of bh's in the machine exceeds this level, we start * stripping them in writeback. */ static unsigned long max_buffer_heads; int buffer_heads_over_limit; struct bh_accounting { int nr; /* Number of live bh's */ int ratelimit; /* Limit cacheline bouncing */ }; static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; static void recalc_bh_state(void) { int i; int tot = 0; if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) return; __this_cpu_write(bh_accounting.ratelimit, 0); for_each_online_cpu(i) tot += per_cpu(bh_accounting, i).nr; buffer_heads_over_limit = (tot > max_buffer_heads); } struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) { struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); if (ret) { INIT_LIST_HEAD(&ret->b_assoc_buffers); preempt_disable(); __this_cpu_inc(bh_accounting.nr); recalc_bh_state(); preempt_enable(); } return ret; } EXPORT_SYMBOL(alloc_buffer_head); void free_buffer_head(struct buffer_head *bh) { BUG_ON(!list_empty(&bh->b_assoc_buffers)); kmem_cache_free(bh_cachep, bh); preempt_disable(); __this_cpu_dec(bh_accounting.nr); recalc_bh_state(); preempt_enable(); } EXPORT_SYMBOL(free_buffer_head); static void buffer_exit_cpu(int cpu) { int i; struct bh_lru *b = &per_cpu(bh_lrus, cpu); for (i = 0; i < BH_LRU_SIZE; i++) { brelse(b->bhs[i]); b->bhs[i] = NULL; } this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); per_cpu(bh_accounting, cpu).nr = 0; } static int buffer_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) buffer_exit_cpu((unsigned long)hcpu); return NOTIFY_OK; } /** * bh_uptodate_or_lock - Test whether the buffer is uptodate * @bh: struct buffer_head * * Return true if the buffer is up-to-date and false, * with the buffer locked, if not. */ int bh_uptodate_or_lock(struct buffer_head *bh) { if (!buffer_uptodate(bh)) { lock_buffer(bh); if (!buffer_uptodate(bh)) return 0; unlock_buffer(bh); } return 1; } EXPORT_SYMBOL(bh_uptodate_or_lock); /** * bh_submit_read - Submit a locked buffer for reading * @bh: struct buffer_head * * Returns zero on success and -EIO on error. */ int bh_submit_read(struct buffer_head *bh) { BUG_ON(!buffer_locked(bh)); if (buffer_uptodate(bh)) { unlock_buffer(bh); return 0; } get_bh(bh); bh->b_end_io = end_buffer_read_sync; submit_bh(REQ_OP_READ, 0, bh); wait_on_buffer(bh); if (buffer_uptodate(bh)) return 0; return -EIO; } EXPORT_SYMBOL(bh_submit_read); void __init buffer_init(void) { unsigned long nrpages; bh_cachep = kmem_cache_create("buffer_head", sizeof(struct buffer_head), 0, (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| SLAB_MEM_SPREAD), NULL); /* * Limit the bh occupancy to 10% of ZONE_NORMAL */ nrpages = (nr_free_buffer_pages() * 10) / 100; max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); hotcpu_notifier(buffer_cpu_notify, 0); }