/* * fs/f2fs/file.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" #include "xattr.h" #include "acl.h" #include "gc.h" #include "trace.h" #include static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = file_inode(vma->vm_file); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; int err; sb_start_pagefault(inode->i_sb); f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); /* block allocation */ f2fs_lock_op(sbi); set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_reserve_block(&dn, page->index); if (err) { f2fs_unlock_op(sbi); goto out; } f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); f2fs_balance_fs(sbi, dn.node_changed); file_update_time(vma->vm_file); lock_page(page); if (unlikely(page->mapping != inode->i_mapping || page_offset(page) > i_size_read(inode) || !PageUptodate(page))) { unlock_page(page); err = -EFAULT; goto out; } /* * check to see if the page is mapped already (no holes) */ if (PageMappedToDisk(page)) goto mapped; /* page is wholly or partially inside EOF */ if (((loff_t)(page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) { unsigned offset; offset = i_size_read(inode) & ~PAGE_CACHE_MASK; zero_user_segment(page, offset, PAGE_CACHE_SIZE); } set_page_dirty(page); SetPageUptodate(page); trace_f2fs_vm_page_mkwrite(page, DATA); mapped: /* fill the page */ f2fs_wait_on_page_writeback(page, DATA, false); /* wait for GCed encrypted page writeback */ if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr); /* if gced page is attached, don't write to cold segment */ clear_cold_data(page); out: sb_end_pagefault(inode->i_sb); f2fs_update_time(sbi, REQ_TIME); return block_page_mkwrite_return(err); } static const struct vm_operations_struct f2fs_file_vm_ops = { .fault = filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = f2fs_vm_page_mkwrite, }; static int get_parent_ino(struct inode *inode, nid_t *pino) { struct dentry *dentry; inode = igrab(inode); dentry = d_find_any_alias(inode); iput(inode); if (!dentry) return 0; if (update_dent_inode(inode, inode, &dentry->d_name)) { dput(dentry); return 0; } *pino = parent_ino(dentry); dput(dentry); return 1; } static inline bool need_do_checkpoint(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); bool need_cp = false; if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1) need_cp = true; else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino)) need_cp = true; else if (file_wrong_pino(inode)) need_cp = true; else if (!space_for_roll_forward(sbi)) need_cp = true; else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) need_cp = true; else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi))) need_cp = true; else if (test_opt(sbi, FASTBOOT)) need_cp = true; else if (sbi->active_logs == 2) need_cp = true; return need_cp; } static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) { struct page *i = find_get_page(NODE_MAPPING(sbi), ino); bool ret = false; /* But we need to avoid that there are some inode updates */ if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino)) ret = true; f2fs_put_page(i, 0); return ret; } static void try_to_fix_pino(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); nid_t pino; down_write(&fi->i_sem); fi->xattr_ver = 0; if (file_wrong_pino(inode) && inode->i_nlink == 1 && get_parent_ino(inode, &pino)) { fi->i_pino = pino; file_got_pino(inode); up_write(&fi->i_sem); mark_inode_dirty_sync(inode); f2fs_write_inode(inode, NULL); } else { up_write(&fi->i_sem); } } int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); nid_t ino = inode->i_ino; int ret = 0; bool need_cp = false; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .for_reclaim = 0, }; if (unlikely(f2fs_readonly(inode->i_sb))) return 0; trace_f2fs_sync_file_enter(inode); /* if fdatasync is triggered, let's do in-place-update */ if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) set_inode_flag(fi, FI_NEED_IPU); ret = filemap_write_and_wait_range(inode->i_mapping, start, end); clear_inode_flag(fi, FI_NEED_IPU); if (ret) { trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); return ret; } /* if the inode is dirty, let's recover all the time */ if (!datasync) { f2fs_write_inode(inode, NULL); goto go_write; } /* * if there is no written data, don't waste time to write recovery info. */ if (!is_inode_flag_set(fi, FI_APPEND_WRITE) && !exist_written_data(sbi, ino, APPEND_INO)) { /* it may call write_inode just prior to fsync */ if (need_inode_page_update(sbi, ino)) goto go_write; if (is_inode_flag_set(fi, FI_UPDATE_WRITE) || exist_written_data(sbi, ino, UPDATE_INO)) goto flush_out; goto out; } go_write: /* * Both of fdatasync() and fsync() are able to be recovered from * sudden-power-off. */ down_read(&fi->i_sem); need_cp = need_do_checkpoint(inode); up_read(&fi->i_sem); if (need_cp) { /* all the dirty node pages should be flushed for POR */ ret = f2fs_sync_fs(inode->i_sb, 1); /* * We've secured consistency through sync_fs. Following pino * will be used only for fsynced inodes after checkpoint. */ try_to_fix_pino(inode); clear_inode_flag(fi, FI_APPEND_WRITE); clear_inode_flag(fi, FI_UPDATE_WRITE); goto out; } sync_nodes: sync_node_pages(sbi, ino, &wbc); /* if cp_error was enabled, we should avoid infinite loop */ if (unlikely(f2fs_cp_error(sbi))) { ret = -EIO; goto out; } if (need_inode_block_update(sbi, ino)) { mark_inode_dirty_sync(inode); f2fs_write_inode(inode, NULL); goto sync_nodes; } ret = wait_on_node_pages_writeback(sbi, ino); if (ret) goto out; /* once recovery info is written, don't need to tack this */ remove_ino_entry(sbi, ino, APPEND_INO); clear_inode_flag(fi, FI_APPEND_WRITE); flush_out: remove_ino_entry(sbi, ino, UPDATE_INO); clear_inode_flag(fi, FI_UPDATE_WRITE); ret = f2fs_issue_flush(sbi); f2fs_update_time(sbi, REQ_TIME); out: trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); f2fs_trace_ios(NULL, 1); return ret; } static pgoff_t __get_first_dirty_index(struct address_space *mapping, pgoff_t pgofs, int whence) { struct pagevec pvec; int nr_pages; if (whence != SEEK_DATA) return 0; /* find first dirty page index */ pagevec_init(&pvec, 0); nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs, PAGECACHE_TAG_DIRTY, 1); pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX; pagevec_release(&pvec); return pgofs; } static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs, int whence) { switch (whence) { case SEEK_DATA: if ((blkaddr == NEW_ADDR && dirty == pgofs) || (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR)) return true; break; case SEEK_HOLE: if (blkaddr == NULL_ADDR) return true; break; } return false; } static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes = inode->i_sb->s_maxbytes; struct dnode_of_data dn; pgoff_t pgofs, end_offset, dirty; loff_t data_ofs = offset; loff_t isize; int err = 0; inode_lock(inode); isize = i_size_read(inode); if (offset >= isize) goto fail; /* handle inline data case */ if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { if (whence == SEEK_HOLE) data_ofs = isize; goto found; } pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT); dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) { set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA); if (err && err != -ENOENT) { goto fail; } else if (err == -ENOENT) { /* direct node does not exists */ if (whence == SEEK_DATA) { pgofs = get_next_page_offset(&dn, pgofs); continue; } else { goto found; } } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); /* find data/hole in dnode block */ for (; dn.ofs_in_node < end_offset; dn.ofs_in_node++, pgofs++, data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) { block_t blkaddr; blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); if (__found_offset(blkaddr, dirty, pgofs, whence)) { f2fs_put_dnode(&dn); goto found; } } f2fs_put_dnode(&dn); } if (whence == SEEK_DATA) goto fail; found: if (whence == SEEK_HOLE && data_ofs > isize) data_ofs = isize; inode_unlock(inode); return vfs_setpos(file, data_ofs, maxbytes); fail: inode_unlock(inode); return -ENXIO; } static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes = inode->i_sb->s_maxbytes; switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: return generic_file_llseek_size(file, offset, whence, maxbytes, i_size_read(inode)); case SEEK_DATA: case SEEK_HOLE: if (offset < 0) return -ENXIO; return f2fs_seek_block(file, offset, whence); } return -EINVAL; } static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) { struct inode *inode = file_inode(file); int err; if (f2fs_encrypted_inode(inode)) { err = f2fs_get_encryption_info(inode); if (err) return 0; if (!f2fs_encrypted_inode(inode)) return -ENOKEY; } /* we don't need to use inline_data strictly */ err = f2fs_convert_inline_inode(inode); if (err) return err; file_accessed(file); vma->vm_ops = &f2fs_file_vm_ops; return 0; } static int f2fs_file_open(struct inode *inode, struct file *filp) { int ret = generic_file_open(inode, filp); if (!ret && f2fs_encrypted_inode(inode)) { ret = f2fs_get_encryption_info(inode); if (ret) return -EACCES; if (!f2fs_encrypted_inode(inode)) return -ENOKEY; } return ret; } int truncate_data_blocks_range(struct dnode_of_data *dn, int count) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); struct f2fs_node *raw_node; int nr_free = 0, ofs = dn->ofs_in_node, len = count; __le32 *addr; raw_node = F2FS_NODE(dn->node_page); addr = blkaddr_in_node(raw_node) + ofs; for (; count > 0; count--, addr++, dn->ofs_in_node++) { block_t blkaddr = le32_to_cpu(*addr); if (blkaddr == NULL_ADDR) continue; dn->data_blkaddr = NULL_ADDR; set_data_blkaddr(dn); invalidate_blocks(sbi, blkaddr); if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) clear_inode_flag(F2FS_I(dn->inode), FI_FIRST_BLOCK_WRITTEN); nr_free++; } if (nr_free) { pgoff_t fofs; /* * once we invalidate valid blkaddr in range [ofs, ofs + count], * we will invalidate all blkaddr in the whole range. */ fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + ofs; f2fs_update_extent_cache_range(dn, fofs, 0, len); dec_valid_block_count(sbi, dn->inode, nr_free); sync_inode_page(dn); } dn->ofs_in_node = ofs; f2fs_update_time(sbi, REQ_TIME); trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, dn->ofs_in_node, nr_free); return nr_free; } void truncate_data_blocks(struct dnode_of_data *dn) { truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); } static int truncate_partial_data_page(struct inode *inode, u64 from, bool cache_only) { unsigned offset = from & (PAGE_CACHE_SIZE - 1); pgoff_t index = from >> PAGE_CACHE_SHIFT; struct address_space *mapping = inode->i_mapping; struct page *page; if (!offset && !cache_only) return 0; if (cache_only) { page = f2fs_grab_cache_page(mapping, index, false); if (page && PageUptodate(page)) goto truncate_out; f2fs_put_page(page, 1); return 0; } page = get_lock_data_page(inode, index, true); if (IS_ERR(page)) return 0; truncate_out: f2fs_wait_on_page_writeback(page, DATA, true); zero_user(page, offset, PAGE_CACHE_SIZE - offset); if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode)) set_page_dirty(page); f2fs_put_page(page, 1); return 0; } int truncate_blocks(struct inode *inode, u64 from, bool lock) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); unsigned int blocksize = inode->i_sb->s_blocksize; struct dnode_of_data dn; pgoff_t free_from; int count = 0, err = 0; struct page *ipage; bool truncate_page = false; trace_f2fs_truncate_blocks_enter(inode, from); free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1); if (lock) f2fs_lock_op(sbi); ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto out; } if (f2fs_has_inline_data(inode)) { if (truncate_inline_inode(ipage, from)) set_page_dirty(ipage); f2fs_put_page(ipage, 1); truncate_page = true; goto out; } set_new_dnode(&dn, inode, ipage, NULL, 0); err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE); if (err) { if (err == -ENOENT) goto free_next; goto out; } count = ADDRS_PER_PAGE(dn.node_page, inode); count -= dn.ofs_in_node; f2fs_bug_on(sbi, count < 0); if (dn.ofs_in_node || IS_INODE(dn.node_page)) { truncate_data_blocks_range(&dn, count); free_from += count; } f2fs_put_dnode(&dn); free_next: err = truncate_inode_blocks(inode, free_from); out: if (lock) f2fs_unlock_op(sbi); /* lastly zero out the first data page */ if (!err) err = truncate_partial_data_page(inode, from, truncate_page); trace_f2fs_truncate_blocks_exit(inode, err); return err; } int f2fs_truncate(struct inode *inode, bool lock) { int err; if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return 0; trace_f2fs_truncate(inode); /* we should check inline_data size */ if (!f2fs_may_inline_data(inode)) { err = f2fs_convert_inline_inode(inode); if (err) return err; } err = truncate_blocks(inode, i_size_read(inode), lock); if (err) return err; inode->i_mtime = inode->i_ctime = CURRENT_TIME; mark_inode_dirty(inode); return 0; } int f2fs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = d_inode(dentry); generic_fillattr(inode, stat); stat->blocks <<= 3; return 0; } #ifdef CONFIG_F2FS_FS_POSIX_ACL static void __setattr_copy(struct inode *inode, const struct iattr *attr) { struct f2fs_inode_info *fi = F2FS_I(inode); unsigned int ia_valid = attr->ia_valid; if (ia_valid & ATTR_UID) inode->i_uid = attr->ia_uid; if (ia_valid & ATTR_GID) inode->i_gid = attr->ia_gid; if (ia_valid & ATTR_ATIME) inode->i_atime = timespec_trunc(attr->ia_atime, inode->i_sb->s_time_gran); if (ia_valid & ATTR_MTIME) inode->i_mtime = timespec_trunc(attr->ia_mtime, inode->i_sb->s_time_gran); if (ia_valid & ATTR_CTIME) inode->i_ctime = timespec_trunc(attr->ia_ctime, inode->i_sb->s_time_gran); if (ia_valid & ATTR_MODE) { umode_t mode = attr->ia_mode; if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) mode &= ~S_ISGID; set_acl_inode(fi, mode); } } #else #define __setattr_copy setattr_copy #endif int f2fs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); struct f2fs_inode_info *fi = F2FS_I(inode); int err; err = inode_change_ok(inode, attr); if (err) return err; if (attr->ia_valid & ATTR_SIZE) { if (f2fs_encrypted_inode(inode) && f2fs_get_encryption_info(inode)) return -EACCES; if (attr->ia_size <= i_size_read(inode)) { truncate_setsize(inode, attr->ia_size); err = f2fs_truncate(inode, true); if (err) return err; f2fs_balance_fs(F2FS_I_SB(inode), true); } else { /* * do not trim all blocks after i_size if target size is * larger than i_size. */ truncate_setsize(inode, attr->ia_size); /* should convert inline inode here */ if (!f2fs_may_inline_data(inode)) { err = f2fs_convert_inline_inode(inode); if (err) return err; } inode->i_mtime = inode->i_ctime = CURRENT_TIME; } } __setattr_copy(inode, attr); if (attr->ia_valid & ATTR_MODE) { err = posix_acl_chmod(inode, get_inode_mode(inode)); if (err || is_inode_flag_set(fi, FI_ACL_MODE)) { inode->i_mode = fi->i_acl_mode; clear_inode_flag(fi, FI_ACL_MODE); } } mark_inode_dirty(inode); return err; } const struct inode_operations f2fs_file_inode_operations = { .getattr = f2fs_getattr, .setattr = f2fs_setattr, .get_acl = f2fs_get_acl, .set_acl = f2fs_set_acl, #ifdef CONFIG_F2FS_FS_XATTR .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = f2fs_listxattr, .removexattr = generic_removexattr, #endif .fiemap = f2fs_fiemap, }; static int fill_zero(struct inode *inode, pgoff_t index, loff_t start, loff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *page; if (!len) return 0; f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); page = get_new_data_page(inode, NULL, index, false); f2fs_unlock_op(sbi); if (IS_ERR(page)) return PTR_ERR(page); f2fs_wait_on_page_writeback(page, DATA, true); zero_user(page, start, len); set_page_dirty(page); f2fs_put_page(page, 1); return 0; } int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) { int err; while (pg_start < pg_end) { struct dnode_of_data dn; pgoff_t end_offset, count; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); if (err) { if (err == -ENOENT) { pg_start++; continue; } return err; } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); truncate_data_blocks_range(&dn, count); f2fs_put_dnode(&dn); pg_start += count; } return 0; } static int punch_hole(struct inode *inode, loff_t offset, loff_t len) { pgoff_t pg_start, pg_end; loff_t off_start, off_end; int ret; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; off_start = offset & (PAGE_CACHE_SIZE - 1); off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); if (pg_start == pg_end) { ret = fill_zero(inode, pg_start, off_start, off_end - off_start); if (ret) return ret; } else { if (off_start) { ret = fill_zero(inode, pg_start++, off_start, PAGE_CACHE_SIZE - off_start); if (ret) return ret; } if (off_end) { ret = fill_zero(inode, pg_end, 0, off_end); if (ret) return ret; } if (pg_start < pg_end) { struct address_space *mapping = inode->i_mapping; loff_t blk_start, blk_end; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); f2fs_balance_fs(sbi, true); blk_start = (loff_t)pg_start << PAGE_CACHE_SHIFT; blk_end = (loff_t)pg_end << PAGE_CACHE_SHIFT; truncate_inode_pages_range(mapping, blk_start, blk_end - 1); f2fs_lock_op(sbi); ret = truncate_hole(inode, pg_start, pg_end); f2fs_unlock_op(sbi); } } return ret; } static int __exchange_data_block(struct inode *inode, pgoff_t src, pgoff_t dst, bool full) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; block_t new_addr; bool do_replace = false; int ret; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA); if (ret && ret != -ENOENT) { return ret; } else if (ret == -ENOENT) { new_addr = NULL_ADDR; } else { new_addr = dn.data_blkaddr; if (!is_checkpointed_data(sbi, new_addr)) { /* do not invalidate this block address */ f2fs_update_data_blkaddr(&dn, NULL_ADDR); do_replace = true; } f2fs_put_dnode(&dn); } if (new_addr == NULL_ADDR) return full ? truncate_hole(inode, dst, dst + 1) : 0; if (do_replace) { struct page *ipage = get_node_page(sbi, inode->i_ino); struct node_info ni; if (IS_ERR(ipage)) { ret = PTR_ERR(ipage); goto err_out; } set_new_dnode(&dn, inode, ipage, NULL, 0); ret = f2fs_reserve_block(&dn, dst); if (ret) goto err_out; truncate_data_blocks_range(&dn, 1); get_node_info(sbi, dn.nid, &ni); f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, ni.version, true, false); f2fs_put_dnode(&dn); } else { struct page *psrc, *pdst; psrc = get_lock_data_page(inode, src, true); if (IS_ERR(psrc)) return PTR_ERR(psrc); pdst = get_new_data_page(inode, NULL, dst, true); if (IS_ERR(pdst)) { f2fs_put_page(psrc, 1); return PTR_ERR(pdst); } f2fs_copy_page(psrc, pdst); set_page_dirty(pdst); f2fs_put_page(pdst, 1); f2fs_put_page(psrc, 1); return truncate_hole(inode, src, src + 1); } return 0; err_out: if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) { f2fs_update_data_blkaddr(&dn, new_addr); f2fs_put_dnode(&dn); } return ret; } static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; int ret = 0; for (; end < nrpages; start++, end++) { f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); ret = __exchange_data_block(inode, end, start, true); f2fs_unlock_op(sbi); if (ret) break; } return ret; } static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) { pgoff_t pg_start, pg_end; loff_t new_size; int ret; if (offset + len >= i_size_read(inode)) return -EINVAL; /* collapse range should be aligned to block size of f2fs. */ if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) return -EINVAL; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; pg_start = offset >> PAGE_CACHE_SHIFT; pg_end = (offset + len) >> PAGE_CACHE_SHIFT; /* write out all dirty pages from offset */ ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); if (ret) return ret; truncate_pagecache(inode, offset); ret = f2fs_do_collapse(inode, pg_start, pg_end); if (ret) return ret; /* write out all moved pages, if possible */ filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); truncate_pagecache(inode, offset); new_size = i_size_read(inode) - len; truncate_pagecache(inode, new_size); ret = truncate_blocks(inode, new_size, true); if (!ret) i_size_write(inode, new_size); return ret; } static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, int mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct address_space *mapping = inode->i_mapping; pgoff_t index, pg_start, pg_end; loff_t new_size = i_size_read(inode); loff_t off_start, off_end; int ret = 0; ret = inode_newsize_ok(inode, (len + offset)); if (ret) return ret; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); if (ret) return ret; truncate_pagecache_range(inode, offset, offset + len - 1); pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; off_start = offset & (PAGE_CACHE_SIZE - 1); off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); if (pg_start == pg_end) { ret = fill_zero(inode, pg_start, off_start, off_end - off_start); if (ret) return ret; if (offset + len > new_size) new_size = offset + len; new_size = max_t(loff_t, new_size, offset + len); } else { if (off_start) { ret = fill_zero(inode, pg_start++, off_start, PAGE_CACHE_SIZE - off_start); if (ret) return ret; new_size = max_t(loff_t, new_size, (loff_t)pg_start << PAGE_CACHE_SHIFT); } for (index = pg_start; index < pg_end; index++) { struct dnode_of_data dn; struct page *ipage; f2fs_lock_op(sbi); ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { ret = PTR_ERR(ipage); f2fs_unlock_op(sbi); goto out; } set_new_dnode(&dn, inode, ipage, NULL, 0); ret = f2fs_reserve_block(&dn, index); if (ret) { f2fs_unlock_op(sbi); goto out; } if (dn.data_blkaddr != NEW_ADDR) { invalidate_blocks(sbi, dn.data_blkaddr); f2fs_update_data_blkaddr(&dn, NEW_ADDR); } f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); new_size = max_t(loff_t, new_size, (loff_t)(index + 1) << PAGE_CACHE_SHIFT); } if (off_end) { ret = fill_zero(inode, pg_end, 0, off_end); if (ret) goto out; new_size = max_t(loff_t, new_size, offset + len); } } out: if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) { i_size_write(inode, new_size); mark_inode_dirty(inode); update_inode_page(inode); } return ret; } static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t pg_start, pg_end, delta, nrpages, idx; loff_t new_size; int ret = 0; new_size = i_size_read(inode) + len; if (new_size > inode->i_sb->s_maxbytes) return -EFBIG; if (offset >= i_size_read(inode)) return -EINVAL; /* insert range should be aligned to block size of f2fs. */ if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) return -EINVAL; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; f2fs_balance_fs(sbi, true); ret = truncate_blocks(inode, i_size_read(inode), true); if (ret) return ret; /* write out all dirty pages from offset */ ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); if (ret) return ret; truncate_pagecache(inode, offset); pg_start = offset >> PAGE_CACHE_SHIFT; pg_end = (offset + len) >> PAGE_CACHE_SHIFT; delta = pg_end - pg_start; nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) { f2fs_lock_op(sbi); ret = __exchange_data_block(inode, idx, idx + delta, false); f2fs_unlock_op(sbi); if (ret) break; } /* write out all moved pages, if possible */ filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); truncate_pagecache(inode, offset); if (!ret) i_size_write(inode, new_size); return ret; } static int expand_inode_data(struct inode *inode, loff_t offset, loff_t len, int mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t index, pg_start, pg_end; loff_t new_size = i_size_read(inode); loff_t off_start, off_end; int ret = 0; ret = inode_newsize_ok(inode, (len + offset)); if (ret) return ret; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; f2fs_balance_fs(sbi, true); pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; off_start = offset & (PAGE_CACHE_SIZE - 1); off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); f2fs_lock_op(sbi); for (index = pg_start; index <= pg_end; index++) { struct dnode_of_data dn; if (index == pg_end && !off_end) goto noalloc; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_reserve_block(&dn, index); if (ret) break; noalloc: if (pg_start == pg_end) new_size = offset + len; else if (index == pg_start && off_start) new_size = (loff_t)(index + 1) << PAGE_CACHE_SHIFT; else if (index == pg_end) new_size = ((loff_t)index << PAGE_CACHE_SHIFT) + off_end; else new_size += PAGE_CACHE_SIZE; } if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) { i_size_write(inode, new_size); mark_inode_dirty(inode); update_inode_page(inode); } f2fs_unlock_op(sbi); return ret; } static long f2fs_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); long ret = 0; /* f2fs only support ->fallocate for regular file */ if (!S_ISREG(inode->i_mode)) return -EINVAL; if (f2fs_encrypted_inode(inode) && (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) return -EOPNOTSUPP; if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)) return -EOPNOTSUPP; inode_lock(inode); if (mode & FALLOC_FL_PUNCH_HOLE) { if (offset >= inode->i_size) goto out; ret = punch_hole(inode, offset, len); } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { ret = f2fs_collapse_range(inode, offset, len); } else if (mode & FALLOC_FL_ZERO_RANGE) { ret = f2fs_zero_range(inode, offset, len, mode); } else if (mode & FALLOC_FL_INSERT_RANGE) { ret = f2fs_insert_range(inode, offset, len); } else { ret = expand_inode_data(inode, offset, len, mode); } if (!ret) { inode->i_mtime = inode->i_ctime = CURRENT_TIME; mark_inode_dirty(inode); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); } out: inode_unlock(inode); trace_f2fs_fallocate(inode, mode, offset, len, ret); return ret; } static int f2fs_release_file(struct inode *inode, struct file *filp) { /* some remained atomic pages should discarded */ if (f2fs_is_atomic_file(inode)) drop_inmem_pages(inode); if (f2fs_is_volatile_file(inode)) { set_inode_flag(F2FS_I(inode), FI_DROP_CACHE); filemap_fdatawrite(inode->i_mapping); clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE); } return 0; } #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) { if (S_ISDIR(mode)) return flags; else if (S_ISREG(mode)) return flags & F2FS_REG_FLMASK; else return flags & F2FS_OTHER_FLMASK; } static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_inode_info *fi = F2FS_I(inode); unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE; return put_user(flags, (int __user *)arg); } static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_inode_info *fi = F2FS_I(inode); unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE; unsigned int oldflags; int ret; ret = mnt_want_write_file(filp); if (ret) return ret; if (!inode_owner_or_capable(inode)) { ret = -EACCES; goto out; } if (get_user(flags, (int __user *)arg)) { ret = -EFAULT; goto out; } flags = f2fs_mask_flags(inode->i_mode, flags); inode_lock(inode); oldflags = fi->i_flags; if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { if (!capable(CAP_LINUX_IMMUTABLE)) { inode_unlock(inode); ret = -EPERM; goto out; } } flags = flags & FS_FL_USER_MODIFIABLE; flags |= oldflags & ~FS_FL_USER_MODIFIABLE; fi->i_flags = flags; inode_unlock(inode); f2fs_set_inode_flags(inode); inode->i_ctime = CURRENT_TIME; mark_inode_dirty(inode); out: mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); return put_user(inode->i_generation, (int __user *)arg); } static int f2fs_ioc_start_atomic_write(struct file *filp) { struct inode *inode = file_inode(filp); int ret; if (!inode_owner_or_capable(inode)) return -EACCES; if (f2fs_is_atomic_file(inode)) return 0; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return 0; } static int f2fs_ioc_commit_atomic_write(struct file *filp) { struct inode *inode = file_inode(filp); int ret; if (!inode_owner_or_capable(inode)) return -EACCES; if (f2fs_is_volatile_file(inode)) return 0; ret = mnt_want_write_file(filp); if (ret) return ret; if (f2fs_is_atomic_file(inode)) { clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE); ret = commit_inmem_pages(inode); if (ret) { set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE); goto err_out; } } ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0); err_out: mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_start_volatile_write(struct file *filp) { struct inode *inode = file_inode(filp); int ret; if (!inode_owner_or_capable(inode)) return -EACCES; if (f2fs_is_volatile_file(inode)) return 0; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return 0; } static int f2fs_ioc_release_volatile_write(struct file *filp) { struct inode *inode = file_inode(filp); if (!inode_owner_or_capable(inode)) return -EACCES; if (!f2fs_is_volatile_file(inode)) return 0; if (!f2fs_is_first_block_written(inode)) return truncate_partial_data_page(inode, 0, true); return punch_hole(inode, 0, F2FS_BLKSIZE); } static int f2fs_ioc_abort_volatile_write(struct file *filp) { struct inode *inode = file_inode(filp); int ret; if (!inode_owner_or_capable(inode)) return -EACCES; ret = mnt_want_write_file(filp); if (ret) return ret; if (f2fs_is_atomic_file(inode)) { clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE); drop_inmem_pages(inode); } if (f2fs_is_volatile_file(inode)) { clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE); ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0); } mnt_drop_write_file(filp); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return ret; } static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct super_block *sb = sbi->sb; __u32 in; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (get_user(in, (__u32 __user *)arg)) return -EFAULT; switch (in) { case F2FS_GOING_DOWN_FULLSYNC: sb = freeze_bdev(sb->s_bdev); if (sb && !IS_ERR(sb)) { f2fs_stop_checkpoint(sbi); thaw_bdev(sb->s_bdev, sb); } break; case F2FS_GOING_DOWN_METASYNC: /* do checkpoint only */ f2fs_sync_fs(sb, 1); f2fs_stop_checkpoint(sbi); break; case F2FS_GOING_DOWN_NOSYNC: f2fs_stop_checkpoint(sbi); break; case F2FS_GOING_DOWN_METAFLUSH: sync_meta_pages(sbi, META, LONG_MAX); f2fs_stop_checkpoint(sbi); break; default: return -EINVAL; } f2fs_update_time(sbi, REQ_TIME); return 0; } static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct super_block *sb = inode->i_sb; struct request_queue *q = bdev_get_queue(sb->s_bdev); struct fstrim_range range; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!blk_queue_discard(q)) return -EOPNOTSUPP; if (copy_from_user(&range, (struct fstrim_range __user *)arg, sizeof(range))) return -EFAULT; range.minlen = max((unsigned int)range.minlen, q->limits.discard_granularity); ret = f2fs_trim_fs(F2FS_SB(sb), &range); if (ret < 0) return ret; if (copy_to_user((struct fstrim_range __user *)arg, &range, sizeof(range))) return -EFAULT; f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return 0; } static bool uuid_is_nonzero(__u8 u[16]) { int i; for (i = 0; i < 16; i++) if (u[i]) return true; return false; } static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) { #ifdef CONFIG_F2FS_FS_ENCRYPTION struct f2fs_encryption_policy policy; struct inode *inode = file_inode(filp); if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg, sizeof(policy))) return -EFAULT; f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return f2fs_process_policy(&policy, inode); #else return -EOPNOTSUPP; #endif } static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) { #ifdef CONFIG_F2FS_FS_ENCRYPTION struct f2fs_encryption_policy policy; struct inode *inode = file_inode(filp); int err; err = f2fs_get_policy(inode, &policy); if (err) return err; if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy, sizeof(policy))) return -EFAULT; return 0; #else return -EOPNOTSUPP; #endif } static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int err; if (!f2fs_sb_has_crypto(inode->i_sb)) return -EOPNOTSUPP; if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) goto got_it; err = mnt_want_write_file(filp); if (err) return err; /* update superblock with uuid */ generate_random_uuid(sbi->raw_super->encrypt_pw_salt); err = f2fs_commit_super(sbi, false); if (err) { /* undo new data */ memset(sbi->raw_super->encrypt_pw_salt, 0, 16); mnt_drop_write_file(filp); return err; } mnt_drop_write_file(filp); got_it: if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 16)) return -EFAULT; return 0; } static int f2fs_ioc_gc(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); __u32 sync; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (get_user(sync, (__u32 __user *)arg)) return -EFAULT; if (f2fs_readonly(sbi->sb)) return -EROFS; if (!sync) { if (!mutex_trylock(&sbi->gc_mutex)) return -EBUSY; } else { mutex_lock(&sbi->gc_mutex); } return f2fs_gc(sbi, sync); } static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (f2fs_readonly(sbi->sb)) return -EROFS; return f2fs_sync_fs(sbi->sb, 1); } static int f2fs_defragment_range(struct f2fs_sb_info *sbi, struct file *filp, struct f2fs_defragment *range) { struct inode *inode = file_inode(filp); struct f2fs_map_blocks map = { .m_next_pgofs = NULL }; struct extent_info ei; pgoff_t pg_start, pg_end; unsigned int blk_per_seg = sbi->blocks_per_seg; unsigned int total = 0, sec_num; unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg; block_t blk_end = 0; bool fragmented = false; int err; /* if in-place-update policy is enabled, don't waste time here */ if (need_inplace_update(inode)) return -EINVAL; pg_start = range->start >> PAGE_CACHE_SHIFT; pg_end = (range->start + range->len) >> PAGE_CACHE_SHIFT; f2fs_balance_fs(sbi, true); inode_lock(inode); /* writeback all dirty pages in the range */ err = filemap_write_and_wait_range(inode->i_mapping, range->start, range->start + range->len - 1); if (err) goto out; /* * lookup mapping info in extent cache, skip defragmenting if physical * block addresses are continuous. */ if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { if (ei.fofs + ei.len >= pg_end) goto out; } map.m_lblk = pg_start; /* * lookup mapping info in dnode page cache, skip defragmenting if all * physical block addresses are continuous even if there are hole(s) * in logical blocks. */ while (map.m_lblk < pg_end) { map.m_len = pg_end - map.m_lblk; err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ); if (err) goto out; if (!(map.m_flags & F2FS_MAP_FLAGS)) { map.m_lblk++; continue; } if (blk_end && blk_end != map.m_pblk) { fragmented = true; break; } blk_end = map.m_pblk + map.m_len; map.m_lblk += map.m_len; } if (!fragmented) goto out; map.m_lblk = pg_start; map.m_len = pg_end - pg_start; sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec; /* * make sure there are enough free section for LFS allocation, this can * avoid defragment running in SSR mode when free section are allocated * intensively */ if (has_not_enough_free_secs(sbi, sec_num)) { err = -EAGAIN; goto out; } while (map.m_lblk < pg_end) { pgoff_t idx; int cnt = 0; do_map: map.m_len = pg_end - map.m_lblk; err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ); if (err) goto clear_out; if (!(map.m_flags & F2FS_MAP_FLAGS)) { map.m_lblk++; continue; } set_inode_flag(F2FS_I(inode), FI_DO_DEFRAG); idx = map.m_lblk; while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { struct page *page; page = get_lock_data_page(inode, idx, true); if (IS_ERR(page)) { err = PTR_ERR(page); goto clear_out; } set_page_dirty(page); f2fs_put_page(page, 1); idx++; cnt++; total++; } map.m_lblk = idx; if (idx < pg_end && cnt < blk_per_seg) goto do_map; clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG); err = filemap_fdatawrite(inode->i_mapping); if (err) goto out; } clear_out: clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG); out: inode_unlock(inode); if (!err) range->len = (u64)total << PAGE_CACHE_SHIFT; return err; } static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_defragment range; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!S_ISREG(inode->i_mode)) return -EINVAL; err = mnt_want_write_file(filp); if (err) return err; if (f2fs_readonly(sbi->sb)) { err = -EROFS; goto out; } if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, sizeof(range))) { err = -EFAULT; goto out; } /* verify alignment of offset & size */ if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) { err = -EINVAL; goto out; } err = f2fs_defragment_range(sbi, filp, &range); f2fs_update_time(sbi, REQ_TIME); if (err < 0) goto out; if (copy_to_user((struct f2fs_defragment __user *)arg, &range, sizeof(range))) err = -EFAULT; out: mnt_drop_write_file(filp); return err; } long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { switch (cmd) { case F2FS_IOC_GETFLAGS: return f2fs_ioc_getflags(filp, arg); case F2FS_IOC_SETFLAGS: return f2fs_ioc_setflags(filp, arg); case F2FS_IOC_GETVERSION: return f2fs_ioc_getversion(filp, arg); case F2FS_IOC_START_ATOMIC_WRITE: return f2fs_ioc_start_atomic_write(filp); case F2FS_IOC_COMMIT_ATOMIC_WRITE: return f2fs_ioc_commit_atomic_write(filp); case F2FS_IOC_START_VOLATILE_WRITE: return f2fs_ioc_start_volatile_write(filp); case F2FS_IOC_RELEASE_VOLATILE_WRITE: return f2fs_ioc_release_volatile_write(filp); case F2FS_IOC_ABORT_VOLATILE_WRITE: return f2fs_ioc_abort_volatile_write(filp); case F2FS_IOC_SHUTDOWN: return f2fs_ioc_shutdown(filp, arg); case FITRIM: return f2fs_ioc_fitrim(filp, arg); case F2FS_IOC_SET_ENCRYPTION_POLICY: return f2fs_ioc_set_encryption_policy(filp, arg); case F2FS_IOC_GET_ENCRYPTION_POLICY: return f2fs_ioc_get_encryption_policy(filp, arg); case F2FS_IOC_GET_ENCRYPTION_PWSALT: return f2fs_ioc_get_encryption_pwsalt(filp, arg); case F2FS_IOC_GARBAGE_COLLECT: return f2fs_ioc_gc(filp, arg); case F2FS_IOC_WRITE_CHECKPOINT: return f2fs_ioc_write_checkpoint(filp, arg); case F2FS_IOC_DEFRAGMENT: return f2fs_ioc_defragment(filp, arg); default: return -ENOTTY; } } static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); ssize_t ret; if (f2fs_encrypted_inode(inode) && !f2fs_has_encryption_key(inode) && f2fs_get_encryption_info(inode)) return -EACCES; inode_lock(inode); ret = generic_write_checks(iocb, from); if (ret > 0) { ret = f2fs_preallocate_blocks(iocb, from); if (!ret) ret = __generic_file_write_iter(iocb, from); } inode_unlock(inode); if (ret > 0) { ssize_t err; err = generic_write_sync(file, iocb->ki_pos - ret, ret); if (err < 0) ret = err; } return ret; } #ifdef CONFIG_COMPAT long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case F2FS_IOC32_GETFLAGS: cmd = F2FS_IOC_GETFLAGS; break; case F2FS_IOC32_SETFLAGS: cmd = F2FS_IOC_SETFLAGS; break; case F2FS_IOC32_GETVERSION: cmd = F2FS_IOC_GETVERSION; break; case F2FS_IOC_START_ATOMIC_WRITE: case F2FS_IOC_COMMIT_ATOMIC_WRITE: case F2FS_IOC_START_VOLATILE_WRITE: case F2FS_IOC_RELEASE_VOLATILE_WRITE: case F2FS_IOC_ABORT_VOLATILE_WRITE: case F2FS_IOC_SHUTDOWN: case F2FS_IOC_SET_ENCRYPTION_POLICY: case F2FS_IOC_GET_ENCRYPTION_PWSALT: case F2FS_IOC_GET_ENCRYPTION_POLICY: case F2FS_IOC_GARBAGE_COLLECT: case F2FS_IOC_WRITE_CHECKPOINT: case F2FS_IOC_DEFRAGMENT: break; default: return -ENOIOCTLCMD; } return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); } #endif const struct file_operations f2fs_file_operations = { .llseek = f2fs_llseek, .read_iter = generic_file_read_iter, .write_iter = f2fs_file_write_iter, .open = f2fs_file_open, .release = f2fs_release_file, .mmap = f2fs_file_mmap, .fsync = f2fs_sync_file, .fallocate = f2fs_fallocate, .unlocked_ioctl = f2fs_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = f2fs_compat_ioctl, #endif .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, };