/* * linux/fs/hfs/inode.c * * Copyright (C) 1995-1997 Paul H. Hargrove * (C) 2003 Ardis Technologies * This file may be distributed under the terms of the GNU General Public License. * * This file contains inode-related functions which do not depend on * which scheme is being used to represent forks. * * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds */ #include #include #include #include #include "hfs_fs.h" #include "btree.h" static const struct file_operations hfs_file_operations; static const struct inode_operations hfs_file_inode_operations; /*================ Variable-like macros ================*/ #define HFS_VALID_MODE_BITS (S_IFREG | S_IFDIR | S_IRWXUGO) static int hfs_writepage(struct page *page, struct writeback_control *wbc) { return block_write_full_page(page, hfs_get_block, wbc); } static int hfs_readpage(struct file *file, struct page *page) { return block_read_full_page(page, hfs_get_block); } static void hfs_write_failed(struct address_space *mapping, loff_t to) { struct inode *inode = mapping->host; if (to > inode->i_size) { truncate_pagecache(inode, inode->i_size); hfs_file_truncate(inode); } } static int hfs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { int ret; *pagep = NULL; ret = cont_write_begin(file, mapping, pos, len, flags, pagep, fsdata, hfs_get_block, &HFS_I(mapping->host)->phys_size); if (unlikely(ret)) hfs_write_failed(mapping, pos + len); return ret; } static sector_t hfs_bmap(struct address_space *mapping, sector_t block) { return generic_block_bmap(mapping, block, hfs_get_block); } static int hfs_releasepage(struct page *page, gfp_t mask) { struct inode *inode = page->mapping->host; struct super_block *sb = inode->i_sb; struct hfs_btree *tree; struct hfs_bnode *node; u32 nidx; int i, res = 1; switch (inode->i_ino) { case HFS_EXT_CNID: tree = HFS_SB(sb)->ext_tree; break; case HFS_CAT_CNID: tree = HFS_SB(sb)->cat_tree; break; default: BUG(); return 0; } if (!tree) return 0; if (tree->node_size >= PAGE_CACHE_SIZE) { nidx = page->index >> (tree->node_size_shift - PAGE_CACHE_SHIFT); spin_lock(&tree->hash_lock); node = hfs_bnode_findhash(tree, nidx); if (!node) ; else if (atomic_read(&node->refcnt)) res = 0; if (res && node) { hfs_bnode_unhash(node); hfs_bnode_free(node); } spin_unlock(&tree->hash_lock); } else { nidx = page->index << (PAGE_CACHE_SHIFT - tree->node_size_shift); i = 1 << (PAGE_CACHE_SHIFT - tree->node_size_shift); spin_lock(&tree->hash_lock); do { node = hfs_bnode_findhash(tree, nidx++); if (!node) continue; if (atomic_read(&node->refcnt)) { res = 0; break; } hfs_bnode_unhash(node); hfs_bnode_free(node); } while (--i && nidx < tree->node_count); spin_unlock(&tree->hash_lock); } return res ? try_to_free_buffers(page) : 0; } static ssize_t hfs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t offset) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = file_inode(file)->i_mapping->host; size_t count = iov_iter_count(iter); ssize_t ret; ret = blockdev_direct_IO(rw, iocb, inode, iter, offset, hfs_get_block); /* * In case of error extending write may have instantiated a few * blocks outside i_size. Trim these off again. */ if (unlikely((rw & WRITE) && ret < 0)) { loff_t isize = i_size_read(inode); loff_t end = offset + count; if (end > isize) hfs_write_failed(mapping, end); } return ret; } static int hfs_writepages(struct address_space *mapping, struct writeback_control *wbc) { return mpage_writepages(mapping, wbc, hfs_get_block); } const struct address_space_operations hfs_btree_aops = { .readpage = hfs_readpage, .writepage = hfs_writepage, .write_begin = hfs_write_begin, .write_end = generic_write_end, .bmap = hfs_bmap, .releasepage = hfs_releasepage, }; const struct address_space_operations hfs_aops = { .readpage = hfs_readpage, .writepage = hfs_writepage, .write_begin = hfs_write_begin, .write_end = generic_write_end, .bmap = hfs_bmap, .direct_IO = hfs_direct_IO, .writepages = hfs_writepages, }; /* * hfs_new_inode */ struct inode *hfs_new_inode(struct inode *dir, struct qstr *name, umode_t mode) { struct super_block *sb = dir->i_sb; struct inode *inode = new_inode(sb); if (!inode) return NULL; mutex_init(&HFS_I(inode)->extents_lock); INIT_LIST_HEAD(&HFS_I(inode)->open_dir_list); hfs_cat_build_key(sb, (btree_key *)&HFS_I(inode)->cat_key, dir->i_ino, name); inode->i_ino = HFS_SB(sb)->next_id++; inode->i_mode = mode; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); set_nlink(inode, 1); inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; HFS_I(inode)->flags = 0; HFS_I(inode)->rsrc_inode = NULL; HFS_I(inode)->fs_blocks = 0; if (S_ISDIR(mode)) { inode->i_size = 2; HFS_SB(sb)->folder_count++; if (dir->i_ino == HFS_ROOT_CNID) HFS_SB(sb)->root_dirs++; inode->i_op = &hfs_dir_inode_operations; inode->i_fop = &hfs_dir_operations; inode->i_mode |= S_IRWXUGO; inode->i_mode &= ~HFS_SB(inode->i_sb)->s_dir_umask; } else if (S_ISREG(mode)) { HFS_I(inode)->clump_blocks = HFS_SB(sb)->clumpablks; HFS_SB(sb)->file_count++; if (dir->i_ino == HFS_ROOT_CNID) HFS_SB(sb)->root_files++; inode->i_op = &hfs_file_inode_operations; inode->i_fop = &hfs_file_operations; inode->i_mapping->a_ops = &hfs_aops; inode->i_mode |= S_IRUGO|S_IXUGO; if (mode & S_IWUSR) inode->i_mode |= S_IWUGO; inode->i_mode &= ~HFS_SB(inode->i_sb)->s_file_umask; HFS_I(inode)->phys_size = 0; HFS_I(inode)->alloc_blocks = 0; HFS_I(inode)->first_blocks = 0; HFS_I(inode)->cached_start = 0; HFS_I(inode)->cached_blocks = 0; memset(HFS_I(inode)->first_extents, 0, sizeof(hfs_extent_rec)); memset(HFS_I(inode)->cached_extents, 0, sizeof(hfs_extent_rec)); } insert_inode_hash(inode); mark_inode_dirty(inode); set_bit(HFS_FLG_MDB_DIRTY, &HFS_SB(sb)->flags); hfs_mark_mdb_dirty(sb); return inode; } void hfs_delete_inode(struct inode *inode) { struct super_block *sb = inode->i_sb; hfs_dbg(INODE, "delete_inode: %lu\n", inode->i_ino); if (S_ISDIR(inode->i_mode)) { HFS_SB(sb)->folder_count--; if (HFS_I(inode)->cat_key.ParID == cpu_to_be32(HFS_ROOT_CNID)) HFS_SB(sb)->root_dirs--; set_bit(HFS_FLG_MDB_DIRTY, &HFS_SB(sb)->flags); hfs_mark_mdb_dirty(sb); return; } HFS_SB(sb)->file_count--; if (HFS_I(inode)->cat_key.ParID == cpu_to_be32(HFS_ROOT_CNID)) HFS_SB(sb)->root_files--; if (S_ISREG(inode->i_mode)) { if (!inode->i_nlink) { inode->i_size = 0; hfs_file_truncate(inode); } } set_bit(HFS_FLG_MDB_DIRTY, &HFS_SB(sb)->flags); hfs_mark_mdb_dirty(sb); } void hfs_inode_read_fork(struct inode *inode, struct hfs_extent *ext, __be32 __log_size, __be32 phys_size, u32 clump_size) { struct super_block *sb = inode->i_sb; u32 log_size = be32_to_cpu(__log_size); u16 count; int i; memcpy(HFS_I(inode)->first_extents, ext, sizeof(hfs_extent_rec)); for (count = 0, i = 0; i < 3; i++) count += be16_to_cpu(ext[i].count); HFS_I(inode)->first_blocks = count; inode->i_size = HFS_I(inode)->phys_size = log_size; HFS_I(inode)->fs_blocks = (log_size + sb->s_blocksize - 1) >> sb->s_blocksize_bits; inode_set_bytes(inode, HFS_I(inode)->fs_blocks << sb->s_blocksize_bits); HFS_I(inode)->alloc_blocks = be32_to_cpu(phys_size) / HFS_SB(sb)->alloc_blksz; HFS_I(inode)->clump_blocks = clump_size / HFS_SB(sb)->alloc_blksz; if (!HFS_I(inode)->clump_blocks) HFS_I(inode)->clump_blocks = HFS_SB(sb)->clumpablks; } struct hfs_iget_data { struct hfs_cat_key *key; hfs_cat_rec *rec; }; static int hfs_test_inode(struct inode *inode, void *data) { struct hfs_iget_data *idata = data; hfs_cat_rec *rec; rec = idata->rec; switch (rec->type) { case HFS_CDR_DIR: return inode->i_ino == be32_to_cpu(rec->dir.DirID); case HFS_CDR_FIL: return inode->i_ino == be32_to_cpu(rec->file.FlNum); default: BUG(); return 1; } } /* * hfs_read_inode */ static int hfs_read_inode(struct inode *inode, void *data) { struct hfs_iget_data *idata = data; struct hfs_sb_info *hsb = HFS_SB(inode->i_sb); hfs_cat_rec *rec; HFS_I(inode)->flags = 0; HFS_I(inode)->rsrc_inode = NULL; mutex_init(&HFS_I(inode)->extents_lock); INIT_LIST_HEAD(&HFS_I(inode)->open_dir_list); /* Initialize the inode */ inode->i_uid = hsb->s_uid; inode->i_gid = hsb->s_gid; set_nlink(inode, 1); if (idata->key) HFS_I(inode)->cat_key = *idata->key; else HFS_I(inode)->flags |= HFS_FLG_RSRC; HFS_I(inode)->tz_secondswest = sys_tz.tz_minuteswest * 60; rec = idata->rec; switch (rec->type) { case HFS_CDR_FIL: if (!HFS_IS_RSRC(inode)) { hfs_inode_read_fork(inode, rec->file.ExtRec, rec->file.LgLen, rec->file.PyLen, be16_to_cpu(rec->file.ClpSize)); } else { hfs_inode_read_fork(inode, rec->file.RExtRec, rec->file.RLgLen, rec->file.RPyLen, be16_to_cpu(rec->file.ClpSize)); } inode->i_ino = be32_to_cpu(rec->file.FlNum); inode->i_mode = S_IRUGO | S_IXUGO; if (!(rec->file.Flags & HFS_FIL_LOCK)) inode->i_mode |= S_IWUGO; inode->i_mode &= ~hsb->s_file_umask; inode->i_mode |= S_IFREG; inode->i_ctime = inode->i_atime = inode->i_mtime = hfs_m_to_utime(rec->file.MdDat); inode->i_op = &hfs_file_inode_operations; inode->i_fop = &hfs_file_operations; inode->i_mapping->a_ops = &hfs_aops; break; case HFS_CDR_DIR: inode->i_ino = be32_to_cpu(rec->dir.DirID); inode->i_size = be16_to_cpu(rec->dir.Val) + 2; HFS_I(inode)->fs_blocks = 0; inode->i_mode = S_IFDIR | (S_IRWXUGO & ~hsb->s_dir_umask); inode->i_ctime = inode->i_atime = inode->i_mtime = hfs_m_to_utime(rec->dir.MdDat); inode->i_op = &hfs_dir_inode_operations; inode->i_fop = &hfs_dir_operations; break; default: make_bad_inode(inode); } return 0; } /* * __hfs_iget() * * Given the MDB for a HFS filesystem, a 'key' and an 'entry' in * the catalog B-tree and the 'type' of the desired file return the * inode for that file/directory or NULL. Note that 'type' indicates * whether we want the actual file or directory, or the corresponding * metadata (AppleDouble header file or CAP metadata file). */ struct inode *hfs_iget(struct super_block *sb, struct hfs_cat_key *key, hfs_cat_rec *rec) { struct hfs_iget_data data = { key, rec }; struct inode *inode; u32 cnid; switch (rec->type) { case HFS_CDR_DIR: cnid = be32_to_cpu(rec->dir.DirID); break; case HFS_CDR_FIL: cnid = be32_to_cpu(rec->file.FlNum); break; default: return NULL; } inode = iget5_locked(sb, cnid, hfs_test_inode, hfs_read_inode, &data); if (inode && (inode->i_state & I_NEW)) unlock_new_inode(inode); return inode; } void hfs_inode_write_fork(struct inode *inode, struct hfs_extent *ext, __be32 *log_size, __be32 *phys_size) { memcpy(ext, HFS_I(inode)->first_extents, sizeof(hfs_extent_rec)); if (log_size) *log_size = cpu_to_be32(inode->i_size); if (phys_size) *phys_size = cpu_to_be32(HFS_I(inode)->alloc_blocks * HFS_SB(inode->i_sb)->alloc_blksz); } int hfs_write_inode(struct inode *inode, struct writeback_control *wbc) { struct inode *main_inode = inode; struct hfs_find_data fd; hfs_cat_rec rec; int res; hfs_dbg(INODE, "hfs_write_inode: %lu\n", inode->i_ino); res = hfs_ext_write_extent(inode); if (res) return res; if (inode->i_ino < HFS_FIRSTUSER_CNID) { switch (inode->i_ino) { case HFS_ROOT_CNID: break; case HFS_EXT_CNID: hfs_btree_write(HFS_SB(inode->i_sb)->ext_tree); return 0; case HFS_CAT_CNID: hfs_btree_write(HFS_SB(inode->i_sb)->cat_tree); return 0; default: BUG(); return -EIO; } } if (HFS_IS_RSRC(inode)) main_inode = HFS_I(inode)->rsrc_inode; if (!main_inode->i_nlink) return 0; if (hfs_find_init(HFS_SB(main_inode->i_sb)->cat_tree, &fd)) /* panic? */ return -EIO; fd.search_key->cat = HFS_I(main_inode)->cat_key; if (hfs_brec_find(&fd)) /* panic? */ goto out; if (S_ISDIR(main_inode->i_mode)) { if (fd.entrylength < sizeof(struct hfs_cat_dir)) /* panic? */; hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, sizeof(struct hfs_cat_dir)); if (rec.type != HFS_CDR_DIR || be32_to_cpu(rec.dir.DirID) != inode->i_ino) { } rec.dir.MdDat = hfs_u_to_mtime(inode->i_mtime); rec.dir.Val = cpu_to_be16(inode->i_size - 2); hfs_bnode_write(fd.bnode, &rec, fd.entryoffset, sizeof(struct hfs_cat_dir)); } else if (HFS_IS_RSRC(inode)) { hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, sizeof(struct hfs_cat_file)); hfs_inode_write_fork(inode, rec.file.RExtRec, &rec.file.RLgLen, &rec.file.RPyLen); hfs_bnode_write(fd.bnode, &rec, fd.entryoffset, sizeof(struct hfs_cat_file)); } else { if (fd.entrylength < sizeof(struct hfs_cat_file)) /* panic? */; hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, sizeof(struct hfs_cat_file)); if (rec.type != HFS_CDR_FIL || be32_to_cpu(rec.file.FlNum) != inode->i_ino) { } if (inode->i_mode & S_IWUSR) rec.file.Flags &= ~HFS_FIL_LOCK; else rec.file.Flags |= HFS_FIL_LOCK; hfs_inode_write_fork(inode, rec.file.ExtRec, &rec.file.LgLen, &rec.file.PyLen); rec.file.MdDat = hfs_u_to_mtime(inode->i_mtime); hfs_bnode_write(fd.bnode, &rec, fd.entryoffset, sizeof(struct hfs_cat_file)); } out: hfs_find_exit(&fd); return 0; } static struct dentry *hfs_file_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct inode *inode = NULL; hfs_cat_rec rec; struct hfs_find_data fd; int res; if (HFS_IS_RSRC(dir) || strcmp(dentry->d_name.name, "rsrc")) goto out; inode = HFS_I(dir)->rsrc_inode; if (inode) goto out; inode = new_inode(dir->i_sb); if (!inode) return ERR_PTR(-ENOMEM); res = hfs_find_init(HFS_SB(dir->i_sb)->cat_tree, &fd); if (res) { iput(inode); return ERR_PTR(res); } fd.search_key->cat = HFS_I(dir)->cat_key; res = hfs_brec_read(&fd, &rec, sizeof(rec)); if (!res) { struct hfs_iget_data idata = { NULL, &rec }; hfs_read_inode(inode, &idata); } hfs_find_exit(&fd); if (res) { iput(inode); return ERR_PTR(res); } HFS_I(inode)->rsrc_inode = dir; HFS_I(dir)->rsrc_inode = inode; igrab(dir); hlist_add_fake(&inode->i_hash); mark_inode_dirty(inode); out: d_add(dentry, inode); return NULL; } void hfs_evict_inode(struct inode *inode) { truncate_inode_pages_final(&inode->i_data); clear_inode(inode); if (HFS_IS_RSRC(inode) && HFS_I(inode)->rsrc_inode) { HFS_I(HFS_I(inode)->rsrc_inode)->rsrc_inode = NULL; iput(HFS_I(inode)->rsrc_inode); } } static int hfs_file_open(struct inode *inode, struct file *file) { if (HFS_IS_RSRC(inode)) inode = HFS_I(inode)->rsrc_inode; atomic_inc(&HFS_I(inode)->opencnt); return 0; } static int hfs_file_release(struct inode *inode, struct file *file) { //struct super_block *sb = inode->i_sb; if (HFS_IS_RSRC(inode)) inode = HFS_I(inode)->rsrc_inode; if (atomic_dec_and_test(&HFS_I(inode)->opencnt)) { mutex_lock(&inode->i_mutex); hfs_file_truncate(inode); //if (inode->i_flags & S_DEAD) { // hfs_delete_cat(inode->i_ino, HFSPLUS_SB(sb).hidden_dir, NULL); // hfs_delete_inode(inode); //} mutex_unlock(&inode->i_mutex); } return 0; } /* * hfs_notify_change() * * Based very closely on fs/msdos/inode.c by Werner Almesberger * * This is the notify_change() field in the super_operations structure * for HFS file systems. The purpose is to take that changes made to * an inode and apply then in a filesystem-dependent manner. In this * case the process has a few of tasks to do: * 1) prevent changes to the i_uid and i_gid fields. * 2) map file permissions to the closest allowable permissions * 3) Since multiple Linux files can share the same on-disk inode under * HFS (for instance the data and resource forks of a file) a change * to permissions must be applied to all other in-core inodes which * correspond to the same HFS file. */ int hfs_inode_setattr(struct dentry *dentry, struct iattr * attr) { struct inode *inode = dentry->d_inode; struct hfs_sb_info *hsb = HFS_SB(inode->i_sb); int error; error = setattr_prepare(dentry, attr); /* basic permission checks */ if (error) return error; /* no uig/gid changes and limit which mode bits can be set */ if (((attr->ia_valid & ATTR_UID) && (!uid_eq(attr->ia_uid, hsb->s_uid))) || ((attr->ia_valid & ATTR_GID) && (!gid_eq(attr->ia_gid, hsb->s_gid))) || ((attr->ia_valid & ATTR_MODE) && ((S_ISDIR(inode->i_mode) && (attr->ia_mode != inode->i_mode)) || (attr->ia_mode & ~HFS_VALID_MODE_BITS)))) { return hsb->s_quiet ? 0 : error; } if (attr->ia_valid & ATTR_MODE) { /* Only the 'w' bits can ever change and only all together. */ if (attr->ia_mode & S_IWUSR) attr->ia_mode = inode->i_mode | S_IWUGO; else attr->ia_mode = inode->i_mode & ~S_IWUGO; attr->ia_mode &= S_ISDIR(inode->i_mode) ? ~hsb->s_dir_umask: ~hsb->s_file_umask; } if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size != i_size_read(inode)) { inode_dio_wait(inode); error = inode_newsize_ok(inode, attr->ia_size); if (error) return error; truncate_setsize(inode, attr->ia_size); hfs_file_truncate(inode); } setattr_copy(inode, attr); mark_inode_dirty(inode); return 0; } static int hfs_file_fsync(struct file *filp, loff_t start, loff_t end, int datasync) { struct inode *inode = filp->f_mapping->host; struct super_block * sb; int ret, err; ret = filemap_write_and_wait_range(inode->i_mapping, start, end); if (ret) return ret; mutex_lock(&inode->i_mutex); /* sync the inode to buffers */ ret = write_inode_now(inode, 0); /* sync the superblock to buffers */ sb = inode->i_sb; flush_delayed_work(&HFS_SB(sb)->mdb_work); /* .. finally sync the buffers to disk */ err = sync_blockdev(sb->s_bdev); if (!ret) ret = err; mutex_unlock(&inode->i_mutex); return ret; } static const struct file_operations hfs_file_operations = { .llseek = generic_file_llseek, .read = new_sync_read, .read_iter = generic_file_read_iter, .write = new_sync_write, .write_iter = generic_file_write_iter, .mmap = generic_file_mmap, .splice_read = generic_file_splice_read, .fsync = hfs_file_fsync, .open = hfs_file_open, .release = hfs_file_release, }; static const struct inode_operations hfs_file_inode_operations = { .lookup = hfs_file_lookup, .setattr = hfs_inode_setattr, .setxattr = hfs_setxattr, .getxattr = hfs_getxattr, .listxattr = hfs_listxattr, };