// SPDX-License-Identifier: GPL-2.0-only /* Network filesystem read subrequest result collection, assessment and * retrying. * * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include #include #include #include #include #include #include "internal.h" /* * Clear the unread part of an I/O request. */ static void netfs_clear_unread(struct netfs_io_subrequest *subreq) { netfs_reset_iter(subreq); WARN_ON_ONCE(subreq->len - subreq->transferred != iov_iter_count(&subreq->io_iter)); iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter); if (subreq->start + subreq->transferred >= subreq->rreq->i_size) __set_bit(NETFS_SREQ_HIT_EOF, &subreq->flags); } /* * Flush, mark and unlock a folio that's now completely read. If we want to * cache the folio, we set the group to NETFS_FOLIO_COPY_TO_CACHE, mark it * dirty and let writeback handle it. */ static void netfs_unlock_read_folio(struct netfs_io_subrequest *subreq, struct netfs_io_request *rreq, struct folio_queue *folioq, int slot) { struct netfs_folio *finfo; struct folio *folio = folioq_folio(folioq, slot); flush_dcache_folio(folio); folio_mark_uptodate(folio); if (!test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)) { finfo = netfs_folio_info(folio); if (finfo) { trace_netfs_folio(folio, netfs_folio_trace_filled_gaps); if (finfo->netfs_group) folio_change_private(folio, finfo->netfs_group); else folio_detach_private(folio); kfree(finfo); } if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) { if (!WARN_ON_ONCE(folio_get_private(folio) != NULL)) { trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache); folio_attach_private(folio, NETFS_FOLIO_COPY_TO_CACHE); folio_mark_dirty(folio); } } else { trace_netfs_folio(folio, netfs_folio_trace_read_done); } } else { // TODO: Use of PG_private_2 is deprecated. if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) netfs_pgpriv2_mark_copy_to_cache(subreq, rreq, folioq, slot); } if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) { if (folio->index == rreq->no_unlock_folio && test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags)) { _debug("no unlock"); } else { trace_netfs_folio(folio, netfs_folio_trace_read_unlock); folio_unlock(folio); } } } /* * Unlock any folios that are now completely read. Returns true if the * subrequest is removed from the list. */ static bool netfs_consume_read_data(struct netfs_io_subrequest *subreq, bool was_async) { struct netfs_io_subrequest *prev, *next; struct netfs_io_request *rreq = subreq->rreq; struct folio_queue *folioq = subreq->curr_folioq; size_t avail, prev_donated, next_donated, fsize, part, excess; loff_t fpos, start; loff_t fend; int slot = subreq->curr_folioq_slot; if (WARN(subreq->transferred > subreq->len, "Subreq overread: R%x[%x] %zu > %zu", rreq->debug_id, subreq->debug_index, subreq->transferred, subreq->len)) subreq->transferred = subreq->len; next_folio: fsize = PAGE_SIZE << subreq->curr_folio_order; fpos = round_down(subreq->start + subreq->consumed, fsize); fend = fpos + fsize; if (WARN_ON_ONCE(!folioq) || WARN_ON_ONCE(!folioq_folio(folioq, slot)) || WARN_ON_ONCE(folioq_folio(folioq, slot)->index != fpos / PAGE_SIZE)) { pr_err("R=%08x[%x] s=%llx-%llx ctl=%zx/%zx/%zx sl=%u\n", rreq->debug_id, subreq->debug_index, subreq->start, subreq->start + subreq->transferred - 1, subreq->consumed, subreq->transferred, subreq->len, slot); if (folioq) { struct folio *folio = folioq_folio(folioq, slot); pr_err("folioq: orders=%02x%02x%02x%02x\n", folioq->orders[0], folioq->orders[1], folioq->orders[2], folioq->orders[3]); if (folio) pr_err("folio: %llx-%llx ix=%llx o=%u qo=%u\n", fpos, fend - 1, folio_pos(folio), folio_order(folio), folioq_folio_order(folioq, slot)); } } donation_changed: /* Try to consume the current folio if we've hit or passed the end of * it. There's a possibility that this subreq doesn't start at the * beginning of the folio, in which case we need to donate to/from the * preceding subreq. * * We also need to include any potential donation back from the * following subreq. */ prev_donated = READ_ONCE(subreq->prev_donated); next_donated = READ_ONCE(subreq->next_donated); if (prev_donated || next_donated) { spin_lock_bh(&rreq->lock); prev_donated = subreq->prev_donated; next_donated = subreq->next_donated; subreq->start -= prev_donated; subreq->len += prev_donated; subreq->transferred += prev_donated; prev_donated = subreq->prev_donated = 0; if (subreq->transferred == subreq->len) { subreq->len += next_donated; subreq->transferred += next_donated; next_donated = subreq->next_donated = 0; } trace_netfs_sreq(subreq, netfs_sreq_trace_add_donations); spin_unlock_bh(&rreq->lock); } avail = subreq->transferred; if (avail == subreq->len) avail += next_donated; start = subreq->start; if (subreq->consumed == 0) { start -= prev_donated; avail += prev_donated; } else { start += subreq->consumed; avail -= subreq->consumed; } part = umin(avail, fsize); trace_netfs_progress(subreq, start, avail, part); if (start + avail >= fend) { if (fpos == start) { /* Flush, unlock and mark for caching any folio we've just read. */ subreq->consumed = fend - subreq->start; netfs_unlock_read_folio(subreq, rreq, folioq, slot); folioq_mark2(folioq, slot); if (subreq->consumed >= subreq->len) goto remove_subreq; } else if (fpos < start) { excess = fend - subreq->start; spin_lock_bh(&rreq->lock); /* If we complete first on a folio split with the * preceding subreq, donate to that subreq - otherwise * we get the responsibility. */ if (subreq->prev_donated != prev_donated) { spin_unlock_bh(&rreq->lock); goto donation_changed; } if (list_is_first(&subreq->rreq_link, &rreq->subrequests)) { spin_unlock_bh(&rreq->lock); pr_err("Can't donate prior to front\n"); goto bad; } prev = list_prev_entry(subreq, rreq_link); WRITE_ONCE(prev->next_donated, prev->next_donated + excess); subreq->start += excess; subreq->len -= excess; subreq->transferred -= excess; trace_netfs_donate(rreq, subreq, prev, excess, netfs_trace_donate_tail_to_prev); trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev); if (subreq->consumed >= subreq->len) goto remove_subreq_locked; spin_unlock_bh(&rreq->lock); } else { pr_err("fpos > start\n"); goto bad; } /* Advance the rolling buffer to the next folio. */ slot++; if (slot >= folioq_nr_slots(folioq)) { slot = 0; folioq = folioq->next; subreq->curr_folioq = folioq; } subreq->curr_folioq_slot = slot; if (folioq && folioq_folio(folioq, slot)) subreq->curr_folio_order = folioq->orders[slot]; if (!was_async) cond_resched(); goto next_folio; } /* Deal with partial progress. */ if (subreq->transferred < subreq->len) return false; /* Donate the remaining downloaded data to one of the neighbouring * subrequests. Note that we may race with them doing the same thing. */ spin_lock_bh(&rreq->lock); if (subreq->prev_donated != prev_donated || subreq->next_donated != next_donated) { spin_unlock_bh(&rreq->lock); cond_resched(); goto donation_changed; } /* Deal with the trickiest case: that this subreq is in the middle of a * folio, not touching either edge, but finishes first. In such a * case, we donate to the previous subreq, if there is one, so that the * donation is only handled when that completes - and remove this * subreq from the list. * * If the previous subreq finished first, we will have acquired their * donation and should be able to unlock folios and/or donate nextwards. */ if (!subreq->consumed && !prev_donated && !list_is_first(&subreq->rreq_link, &rreq->subrequests)) { prev = list_prev_entry(subreq, rreq_link); WRITE_ONCE(prev->next_donated, prev->next_donated + subreq->len); subreq->start += subreq->len; subreq->len = 0; subreq->transferred = 0; trace_netfs_donate(rreq, subreq, prev, subreq->len, netfs_trace_donate_to_prev); trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev); goto remove_subreq_locked; } /* If we can't donate down the chain, donate up the chain instead. */ excess = subreq->len - subreq->consumed + next_donated; if (!subreq->consumed) excess += prev_donated; if (list_is_last(&subreq->rreq_link, &rreq->subrequests)) { rreq->prev_donated = excess; trace_netfs_donate(rreq, subreq, NULL, excess, netfs_trace_donate_to_deferred_next); } else { next = list_next_entry(subreq, rreq_link); WRITE_ONCE(next->prev_donated, excess); trace_netfs_donate(rreq, subreq, next, excess, netfs_trace_donate_to_next); } trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_next); subreq->len = subreq->consumed; subreq->transferred = subreq->consumed; goto remove_subreq_locked; remove_subreq: spin_lock_bh(&rreq->lock); remove_subreq_locked: subreq->consumed = subreq->len; list_del(&subreq->rreq_link); spin_unlock_bh(&rreq->lock); netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_consumed); return true; bad: /* Errr... prev and next both donated to us, but insufficient to finish * the folio. */ printk("R=%08x[%x] s=%llx-%llx %zx/%zx/%zx\n", rreq->debug_id, subreq->debug_index, subreq->start, subreq->start + subreq->transferred - 1, subreq->consumed, subreq->transferred, subreq->len); printk("folio: %llx-%llx\n", fpos, fend - 1); printk("donated: prev=%zx next=%zx\n", prev_donated, next_donated); printk("s=%llx av=%zx part=%zx\n", start, avail, part); BUG(); } /* * Do page flushing and suchlike after DIO. */ static void netfs_rreq_assess_dio(struct netfs_io_request *rreq) { struct netfs_io_subrequest *subreq; unsigned int i; /* Collect unbuffered reads and direct reads, adding up the transfer * sizes until we find the first short or failed subrequest. */ list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { rreq->transferred += subreq->transferred; if (subreq->transferred < subreq->len || test_bit(NETFS_SREQ_FAILED, &subreq->flags)) { rreq->error = subreq->error; break; } } if (rreq->origin == NETFS_DIO_READ) { for (i = 0; i < rreq->direct_bv_count; i++) { flush_dcache_page(rreq->direct_bv[i].bv_page); // TODO: cifs marks pages in the destination buffer // dirty under some circumstances after a read. Do we // need to do that too? set_page_dirty(rreq->direct_bv[i].bv_page); } } if (rreq->iocb) { rreq->iocb->ki_pos += rreq->transferred; if (rreq->iocb->ki_complete) rreq->iocb->ki_complete( rreq->iocb, rreq->error ? rreq->error : rreq->transferred); } if (rreq->netfs_ops->done) rreq->netfs_ops->done(rreq); if (rreq->origin == NETFS_DIO_READ) inode_dio_end(rreq->inode); } /* * Assess the state of a read request and decide what to do next. * * Note that we're in normal kernel thread context at this point, possibly * running on a workqueue. */ static void netfs_rreq_assess(struct netfs_io_request *rreq) { trace_netfs_rreq(rreq, netfs_rreq_trace_assess); //netfs_rreq_is_still_valid(rreq); if (test_and_clear_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags)) { netfs_retry_reads(rreq); return; } if (rreq->origin == NETFS_DIO_READ || rreq->origin == NETFS_READ_GAPS) netfs_rreq_assess_dio(rreq); task_io_account_read(rreq->transferred); trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip); clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags); wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS); trace_netfs_rreq(rreq, netfs_rreq_trace_done); netfs_clear_subrequests(rreq, false); netfs_unlock_abandoned_read_pages(rreq); if (unlikely(test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags))) netfs_pgpriv2_write_to_the_cache(rreq); } void netfs_read_termination_worker(struct work_struct *work) { struct netfs_io_request *rreq = container_of(work, struct netfs_io_request, work); netfs_see_request(rreq, netfs_rreq_trace_see_work); netfs_rreq_assess(rreq); netfs_put_request(rreq, false, netfs_rreq_trace_put_work_complete); } /* * Handle the completion of all outstanding I/O operations on a read request. * We inherit a ref from the caller. */ void netfs_rreq_terminated(struct netfs_io_request *rreq, bool was_async) { if (!was_async) return netfs_rreq_assess(rreq); if (!work_pending(&rreq->work)) { netfs_get_request(rreq, netfs_rreq_trace_get_work); if (!queue_work(system_unbound_wq, &rreq->work)) netfs_put_request(rreq, was_async, netfs_rreq_trace_put_work_nq); } } /** * netfs_read_subreq_progress - Note progress of a read operation. * @subreq: The read request that has terminated. * @was_async: True if we're in an asynchronous context. * * This tells the read side of netfs lib that a contributory I/O operation has * made some progress and that it may be possible to unlock some folios. * * Before calling, the filesystem should update subreq->transferred to track * the amount of data copied into the output buffer. * * If @was_async is true, the caller might be running in softirq or interrupt * context and we can't sleep. */ void netfs_read_subreq_progress(struct netfs_io_subrequest *subreq, bool was_async) { struct netfs_io_request *rreq = subreq->rreq; trace_netfs_sreq(subreq, netfs_sreq_trace_progress); if (subreq->transferred > subreq->consumed && (rreq->origin == NETFS_READAHEAD || rreq->origin == NETFS_READPAGE || rreq->origin == NETFS_READ_FOR_WRITE)) { netfs_consume_read_data(subreq, was_async); __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); } } EXPORT_SYMBOL(netfs_read_subreq_progress); /** * netfs_read_subreq_terminated - Note the termination of an I/O operation. * @subreq: The I/O request that has terminated. * @error: Error code indicating type of completion. * @was_async: The termination was asynchronous * * This tells the read helper that a contributory I/O operation has terminated, * one way or another, and that it should integrate the results. * * The caller indicates the outcome of the operation through @error, supplying * 0 to indicate a successful or retryable transfer (if NETFS_SREQ_NEED_RETRY * is set) or a negative error code. The helper will look after reissuing I/O * operations as appropriate and writing downloaded data to the cache. * * Before calling, the filesystem should update subreq->transferred to track * the amount of data copied into the output buffer. * * If @was_async is true, the caller might be running in softirq or interrupt * context and we can't sleep. */ void netfs_read_subreq_terminated(struct netfs_io_subrequest *subreq, int error, bool was_async) { struct netfs_io_request *rreq = subreq->rreq; switch (subreq->source) { case NETFS_READ_FROM_CACHE: netfs_stat(&netfs_n_rh_read_done); break; case NETFS_DOWNLOAD_FROM_SERVER: netfs_stat(&netfs_n_rh_download_done); break; default: break; } if (rreq->origin != NETFS_DIO_READ) { /* Collect buffered reads. * * If the read completed validly short, then we can clear the * tail before going on to unlock the folios. */ if (error == 0 && subreq->transferred < subreq->len && (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags) || test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags))) { netfs_clear_unread(subreq); subreq->transferred = subreq->len; trace_netfs_sreq(subreq, netfs_sreq_trace_clear); } if (subreq->transferred > subreq->consumed && (rreq->origin == NETFS_READAHEAD || rreq->origin == NETFS_READPAGE || rreq->origin == NETFS_READ_FOR_WRITE)) { netfs_consume_read_data(subreq, was_async); __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); } rreq->transferred += subreq->transferred; } /* Deal with retry requests, short reads and errors. If we retry * but don't make progress, we abandon the attempt. */ if (!error && subreq->transferred < subreq->len) { if (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags)) { trace_netfs_sreq(subreq, netfs_sreq_trace_hit_eof); } else { trace_netfs_sreq(subreq, netfs_sreq_trace_short); if (subreq->transferred > subreq->consumed) { __set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags); __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags); } else if (!__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) { __set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags); set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags); } else { __set_bit(NETFS_SREQ_FAILED, &subreq->flags); error = -ENODATA; } } } subreq->error = error; trace_netfs_sreq(subreq, netfs_sreq_trace_terminated); if (unlikely(error < 0)) { trace_netfs_failure(rreq, subreq, error, netfs_fail_read); if (subreq->source == NETFS_READ_FROM_CACHE) { netfs_stat(&netfs_n_rh_read_failed); } else { netfs_stat(&netfs_n_rh_download_failed); set_bit(NETFS_RREQ_FAILED, &rreq->flags); rreq->error = subreq->error; } } if (atomic_dec_and_test(&rreq->nr_outstanding)) netfs_rreq_terminated(rreq, was_async); netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated); } EXPORT_SYMBOL(netfs_read_subreq_terminated);