/* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter */ /* * This file implements UBIFS extended attributes support. * * Extended attributes are implemented as regular inodes with attached data, * which limits extended attribute size to UBIFS block size (4KiB). Names of * extended attributes are described by extended attribute entries (xentries), * which are almost identical to directory entries, but have different key type. * * In other words, the situation with extended attributes is very similar to * directories. Indeed, any inode (but of course not xattr inodes) may have a * number of associated xentries, just like directory inodes have associated * directory entries. Extended attribute entries store the name of the extended * attribute, the host inode number, and the extended attribute inode number. * Similarly, direntries store the name, the parent and the target inode * numbers. Thus, most of the common UBIFS mechanisms may be re-used for * extended attributes. * * The number of extended attributes is not limited, but there is Linux * limitation on the maximum possible size of the list of all extended * attributes associated with an inode (%XATTR_LIST_MAX), so UBIFS makes sure * the sum of all extended attribute names of the inode does not exceed that * limit. * * Extended attributes are synchronous, which means they are written to the * flash media synchronously and there is no write-back for extended attribute * inodes. The extended attribute values are not stored in compressed form on * the media. * * Since extended attributes are represented by regular inodes, they are cached * in the VFS inode cache. The xentries are cached in the LNC cache (see * tnc.c). * * ACL support is not implemented. */ #include "ubifs.h" #include #include #include #include /* * Limit the number of extended attributes per inode so that the total size * (@xattr_size) is guaranteeded to fit in an 'unsigned int'. */ #define MAX_XATTRS_PER_INODE 65535 /* * Extended attribute type constants. * * USER_XATTR: user extended attribute ("user.*") * TRUSTED_XATTR: trusted extended attribute ("trusted.*) * SECURITY_XATTR: security extended attribute ("security.*") */ enum { USER_XATTR, TRUSTED_XATTR, SECURITY_XATTR, }; static const struct inode_operations empty_iops; static const struct file_operations empty_fops; /** * create_xattr - create an extended attribute. * @c: UBIFS file-system description object * @host: host inode * @nm: extended attribute name * @value: extended attribute value * @size: size of extended attribute value * * This is a helper function which creates an extended attribute of name @nm * and value @value for inode @host. The host inode is also updated on flash * because the ctime and extended attribute accounting data changes. This * function returns zero in case of success and a negative error code in case * of failure. */ static int create_xattr(struct ubifs_info *c, struct inode *host, const struct qstr *nm, const void *value, int size) { int err; struct inode *inode; struct ubifs_inode *ui, *host_ui = ubifs_inode(host); struct ubifs_budget_req req = { .new_ino = 1, .new_dent = 1, .new_ino_d = ALIGN(size, 8), .dirtied_ino = 1, .dirtied_ino_d = ALIGN(host_ui->data_len, 8) }; if (host_ui->xattr_cnt >= MAX_XATTRS_PER_INODE) return -ENOSPC; /* * Linux limits the maximum size of the extended attribute names list * to %XATTR_LIST_MAX. This means we should not allow creating more * extended attributes if the name list becomes larger. This limitation * is artificial for UBIFS, though. */ if (host_ui->xattr_names + host_ui->xattr_cnt + nm->len + 1 > XATTR_LIST_MAX) return -ENOSPC; err = ubifs_budget_space(c, &req); if (err) return err; inode = ubifs_new_inode(c, host, S_IFREG | S_IRWXUGO); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto out_budg; } /* Re-define all operations to be "nothing" */ inode->i_mapping->a_ops = &empty_aops; inode->i_op = &empty_iops; inode->i_fop = &empty_fops; inode->i_flags |= S_SYNC | S_NOATIME | S_NOCMTIME | S_NOQUOTA; ui = ubifs_inode(inode); ui->xattr = 1; ui->flags |= UBIFS_XATTR_FL; ui->data = kmalloc(size, GFP_NOFS); if (!ui->data) { err = -ENOMEM; goto out_free; } memcpy(ui->data, value, size); inode->i_size = ui->ui_size = size; ui->data_len = size; mutex_lock(&host_ui->ui_mutex); host->i_ctime = ubifs_current_time(host); host_ui->xattr_cnt += 1; host_ui->xattr_size += CALC_DENT_SIZE(nm->len); host_ui->xattr_size += CALC_XATTR_BYTES(size); host_ui->xattr_names += nm->len; err = ubifs_jnl_update(c, host, nm, inode, 0, 1); if (err) goto out_cancel; mutex_unlock(&host_ui->ui_mutex); ubifs_release_budget(c, &req); insert_inode_hash(inode); iput(inode); return 0; out_cancel: host_ui->xattr_cnt -= 1; host_ui->xattr_size -= CALC_DENT_SIZE(nm->len); host_ui->xattr_size -= CALC_XATTR_BYTES(size); host_ui->xattr_names -= nm->len; mutex_unlock(&host_ui->ui_mutex); out_free: make_bad_inode(inode); iput(inode); out_budg: ubifs_release_budget(c, &req); return err; } /** * change_xattr - change an extended attribute. * @c: UBIFS file-system description object * @host: host inode * @inode: extended attribute inode * @value: extended attribute value * @size: size of extended attribute value * * This helper function changes the value of extended attribute @inode with new * data from @value. Returns zero in case of success and a negative error code * in case of failure. */ static int change_xattr(struct ubifs_info *c, struct inode *host, struct inode *inode, const void *value, int size) { int err; struct ubifs_inode *host_ui = ubifs_inode(host); struct ubifs_inode *ui = ubifs_inode(inode); struct ubifs_budget_req req = { .dirtied_ino = 2, .dirtied_ino_d = ALIGN(size, 8) + ALIGN(host_ui->data_len, 8) }; ubifs_assert(ui->data_len == inode->i_size); err = ubifs_budget_space(c, &req); if (err) return err; kfree(ui->data); ui->data = kmalloc(size, GFP_NOFS); if (!ui->data) { err = -ENOMEM; goto out_free; } memcpy(ui->data, value, size); inode->i_size = ui->ui_size = size; ui->data_len = size; mutex_lock(&host_ui->ui_mutex); host->i_ctime = ubifs_current_time(host); host_ui->xattr_size -= CALC_XATTR_BYTES(ui->data_len); host_ui->xattr_size += CALC_XATTR_BYTES(size); /* * It is important to write the host inode after the xattr inode * because if the host inode gets synchronized (via 'fsync()'), then * the extended attribute inode gets synchronized, because it goes * before the host inode in the write-buffer. */ err = ubifs_jnl_change_xattr(c, inode, host); if (err) goto out_cancel; mutex_unlock(&host_ui->ui_mutex); ubifs_release_budget(c, &req); return 0; out_cancel: host_ui->xattr_size -= CALC_XATTR_BYTES(size); host_ui->xattr_size += CALC_XATTR_BYTES(ui->data_len); mutex_unlock(&host_ui->ui_mutex); make_bad_inode(inode); out_free: ubifs_release_budget(c, &req); return err; } /** * check_namespace - check extended attribute name-space. * @nm: extended attribute name * * This function makes sure the extended attribute name belongs to one of the * supported extended attribute name-spaces. Returns name-space index in case * of success and a negative error code in case of failure. */ static int check_namespace(const struct qstr *nm) { int type; if (nm->len > UBIFS_MAX_NLEN) return -ENAMETOOLONG; if (!strncmp(nm->name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN)) { if (nm->name[sizeof(XATTR_TRUSTED_PREFIX) - 1] == '\0') return -EINVAL; type = TRUSTED_XATTR; } else if (!strncmp(nm->name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN)) { if (nm->name[XATTR_USER_PREFIX_LEN] == '\0') return -EINVAL; type = USER_XATTR; } else if (!strncmp(nm->name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN)) { if (nm->name[sizeof(XATTR_SECURITY_PREFIX) - 1] == '\0') return -EINVAL; type = SECURITY_XATTR; } else return -EOPNOTSUPP; return type; } static struct inode *iget_xattr(struct ubifs_info *c, ino_t inum) { struct inode *inode; inode = ubifs_iget(c->vfs_sb, inum); if (IS_ERR(inode)) { ubifs_err("dead extended attribute entry, error %d", (int)PTR_ERR(inode)); return inode; } if (ubifs_inode(inode)->xattr) return inode; ubifs_err("corrupt extended attribute entry"); iput(inode); return ERR_PTR(-EINVAL); } int ubifs_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { struct inode *inode, *host = dentry->d_inode; struct ubifs_info *c = host->i_sb->s_fs_info; struct qstr nm = { .name = name, .len = strlen(name) }; struct ubifs_dent_node *xent; union ubifs_key key; int err, type; dbg_gen("xattr '%s', host ino %lu ('%.*s'), size %zd", name, host->i_ino, dentry->d_name.len, dentry->d_name.name, size); ubifs_assert(mutex_is_locked(&host->i_mutex)); if (size > UBIFS_MAX_INO_DATA) return -ERANGE; type = check_namespace(&nm); if (type < 0) return type; xent = kmalloc(UBIFS_MAX_XENT_NODE_SZ, GFP_NOFS); if (!xent) return -ENOMEM; /* * The extended attribute entries are stored in LNC, so multiple * look-ups do not involve reading the flash. */ xent_key_init(c, &key, host->i_ino, &nm); err = ubifs_tnc_lookup_nm(c, &key, xent, &nm); if (err) { if (err != -ENOENT) goto out_free; if (flags & XATTR_REPLACE) /* We are asked not to create the xattr */ err = -ENODATA; else err = create_xattr(c, host, &nm, value, size); goto out_free; } if (flags & XATTR_CREATE) { /* We are asked not to replace the xattr */ err = -EEXIST; goto out_free; } inode = iget_xattr(c, le64_to_cpu(xent->inum)); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto out_free; } err = change_xattr(c, host, inode, value, size); iput(inode); out_free: kfree(xent); return err; } ssize_t ubifs_getxattr(struct dentry *dentry, const char *name, void *buf, size_t size) { struct inode *inode, *host = dentry->d_inode; struct ubifs_info *c = host->i_sb->s_fs_info; struct qstr nm = { .name = name, .len = strlen(name) }; struct ubifs_inode *ui; struct ubifs_dent_node *xent; union ubifs_key key; int err; dbg_gen("xattr '%s', ino %lu ('%.*s'), buf size %zd", name, host->i_ino, dentry->d_name.len, dentry->d_name.name, size); err = check_namespace(&nm); if (err < 0) return err; xent = kmalloc(UBIFS_MAX_XENT_NODE_SZ, GFP_NOFS); if (!xent) return -ENOMEM; xent_key_init(c, &key, host->i_ino, &nm); err = ubifs_tnc_lookup_nm(c, &key, xent, &nm); if (err) { if (err == -ENOENT) err = -ENODATA; goto out_unlock; } inode = iget_xattr(c, le64_to_cpu(xent->inum)); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto out_unlock; } ui = ubifs_inode(inode); ubifs_assert(inode->i_size == ui->data_len); ubifs_assert(ubifs_inode(host)->xattr_size > ui->data_len); if (buf) { /* If @buf is %NULL we are supposed to return the length */ if (ui->data_len > size) { dbg_err("buffer size %zd, xattr len %d", size, ui->data_len); err = -ERANGE; goto out_iput; } memcpy(buf, ui->data, ui->data_len); } err = ui->data_len; out_iput: iput(inode); out_unlock: kfree(xent); return err; } ssize_t ubifs_listxattr(struct dentry *dentry, char *buffer, size_t size) { union ubifs_key key; struct inode *host = dentry->d_inode; struct ubifs_info *c = host->i_sb->s_fs_info; struct ubifs_inode *host_ui = ubifs_inode(host); struct ubifs_dent_node *xent, *pxent = NULL; int err, len, written = 0; struct qstr nm = { .name = NULL }; dbg_gen("ino %lu ('%.*s'), buffer size %zd", host->i_ino, dentry->d_name.len, dentry->d_name.name, size); len = host_ui->xattr_names + host_ui->xattr_cnt; if (!buffer) /* * We should return the minimum buffer size which will fit a * null-terminated list of all the extended attribute names. */ return len; if (len > size) return -ERANGE; lowest_xent_key(c, &key, host->i_ino); while (1) { int type; xent = ubifs_tnc_next_ent(c, &key, &nm); if (IS_ERR(xent)) { err = PTR_ERR(xent); break; } nm.name = xent->name; nm.len = le16_to_cpu(xent->nlen); type = check_namespace(&nm); if (unlikely(type < 0)) { err = type; break; } /* Show trusted namespace only for "power" users */ if (type != TRUSTED_XATTR || capable(CAP_SYS_ADMIN)) { memcpy(buffer + written, nm.name, nm.len + 1); written += nm.len + 1; } kfree(pxent); pxent = xent; key_read(c, &xent->key, &key); } kfree(pxent); if (err != -ENOENT) { ubifs_err("cannot find next direntry, error %d", err); return err; } ubifs_assert(written <= size); return written; } /** * ubifs_evict_xattr_inode - Evict an xattr inode. * @c: UBIFS file-system description object * @xattr_inum: xattr inode number * * When an inode that hosts xattrs is being removed we have to make sure * that cached inodes of the xattrs also get removed from the inode cache * otherwise we'd waste memory. This function looks up an inode from the * inode cache and clears the link counter such that iput() will evict * the inode. */ void ubifs_evict_xattr_inode(struct ubifs_info *c, ino_t xattr_inum) { struct inode *inode; inode = ilookup(c->vfs_sb, xattr_inum); if (inode) { clear_nlink(inode); iput(inode); } } static int remove_xattr(struct ubifs_info *c, struct inode *host, struct inode *inode, const struct qstr *nm) { int err; struct ubifs_inode *host_ui = ubifs_inode(host); struct ubifs_inode *ui = ubifs_inode(inode); struct ubifs_budget_req req = { .dirtied_ino = 2, .mod_dent = 1, .dirtied_ino_d = ALIGN(host_ui->data_len, 8) }; ubifs_assert(ui->data_len == inode->i_size); err = ubifs_budget_space(c, &req); if (err) return err; mutex_lock(&host_ui->ui_mutex); host->i_ctime = ubifs_current_time(host); host_ui->xattr_cnt -= 1; host_ui->xattr_size -= CALC_DENT_SIZE(nm->len); host_ui->xattr_size -= CALC_XATTR_BYTES(ui->data_len); host_ui->xattr_names -= nm->len; err = ubifs_jnl_delete_xattr(c, host, inode, nm); if (err) goto out_cancel; mutex_unlock(&host_ui->ui_mutex); ubifs_release_budget(c, &req); return 0; out_cancel: host_ui->xattr_cnt += 1; host_ui->xattr_size += CALC_DENT_SIZE(nm->len); host_ui->xattr_size += CALC_XATTR_BYTES(ui->data_len); host_ui->xattr_names += nm->len; mutex_unlock(&host_ui->ui_mutex); ubifs_release_budget(c, &req); make_bad_inode(inode); return err; } int ubifs_removexattr(struct dentry *dentry, const char *name) { struct inode *inode, *host = dentry->d_inode; struct ubifs_info *c = host->i_sb->s_fs_info; struct qstr nm = { .name = name, .len = strlen(name) }; struct ubifs_dent_node *xent; union ubifs_key key; int err; dbg_gen("xattr '%s', ino %lu ('%.*s')", name, host->i_ino, dentry->d_name.len, dentry->d_name.name); ubifs_assert(mutex_is_locked(&host->i_mutex)); err = check_namespace(&nm); if (err < 0) return err; xent = kmalloc(UBIFS_MAX_XENT_NODE_SZ, GFP_NOFS); if (!xent) return -ENOMEM; xent_key_init(c, &key, host->i_ino, &nm); err = ubifs_tnc_lookup_nm(c, &key, xent, &nm); if (err) { if (err == -ENOENT) err = -ENODATA; goto out_free; } inode = iget_xattr(c, le64_to_cpu(xent->inum)); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto out_free; } ubifs_assert(inode->i_nlink == 1); clear_nlink(inode); err = remove_xattr(c, host, inode, &nm); if (err) set_nlink(inode, 1); /* If @i_nlink is 0, 'iput()' will delete the inode */ iput(inode); out_free: kfree(xent); return err; }