/* * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef __XFS_LOG_PRIV_H__ #define __XFS_LOG_PRIV_H__ struct xfs_buf; struct log; struct xlog_ticket; struct xfs_mount; /* * Macros, structures, prototypes for internal log manager use. */ #define XLOG_MIN_ICLOGS 2 #define XLOG_MAX_ICLOGS 8 #define XLOG_HEADER_MAGIC_NUM 0xFEEDbabe /* Invalid cycle number */ #define XLOG_VERSION_1 1 #define XLOG_VERSION_2 2 /* Large IClogs, Log sunit */ #define XLOG_VERSION_OKBITS (XLOG_VERSION_1 | XLOG_VERSION_2) #define XLOG_MIN_RECORD_BSIZE (16*1024) /* eventually 32k */ #define XLOG_BIG_RECORD_BSIZE (32*1024) /* 32k buffers */ #define XLOG_MAX_RECORD_BSIZE (256*1024) #define XLOG_HEADER_CYCLE_SIZE (32*1024) /* cycle data in header */ #define XLOG_MIN_RECORD_BSHIFT 14 /* 16384 == 1 << 14 */ #define XLOG_BIG_RECORD_BSHIFT 15 /* 32k == 1 << 15 */ #define XLOG_MAX_RECORD_BSHIFT 18 /* 256k == 1 << 18 */ #define XLOG_BTOLSUNIT(log, b) (((b)+(log)->l_mp->m_sb.sb_logsunit-1) / \ (log)->l_mp->m_sb.sb_logsunit) #define XLOG_LSUNITTOB(log, su) ((su) * (log)->l_mp->m_sb.sb_logsunit) #define XLOG_HEADER_SIZE 512 #define XLOG_REC_SHIFT(log) \ BTOBB(1 << (xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? \ XLOG_MAX_RECORD_BSHIFT : XLOG_BIG_RECORD_BSHIFT)) #define XLOG_TOTAL_REC_SHIFT(log) \ BTOBB(XLOG_MAX_ICLOGS << (xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? \ XLOG_MAX_RECORD_BSHIFT : XLOG_BIG_RECORD_BSHIFT)) static inline xfs_lsn_t xlog_assign_lsn(uint cycle, uint block) { return ((xfs_lsn_t)cycle << 32) | block; } static inline uint xlog_get_cycle(char *ptr) { if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM) return be32_to_cpu(*((__be32 *)ptr + 1)); else return be32_to_cpu(*(__be32 *)ptr); } #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) #ifdef __KERNEL__ /* * get client id from packed copy. * * this hack is here because the xlog_pack code copies four bytes * of xlog_op_header containing the fields oh_clientid, oh_flags * and oh_res2 into the packed copy. * * later on this four byte chunk is treated as an int and the * client id is pulled out. * * this has endian issues, of course. */ static inline uint xlog_get_client_id(__be32 i) { return be32_to_cpu(i) >> 24; } #define xlog_panic(args...) cmn_err(CE_PANIC, ## args) #define xlog_exit(args...) cmn_err(CE_PANIC, ## args) #define xlog_warn(args...) cmn_err(CE_WARN, ## args) /* * In core log state */ #define XLOG_STATE_ACTIVE 0x0001 /* Current IC log being written to */ #define XLOG_STATE_WANT_SYNC 0x0002 /* Want to sync this iclog; no more writes */ #define XLOG_STATE_SYNCING 0x0004 /* This IC log is syncing */ #define XLOG_STATE_DONE_SYNC 0x0008 /* Done syncing to disk */ #define XLOG_STATE_DO_CALLBACK \ 0x0010 /* Process callback functions */ #define XLOG_STATE_CALLBACK 0x0020 /* Callback functions now */ #define XLOG_STATE_DIRTY 0x0040 /* Dirty IC log, not ready for ACTIVE status*/ #define XLOG_STATE_IOERROR 0x0080 /* IO error happened in sync'ing log */ #define XLOG_STATE_ALL 0x7FFF /* All possible valid flags */ #define XLOG_STATE_NOTUSED 0x8000 /* This IC log not being used */ #endif /* __KERNEL__ */ /* * Flags to log operation header * * The first write of a new transaction will be preceded with a start * record, XLOG_START_TRANS. Once a transaction is committed, a commit * record is written, XLOG_COMMIT_TRANS. If a single region can not fit into * the remainder of the current active in-core log, it is split up into * multiple regions. Each partial region will be marked with a * XLOG_CONTINUE_TRANS until the last one, which gets marked with XLOG_END_TRANS. * */ #define XLOG_START_TRANS 0x01 /* Start a new transaction */ #define XLOG_COMMIT_TRANS 0x02 /* Commit this transaction */ #define XLOG_CONTINUE_TRANS 0x04 /* Cont this trans into new region */ #define XLOG_WAS_CONT_TRANS 0x08 /* Cont this trans into new region */ #define XLOG_END_TRANS 0x10 /* End a continued transaction */ #define XLOG_UNMOUNT_TRANS 0x20 /* Unmount a filesystem transaction */ #ifdef __KERNEL__ /* * Flags to log ticket */ #define XLOG_TIC_INITED 0x1 /* has been initialized */ #define XLOG_TIC_PERM_RESERV 0x2 /* permanent reservation */ #define XLOG_TIC_FLAGS \ { XLOG_TIC_INITED, "XLOG_TIC_INITED" }, \ { XLOG_TIC_PERM_RESERV, "XLOG_TIC_PERM_RESERV" } #endif /* __KERNEL__ */ #define XLOG_UNMOUNT_TYPE 0x556e /* Un for Unmount */ /* * Flags for log structure */ #define XLOG_CHKSUM_MISMATCH 0x1 /* used only during recovery */ #define XLOG_ACTIVE_RECOVERY 0x2 /* in the middle of recovery */ #define XLOG_RECOVERY_NEEDED 0x4 /* log was recovered */ #define XLOG_IO_ERROR 0x8 /* log hit an I/O error, and being shutdown */ #ifdef __KERNEL__ /* * Below are states for covering allocation transactions. * By covering, we mean changing the h_tail_lsn in the last on-disk * log write such that no allocation transactions will be re-done during * recovery after a system crash. Recovery starts at the last on-disk * log write. * * These states are used to insert dummy log entries to cover * space allocation transactions which can undo non-transactional changes * after a crash. Writes to a file with space * already allocated do not result in any transactions. Allocations * might include space beyond the EOF. So if we just push the EOF a * little, the last transaction for the file could contain the wrong * size. If there is no file system activity, after an allocation * transaction, and the system crashes, the allocation transaction * will get replayed and the file will be truncated. This could * be hours/days/... after the allocation occurred. * * The fix for this is to do two dummy transactions when the * system is idle. We need two dummy transaction because the h_tail_lsn * in the log record header needs to point beyond the last possible * non-dummy transaction. The first dummy changes the h_tail_lsn to * the first transaction before the dummy. The second dummy causes * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn. * * These dummy transactions get committed when everything * is idle (after there has been some activity). * * There are 5 states used to control this. * * IDLE -- no logging has been done on the file system or * we are done covering previous transactions. * NEED -- logging has occurred and we need a dummy transaction * when the log becomes idle. * DONE -- we were in the NEED state and have committed a dummy * transaction. * NEED2 -- we detected that a dummy transaction has gone to the * on disk log with no other transactions. * DONE2 -- we committed a dummy transaction when in the NEED2 state. * * There are two places where we switch states: * * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2. * We commit the dummy transaction and switch to DONE or DONE2, * respectively. In all other states, we don't do anything. * * 2.) When we finish writing the on-disk log (xlog_state_clean_log). * * No matter what state we are in, if this isn't the dummy * transaction going out, the next state is NEED. * So, if we aren't in the DONE or DONE2 states, the next state * is NEED. We can't be finishing a write of the dummy record * unless it was committed and the state switched to DONE or DONE2. * * If we are in the DONE state and this was a write of the * dummy transaction, we move to NEED2. * * If we are in the DONE2 state and this was a write of the * dummy transaction, we move to IDLE. * * * Writing only one dummy transaction can get appended to * one file space allocation. When this happens, the log recovery * code replays the space allocation and a file could be truncated. * This is why we have the NEED2 and DONE2 states before going idle. */ #define XLOG_STATE_COVER_IDLE 0 #define XLOG_STATE_COVER_NEED 1 #define XLOG_STATE_COVER_DONE 2 #define XLOG_STATE_COVER_NEED2 3 #define XLOG_STATE_COVER_DONE2 4 #define XLOG_COVER_OPS 5 /* Ticket reservation region accounting */ #define XLOG_TIC_LEN_MAX 15 /* * Reservation region * As would be stored in xfs_log_iovec but without the i_addr which * we don't care about. */ typedef struct xlog_res { uint r_len; /* region length :4 */ uint r_type; /* region's transaction type :4 */ } xlog_res_t; typedef struct xlog_ticket { wait_queue_head_t t_wait; /* ticket wait queue */ struct list_head t_queue; /* reserve/write queue */ xlog_tid_t t_tid; /* transaction identifier : 4 */ atomic_t t_ref; /* ticket reference count : 4 */ int t_curr_res; /* current reservation in bytes : 4 */ int t_unit_res; /* unit reservation in bytes : 4 */ char t_ocnt; /* original count : 1 */ char t_cnt; /* current count : 1 */ char t_clientid; /* who does this belong to; : 1 */ char t_flags; /* properties of reservation : 1 */ uint t_trans_type; /* transaction type : 4 */ /* reservation array fields */ uint t_res_num; /* num in array : 4 */ uint t_res_num_ophdrs; /* num op hdrs : 4 */ uint t_res_arr_sum; /* array sum : 4 */ uint t_res_o_flow; /* sum overflow : 4 */ xlog_res_t t_res_arr[XLOG_TIC_LEN_MAX]; /* array of res : 8 * 15 */ } xlog_ticket_t; #endif typedef struct xlog_op_header { __be32 oh_tid; /* transaction id of operation : 4 b */ __be32 oh_len; /* bytes in data region : 4 b */ __u8 oh_clientid; /* who sent me this : 1 b */ __u8 oh_flags; /* : 1 b */ __u16 oh_res2; /* 32 bit align : 2 b */ } xlog_op_header_t; /* valid values for h_fmt */ #define XLOG_FMT_UNKNOWN 0 #define XLOG_FMT_LINUX_LE 1 #define XLOG_FMT_LINUX_BE 2 #define XLOG_FMT_IRIX_BE 3 /* our fmt */ #ifdef XFS_NATIVE_HOST #define XLOG_FMT XLOG_FMT_LINUX_BE #else #define XLOG_FMT XLOG_FMT_LINUX_LE #endif typedef struct xlog_rec_header { __be32 h_magicno; /* log record (LR) identifier : 4 */ __be32 h_cycle; /* write cycle of log : 4 */ __be32 h_version; /* LR version : 4 */ __be32 h_len; /* len in bytes; should be 64-bit aligned: 4 */ __be64 h_lsn; /* lsn of this LR : 8 */ __be64 h_tail_lsn; /* lsn of 1st LR w/ buffers not committed: 8 */ __be32 h_chksum; /* may not be used; non-zero if used : 4 */ __be32 h_prev_block; /* block number to previous LR : 4 */ __be32 h_num_logops; /* number of log operations in this LR : 4 */ __be32 h_cycle_data[XLOG_HEADER_CYCLE_SIZE / BBSIZE]; /* new fields */ __be32 h_fmt; /* format of log record : 4 */ uuid_t h_fs_uuid; /* uuid of FS : 16 */ __be32 h_size; /* iclog size : 4 */ } xlog_rec_header_t; typedef struct xlog_rec_ext_header { __be32 xh_cycle; /* write cycle of log : 4 */ __be32 xh_cycle_data[XLOG_HEADER_CYCLE_SIZE / BBSIZE]; /* : 256 */ } xlog_rec_ext_header_t; #ifdef __KERNEL__ /* * Quite misnamed, because this union lays out the actual on-disk log buffer. */ typedef union xlog_in_core2 { xlog_rec_header_t hic_header; xlog_rec_ext_header_t hic_xheader; char hic_sector[XLOG_HEADER_SIZE]; } xlog_in_core_2_t; /* * - A log record header is 512 bytes. There is plenty of room to grow the * xlog_rec_header_t into the reserved space. * - ic_data follows, so a write to disk can start at the beginning of * the iclog. * - ic_forcewait is used to implement synchronous forcing of the iclog to disk. * - ic_next is the pointer to the next iclog in the ring. * - ic_bp is a pointer to the buffer used to write this incore log to disk. * - ic_log is a pointer back to the global log structure. * - ic_callback is a linked list of callback function/argument pairs to be * called after an iclog finishes writing. * - ic_size is the full size of the header plus data. * - ic_offset is the current number of bytes written to in this iclog. * - ic_refcnt is bumped when someone is writing to the log. * - ic_state is the state of the iclog. * * Because of cacheline contention on large machines, we need to separate * various resources onto different cachelines. To start with, make the * structure cacheline aligned. The following fields can be contended on * by independent processes: * * - ic_callback_* * - ic_refcnt * - fields protected by the global l_icloglock * * so we need to ensure that these fields are located in separate cachelines. * We'll put all the read-only and l_icloglock fields in the first cacheline, * and move everything else out to subsequent cachelines. */ typedef struct xlog_in_core { wait_queue_head_t ic_force_wait; wait_queue_head_t ic_write_wait; struct xlog_in_core *ic_next; struct xlog_in_core *ic_prev; struct xfs_buf *ic_bp; struct log *ic_log; int ic_size; int ic_offset; int ic_bwritecnt; unsigned short ic_state; char *ic_datap; /* pointer to iclog data */ /* Callback structures need their own cacheline */ spinlock_t ic_callback_lock ____cacheline_aligned_in_smp; xfs_log_callback_t *ic_callback; xfs_log_callback_t **ic_callback_tail; /* reference counts need their own cacheline */ atomic_t ic_refcnt ____cacheline_aligned_in_smp; xlog_in_core_2_t *ic_data; #define ic_header ic_data->hic_header } xlog_in_core_t; /* * The CIL context is used to aggregate per-transaction details as well be * passed to the iclog for checkpoint post-commit processing. After being * passed to the iclog, another context needs to be allocated for tracking the * next set of transactions to be aggregated into a checkpoint. */ struct xfs_cil; struct xfs_cil_ctx { struct xfs_cil *cil; xfs_lsn_t sequence; /* chkpt sequence # */ xfs_lsn_t start_lsn; /* first LSN of chkpt commit */ xfs_lsn_t commit_lsn; /* chkpt commit record lsn */ struct xlog_ticket *ticket; /* chkpt ticket */ int nvecs; /* number of regions */ int space_used; /* aggregate size of regions */ struct list_head busy_extents; /* busy extents in chkpt */ struct xfs_log_vec *lv_chain; /* logvecs being pushed */ xfs_log_callback_t log_cb; /* completion callback hook. */ struct list_head committing; /* ctx committing list */ }; /* * Committed Item List structure * * This structure is used to track log items that have been committed but not * yet written into the log. It is used only when the delayed logging mount * option is enabled. * * This structure tracks the list of committing checkpoint contexts so * we can avoid the problem of having to hold out new transactions during a * flush until we have a the commit record LSN of the checkpoint. We can * traverse the list of committing contexts in xlog_cil_push_lsn() to find a * sequence match and extract the commit LSN directly from there. If the * checkpoint is still in the process of committing, we can block waiting for * the commit LSN to be determined as well. This should make synchronous * operations almost as efficient as the old logging methods. */ struct xfs_cil { struct log *xc_log; struct list_head xc_cil; spinlock_t xc_cil_lock; struct xfs_cil_ctx *xc_ctx; struct rw_semaphore xc_ctx_lock; struct list_head xc_committing; wait_queue_head_t xc_commit_wait; xfs_lsn_t xc_current_sequence; }; /* * The amount of log space we allow the CIL to aggregate is difficult to size. * Whatever we choose, we have to make sure we can get a reservation for the * log space effectively, that it is large enough to capture sufficient * relogging to reduce log buffer IO significantly, but it is not too large for * the log or induces too much latency when writing out through the iclogs. We * track both space consumed and the number of vectors in the checkpoint * context, so we need to decide which to use for limiting. * * Every log buffer we write out during a push needs a header reserved, which * is at least one sector and more for v2 logs. Hence we need a reservation of * at least 512 bytes per 32k of log space just for the LR headers. That means * 16KB of reservation per megabyte of delayed logging space we will consume, * plus various headers. The number of headers will vary based on the num of * io vectors, so limiting on a specific number of vectors is going to result * in transactions of varying size. IOWs, it is more consistent to track and * limit space consumed in the log rather than by the number of objects being * logged in order to prevent checkpoint ticket overruns. * * Further, use of static reservations through the log grant mechanism is * problematic. It introduces a lot of complexity (e.g. reserve grant vs write * grant) and a significant deadlock potential because regranting write space * can block on log pushes. Hence if we have to regrant log space during a log * push, we can deadlock. * * However, we can avoid this by use of a dynamic "reservation stealing" * technique during transaction commit whereby unused reservation space in the * transaction ticket is transferred to the CIL ctx commit ticket to cover the * space needed by the checkpoint transaction. This means that we never need to * specifically reserve space for the CIL checkpoint transaction, nor do we * need to regrant space once the checkpoint completes. This also means the * checkpoint transaction ticket is specific to the checkpoint context, rather * than the CIL itself. * * With dynamic reservations, we can effectively make up arbitrary limits for * the checkpoint size so long as they don't violate any other size rules. * Recovery imposes a rule that no transaction exceed half the log, so we are * limited by that. Furthermore, the log transaction reservation subsystem * tries to keep 25% of the log free, so we need to keep below that limit or we * risk running out of free log space to start any new transactions. * * In order to keep background CIL push efficient, we will set a lower * threshold at which background pushing is attempted without blocking current * transaction commits. A separate, higher bound defines when CIL pushes are * enforced to ensure we stay within our maximum checkpoint size bounds. * threshold, yet give us plenty of space for aggregation on large logs. */ #define XLOG_CIL_SPACE_LIMIT(log) (log->l_logsize >> 3) #define XLOG_CIL_HARD_SPACE_LIMIT(log) (3 * (log->l_logsize >> 4)) /* * The reservation head lsn is not made up of a cycle number and block number. * Instead, it uses a cycle number and byte number. Logs don't expect to * overflow 31 bits worth of byte offset, so using a byte number will mean * that round off problems won't occur when releasing partial reservations. */ typedef struct log { /* The following fields don't need locking */ struct xfs_mount *l_mp; /* mount point */ struct xfs_ail *l_ailp; /* AIL log is working with */ struct xfs_cil *l_cilp; /* CIL log is working with */ struct xfs_buf *l_xbuf; /* extra buffer for log * wrapping */ struct xfs_buftarg *l_targ; /* buftarg of log */ uint l_flags; uint l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */ struct list_head *l_buf_cancel_table; int l_iclog_hsize; /* size of iclog header */ int l_iclog_heads; /* # of iclog header sectors */ uint l_sectBBsize; /* sector size in BBs (2^n) */ int l_iclog_size; /* size of log in bytes */ int l_iclog_size_log; /* log power size of log */ int l_iclog_bufs; /* number of iclog buffers */ xfs_daddr_t l_logBBstart; /* start block of log */ int l_logsize; /* size of log in bytes */ int l_logBBsize; /* size of log in BB chunks */ /* The following block of fields are changed while holding icloglock */ wait_queue_head_t l_flush_wait ____cacheline_aligned_in_smp; /* waiting for iclog flush */ int l_covered_state;/* state of "covering disk * log entries" */ xlog_in_core_t *l_iclog; /* head log queue */ spinlock_t l_icloglock; /* grab to change iclog state */ int l_curr_cycle; /* Cycle number of log writes */ int l_prev_cycle; /* Cycle number before last * block increment */ int l_curr_block; /* current logical log block */ int l_prev_block; /* previous logical log block */ /* The following block of fields are changed while holding grant_lock */ spinlock_t l_grant_lock ____cacheline_aligned_in_smp; struct list_head l_reserveq; struct list_head l_writeq; int64_t l_grant_reserve_head; int64_t l_grant_write_head; /* * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and * read without needing to hold specific locks. To avoid operations * contending with other hot objects, place each of them on a separate * cacheline. */ /* lsn of last LR on disk */ atomic64_t l_last_sync_lsn ____cacheline_aligned_in_smp; /* lsn of 1st LR with unflushed * buffers */ atomic64_t l_tail_lsn ____cacheline_aligned_in_smp; /* The following field are used for debugging; need to hold icloglock */ #ifdef DEBUG char *l_iclog_bak[XLOG_MAX_ICLOGS]; #endif } xlog_t; #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \ ((log)->l_buf_cancel_table + ((__uint64_t)blkno % XLOG_BC_TABLE_SIZE)) #define XLOG_FORCED_SHUTDOWN(log) ((log)->l_flags & XLOG_IO_ERROR) /* common routines */ extern xfs_lsn_t xlog_assign_tail_lsn(struct xfs_mount *mp); extern int xlog_recover(xlog_t *log); extern int xlog_recover_finish(xlog_t *log); extern void xlog_pack_data(xlog_t *log, xlog_in_core_t *iclog, int); extern kmem_zone_t *xfs_log_ticket_zone; struct xlog_ticket *xlog_ticket_alloc(struct log *log, int unit_bytes, int count, char client, uint xflags, int alloc_flags); static inline void xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes) { *ptr += bytes; *len -= bytes; *off += bytes; } void xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket); int xlog_write(struct log *log, struct xfs_log_vec *log_vector, struct xlog_ticket *tic, xfs_lsn_t *start_lsn, xlog_in_core_t **commit_iclog, uint flags); /* * When we crack an atomic LSN, we sample it first so that the value will not * change while we are cracking it into the component values. This means we * will always get consistent component values to work from. This should always * be used to smaple and crack LSNs taht are stored and updated in atomic * variables. */ static inline void xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block) { xfs_lsn_t val = atomic64_read(lsn); *cycle = CYCLE_LSN(val); *block = BLOCK_LSN(val); } /* * Calculate and assign a value to an atomic LSN variable from component pieces. */ static inline void xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block) { atomic64_set(lsn, xlog_assign_lsn(cycle, block)); } /* * When we crack the grrant head, we sample it first so that the value will not * change while we are cracking it into the component values. This means we * will always get consistent component values to work from. */ static inline void xlog_crack_grant_head(int64_t *head, int *cycle, int *space) { int64_t val = *head; *cycle = val >> 32; *space = val & 0xffffffff; } static inline void xlog_assign_grant_head(int64_t *head, int cycle, int space) { *head = ((int64_t)cycle << 32) | space; } /* * Committed Item List interfaces */ int xlog_cil_init(struct log *log); void xlog_cil_init_post_recovery(struct log *log); void xlog_cil_destroy(struct log *log); /* * CIL force routines */ xfs_lsn_t xlog_cil_force_lsn(struct log *log, xfs_lsn_t sequence); static inline void xlog_cil_force(struct log *log) { xlog_cil_force_lsn(log, log->l_cilp->xc_current_sequence); } /* * Unmount record type is used as a pseudo transaction type for the ticket. * It's value must be outside the range of XFS_TRANS_* values. */ #define XLOG_UNMOUNT_REC_TYPE (-1U) /* * Wrapper function for waiting on a wait queue serialised against wakeups * by a spinlock. This matches the semantics of all the wait queues used in the * log code. */ static inline void xlog_wait(wait_queue_head_t *wq, spinlock_t *lock) { DECLARE_WAITQUEUE(wait, current); add_wait_queue_exclusive(wq, &wait); __set_current_state(TASK_UNINTERRUPTIBLE); spin_unlock(lock); schedule(); remove_wait_queue(wq, &wait); } #endif /* __KERNEL__ */ #endif /* __XFS_LOG_PRIV_H__ */