/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMZONE_H #define _LINUX_MMZONE_H #ifndef __ASSEMBLY__ #ifndef __GENERATING_BOUNDS_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Free memory management - zoned buddy allocator. */ #ifndef CONFIG_FORCE_MAX_ZONEORDER #define MAX_ORDER 11 #else #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER #endif #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) /* * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed * costly to service. That is between allocation orders which should * coalesce naturally under reasonable reclaim pressure and those which * will not. */ #define PAGE_ALLOC_COSTLY_ORDER 3 enum migratetype { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RECLAIMABLE, MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, #ifdef CONFIG_CMA /* * MIGRATE_CMA migration type is designed to mimic the way * ZONE_MOVABLE works. Only movable pages can be allocated * from MIGRATE_CMA pageblocks and page allocator never * implicitly change migration type of MIGRATE_CMA pageblock. * * The way to use it is to change migratetype of a range of * pageblocks to MIGRATE_CMA which can be done by * __free_pageblock_cma() function. What is important though * is that a range of pageblocks must be aligned to * MAX_ORDER_NR_PAGES should biggest page be bigger then * a single pageblock. */ MIGRATE_CMA, #endif #ifdef CONFIG_MEMORY_ISOLATION MIGRATE_ISOLATE, /* can't allocate from here */ #endif MIGRATE_TYPES }; /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ extern const char * const migratetype_names[MIGRATE_TYPES]; #ifdef CONFIG_CMA # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) #else # define is_migrate_cma(migratetype) false # define is_migrate_cma_page(_page) false #endif static inline bool is_migrate_movable(int mt) { return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; } #define for_each_migratetype_order(order, type) \ for (order = 0; order < MAX_ORDER; order++) \ for (type = 0; type < MIGRATE_TYPES; type++) extern int page_group_by_mobility_disabled; #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) #define get_pageblock_migratetype(page) \ get_pfnblock_flags_mask(page, page_to_pfn(page), \ PB_migrate_end, MIGRATETYPE_MASK) struct free_area { struct list_head free_list[MIGRATE_TYPES]; unsigned long nr_free; }; /* Used for pages not on another list */ static inline void add_to_free_area(struct page *page, struct free_area *area, int migratetype) { list_add(&page->lru, &area->free_list[migratetype]); area->nr_free++; } /* Used for pages not on another list */ static inline void add_to_free_area_tail(struct page *page, struct free_area *area, int migratetype) { list_add_tail(&page->lru, &area->free_list[migratetype]); area->nr_free++; } #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR /* Used to preserve page allocation order entropy */ void add_to_free_area_random(struct page *page, struct free_area *area, int migratetype); #else static inline void add_to_free_area_random(struct page *page, struct free_area *area, int migratetype) { add_to_free_area(page, area, migratetype); } #endif /* Used for pages which are on another list */ static inline void move_to_free_area(struct page *page, struct free_area *area, int migratetype) { list_move(&page->lru, &area->free_list[migratetype]); } static inline struct page *get_page_from_free_area(struct free_area *area, int migratetype) { return list_first_entry_or_null(&area->free_list[migratetype], struct page, lru); } static inline void del_page_from_free_area(struct page *page, struct free_area *area) { list_del(&page->lru); __ClearPageBuddy(page); set_page_private(page, 0); area->nr_free--; } static inline bool free_area_empty(struct free_area *area, int migratetype) { return list_empty(&area->free_list[migratetype]); } struct pglist_data; /* * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. * So add a wild amount of padding here to ensure that they fall into separate * cachelines. There are very few zone structures in the machine, so space * consumption is not a concern here. */ #if defined(CONFIG_SMP) struct zone_padding { char x[0]; } ____cacheline_internodealigned_in_smp; #define ZONE_PADDING(name) struct zone_padding name; #else #define ZONE_PADDING(name) #endif #ifdef CONFIG_NUMA enum numa_stat_item { NUMA_HIT, /* allocated in intended node */ NUMA_MISS, /* allocated in non intended node */ NUMA_FOREIGN, /* was intended here, hit elsewhere */ NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ NUMA_LOCAL, /* allocation from local node */ NUMA_OTHER, /* allocation from other node */ NR_VM_NUMA_STAT_ITEMS }; #else #define NR_VM_NUMA_STAT_ITEMS 0 #endif enum zone_stat_item { /* First 128 byte cacheline (assuming 64 bit words) */ NR_FREE_PAGES, NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, NR_ZONE_ACTIVE_ANON, NR_ZONE_INACTIVE_FILE, NR_ZONE_ACTIVE_FILE, NR_ZONE_UNEVICTABLE, NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ NR_MLOCK, /* mlock()ed pages found and moved off LRU */ NR_PAGETABLE, /* used for pagetables */ NR_KERNEL_STACK_KB, /* measured in KiB */ /* Second 128 byte cacheline */ NR_BOUNCE, #if IS_ENABLED(CONFIG_ZSMALLOC) NR_ZSPAGES, /* allocated in zsmalloc */ #endif NR_FREE_CMA_PAGES, NR_VM_ZONE_STAT_ITEMS }; enum node_stat_item { NR_LRU_BASE, NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ NR_ACTIVE_ANON, /* " " " " " */ NR_INACTIVE_FILE, /* " " " " " */ NR_ACTIVE_FILE, /* " " " " " */ NR_UNEVICTABLE, /* " " " " " */ NR_SLAB_RECLAIMABLE, NR_SLAB_UNRECLAIMABLE, NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ WORKINGSET_NODES, WORKINGSET_REFAULT, WORKINGSET_ACTIVATE, WORKINGSET_RESTORE, WORKINGSET_NODERECLAIM, NR_ANON_MAPPED, /* Mapped anonymous pages */ NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. only modified from process context */ NR_FILE_PAGES, NR_FILE_DIRTY, NR_WRITEBACK, NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ NR_SHMEM_THPS, NR_SHMEM_PMDMAPPED, NR_FILE_THPS, NR_FILE_PMDMAPPED, NR_ANON_THPS, NR_UNSTABLE_NFS, /* NFS unstable pages */ NR_VMSCAN_WRITE, NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ NR_DIRTIED, /* page dirtyings since bootup */ NR_WRITTEN, /* page writings since bootup */ NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ NR_VM_NODE_STAT_ITEMS }; /* * We do arithmetic on the LRU lists in various places in the code, * so it is important to keep the active lists LRU_ACTIVE higher in * the array than the corresponding inactive lists, and to keep * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. * * This has to be kept in sync with the statistics in zone_stat_item * above and the descriptions in vmstat_text in mm/vmstat.c */ #define LRU_BASE 0 #define LRU_ACTIVE 1 #define LRU_FILE 2 enum lru_list { LRU_INACTIVE_ANON = LRU_BASE, LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, LRU_UNEVICTABLE, NR_LRU_LISTS }; #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) static inline bool is_file_lru(enum lru_list lru) { return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); } static inline bool is_active_lru(enum lru_list lru) { return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); } struct zone_reclaim_stat { /* * The pageout code in vmscan.c keeps track of how many of the * mem/swap backed and file backed pages are referenced. * The higher the rotated/scanned ratio, the more valuable * that cache is. * * The anon LRU stats live in [0], file LRU stats in [1] */ unsigned long recent_rotated[2]; unsigned long recent_scanned[2]; }; enum lruvec_flags { LRUVEC_CONGESTED, /* lruvec has many dirty pages * backed by a congested BDI */ }; struct lruvec { struct list_head lists[NR_LRU_LISTS]; struct zone_reclaim_stat reclaim_stat; /* Evictions & activations on the inactive file list */ atomic_long_t inactive_age; /* Refaults at the time of last reclaim cycle */ unsigned long refaults; /* Various lruvec state flags (enum lruvec_flags) */ unsigned long flags; #ifdef CONFIG_MEMCG struct pglist_data *pgdat; #endif }; /* Isolate unmapped pages */ #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) /* Isolate for asynchronous migration */ #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) /* Isolate unevictable pages */ #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) /* LRU Isolation modes. */ typedef unsigned __bitwise isolate_mode_t; enum zone_watermarks { WMARK_MIN, WMARK_LOW, WMARK_HIGH, NR_WMARK }; #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) struct per_cpu_pages { int count; /* number of pages in the list */ int high; /* high watermark, emptying needed */ int batch; /* chunk size for buddy add/remove */ /* Lists of pages, one per migrate type stored on the pcp-lists */ struct list_head lists[MIGRATE_PCPTYPES]; }; struct per_cpu_pageset { struct per_cpu_pages pcp; #ifdef CONFIG_NUMA s8 expire; u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; #endif #ifdef CONFIG_SMP s8 stat_threshold; s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; #endif }; struct per_cpu_nodestat { s8 stat_threshold; s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; }; #endif /* !__GENERATING_BOUNDS.H */ enum zone_type { /* * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able * to DMA to all of the addressable memory (ZONE_NORMAL). * On architectures where this area covers the whole 32 bit address * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller * DMA addressing constraints. This distinction is important as a 32bit * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit * platforms may need both zones as they support peripherals with * different DMA addressing limitations. * * Some examples: * * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the * rest of the lower 4G. * * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on * the specific device. * * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the * lower 4G. * * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary * depending on the specific device. * * - s390 uses ZONE_DMA fixed to the lower 2G. * * - ia64 and riscv only use ZONE_DMA32. * * - parisc uses neither. */ #ifdef CONFIG_ZONE_DMA ZONE_DMA, #endif #ifdef CONFIG_ZONE_DMA32 ZONE_DMA32, #endif /* * Normal addressable memory is in ZONE_NORMAL. DMA operations can be * performed on pages in ZONE_NORMAL if the DMA devices support * transfers to all addressable memory. */ ZONE_NORMAL, #ifdef CONFIG_HIGHMEM /* * A memory area that is only addressable by the kernel through * mapping portions into its own address space. This is for example * used by i386 to allow the kernel to address the memory beyond * 900MB. The kernel will set up special mappings (page * table entries on i386) for each page that the kernel needs to * access. */ ZONE_HIGHMEM, #endif ZONE_MOVABLE, #ifdef CONFIG_ZONE_DEVICE ZONE_DEVICE, #endif __MAX_NR_ZONES }; #ifndef __GENERATING_BOUNDS_H struct zone { /* Read-mostly fields */ /* zone watermarks, access with *_wmark_pages(zone) macros */ unsigned long _watermark[NR_WMARK]; unsigned long watermark_boost; unsigned long nr_reserved_highatomic; /* * We don't know if the memory that we're going to allocate will be * freeable or/and it will be released eventually, so to avoid totally * wasting several GB of ram we must reserve some of the lower zone * memory (otherwise we risk to run OOM on the lower zones despite * there being tons of freeable ram on the higher zones). This array is * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl * changes. */ long lowmem_reserve[MAX_NR_ZONES]; #ifdef CONFIG_NUMA int node; #endif struct pglist_data *zone_pgdat; struct per_cpu_pageset __percpu *pageset; #ifndef CONFIG_SPARSEMEM /* * Flags for a pageblock_nr_pages block. See pageblock-flags.h. * In SPARSEMEM, this map is stored in struct mem_section */ unsigned long *pageblock_flags; #endif /* CONFIG_SPARSEMEM */ /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ unsigned long zone_start_pfn; /* * spanned_pages is the total pages spanned by the zone, including * holes, which is calculated as: * spanned_pages = zone_end_pfn - zone_start_pfn; * * present_pages is physical pages existing within the zone, which * is calculated as: * present_pages = spanned_pages - absent_pages(pages in holes); * * managed_pages is present pages managed by the buddy system, which * is calculated as (reserved_pages includes pages allocated by the * bootmem allocator): * managed_pages = present_pages - reserved_pages; * * So present_pages may be used by memory hotplug or memory power * management logic to figure out unmanaged pages by checking * (present_pages - managed_pages). And managed_pages should be used * by page allocator and vm scanner to calculate all kinds of watermarks * and thresholds. * * Locking rules: * * zone_start_pfn and spanned_pages are protected by span_seqlock. * It is a seqlock because it has to be read outside of zone->lock, * and it is done in the main allocator path. But, it is written * quite infrequently. * * The span_seq lock is declared along with zone->lock because it is * frequently read in proximity to zone->lock. It's good to * give them a chance of being in the same cacheline. * * Write access to present_pages at runtime should be protected by * mem_hotplug_begin/end(). Any reader who can't tolerant drift of * present_pages should get_online_mems() to get a stable value. */ atomic_long_t managed_pages; unsigned long spanned_pages; unsigned long present_pages; const char *name; #ifdef CONFIG_MEMORY_ISOLATION /* * Number of isolated pageblock. It is used to solve incorrect * freepage counting problem due to racy retrieving migratetype * of pageblock. Protected by zone->lock. */ unsigned long nr_isolate_pageblock; #endif #ifdef CONFIG_MEMORY_HOTPLUG /* see spanned/present_pages for more description */ seqlock_t span_seqlock; #endif int initialized; /* Write-intensive fields used from the page allocator */ ZONE_PADDING(_pad1_) /* free areas of different sizes */ struct free_area free_area[MAX_ORDER]; /* zone flags, see below */ unsigned long flags; /* Primarily protects free_area */ spinlock_t lock; /* Write-intensive fields used by compaction and vmstats. */ ZONE_PADDING(_pad2_) /* * When free pages are below this point, additional steps are taken * when reading the number of free pages to avoid per-cpu counter * drift allowing watermarks to be breached */ unsigned long percpu_drift_mark; #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* pfn where compaction free scanner should start */ unsigned long compact_cached_free_pfn; /* pfn where async and sync compaction migration scanner should start */ unsigned long compact_cached_migrate_pfn[2]; unsigned long compact_init_migrate_pfn; unsigned long compact_init_free_pfn; #endif #ifdef CONFIG_COMPACTION /* * On compaction failure, 1<managed_pages); } static inline unsigned long zone_end_pfn(const struct zone *zone) { return zone->zone_start_pfn + zone->spanned_pages; } static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) { return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); } static inline bool zone_is_initialized(struct zone *zone) { return zone->initialized; } static inline bool zone_is_empty(struct zone *zone) { return zone->spanned_pages == 0; } /* * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty * intersection with the given zone */ static inline bool zone_intersects(struct zone *zone, unsigned long start_pfn, unsigned long nr_pages) { if (zone_is_empty(zone)) return false; if (start_pfn >= zone_end_pfn(zone) || start_pfn + nr_pages <= zone->zone_start_pfn) return false; return true; } /* * The "priority" of VM scanning is how much of the queues we will scan in one * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the * queues ("queue_length >> 12") during an aging round. */ #define DEF_PRIORITY 12 /* Maximum number of zones on a zonelist */ #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) enum { ZONELIST_FALLBACK, /* zonelist with fallback */ #ifdef CONFIG_NUMA /* * The NUMA zonelists are doubled because we need zonelists that * restrict the allocations to a single node for __GFP_THISNODE. */ ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ #endif MAX_ZONELISTS }; /* * This struct contains information about a zone in a zonelist. It is stored * here to avoid dereferences into large structures and lookups of tables */ struct zoneref { struct zone *zone; /* Pointer to actual zone */ int zone_idx; /* zone_idx(zoneref->zone) */ }; /* * One allocation request operates on a zonelist. A zonelist * is a list of zones, the first one is the 'goal' of the * allocation, the other zones are fallback zones, in decreasing * priority. * * To speed the reading of the zonelist, the zonerefs contain the zone index * of the entry being read. Helper functions to access information given * a struct zoneref are * * zonelist_zone() - Return the struct zone * for an entry in _zonerefs * zonelist_zone_idx() - Return the index of the zone for an entry * zonelist_node_idx() - Return the index of the node for an entry */ struct zonelist { struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; }; #ifndef CONFIG_DISCONTIGMEM /* The array of struct pages - for discontigmem use pgdat->lmem_map */ extern struct page *mem_map; #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split { spinlock_t split_queue_lock; struct list_head split_queue; unsigned long split_queue_len; }; #endif /* * On NUMA machines, each NUMA node would have a pg_data_t to describe * it's memory layout. On UMA machines there is a single pglist_data which * describes the whole memory. * * Memory statistics and page replacement data structures are maintained on a * per-zone basis. */ struct bootmem_data; typedef struct pglist_data { struct zone node_zones[MAX_NR_ZONES]; struct zonelist node_zonelists[MAX_ZONELISTS]; int nr_zones; #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ struct page *node_mem_map; #ifdef CONFIG_PAGE_EXTENSION struct page_ext *node_page_ext; #endif #endif #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) /* * Must be held any time you expect node_start_pfn, * node_present_pages, node_spanned_pages or nr_zones to stay constant. * * pgdat_resize_lock() and pgdat_resize_unlock() are provided to * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. * * Nests above zone->lock and zone->span_seqlock */ spinlock_t node_size_lock; #endif unsigned long node_start_pfn; unsigned long node_present_pages; /* total number of physical pages */ unsigned long node_spanned_pages; /* total size of physical page range, including holes */ int node_id; wait_queue_head_t kswapd_wait; wait_queue_head_t pfmemalloc_wait; struct task_struct *kswapd; /* Protected by mem_hotplug_begin/end() */ int kswapd_order; enum zone_type kswapd_classzone_idx; int kswapd_failures; /* Number of 'reclaimed == 0' runs */ #ifdef CONFIG_COMPACTION int kcompactd_max_order; enum zone_type kcompactd_classzone_idx; wait_queue_head_t kcompactd_wait; struct task_struct *kcompactd; #endif /* * This is a per-node reserve of pages that are not available * to userspace allocations. */ unsigned long totalreserve_pages; #ifdef CONFIG_NUMA /* * node reclaim becomes active if more unmapped pages exist. */ unsigned long min_unmapped_pages; unsigned long min_slab_pages; #endif /* CONFIG_NUMA */ /* Write-intensive fields used by page reclaim */ ZONE_PADDING(_pad1_) spinlock_t lru_lock; #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT /* * If memory initialisation on large machines is deferred then this * is the first PFN that needs to be initialised. */ unsigned long first_deferred_pfn; #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split deferred_split_queue; #endif /* Fields commonly accessed by the page reclaim scanner */ /* * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. * * Use mem_cgroup_lruvec() to look up lruvecs. */ struct lruvec __lruvec; unsigned long flags; ZONE_PADDING(_pad2_) /* Per-node vmstats */ struct per_cpu_nodestat __percpu *per_cpu_nodestats; atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; } pg_data_t; #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) #ifdef CONFIG_FLAT_NODE_MEM_MAP #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) #else #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) #endif #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) { return pgdat->node_start_pfn + pgdat->node_spanned_pages; } static inline bool pgdat_is_empty(pg_data_t *pgdat) { return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; } #include void build_all_zonelists(pg_data_t *pgdat); void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, enum zone_type classzone_idx); bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, int classzone_idx, unsigned int alloc_flags, long free_pages); bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, int classzone_idx, unsigned int alloc_flags); bool zone_watermark_ok_safe(struct zone *z, unsigned int order, unsigned long mark, int classzone_idx); enum memmap_context { MEMMAP_EARLY, MEMMAP_HOTPLUG, }; extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, unsigned long size); extern void lruvec_init(struct lruvec *lruvec); static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) { #ifdef CONFIG_MEMCG return lruvec->pgdat; #else return container_of(lruvec, struct pglist_data, __lruvec); #endif } extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); #ifdef CONFIG_HAVE_MEMORY_PRESENT void memory_present(int nid, unsigned long start, unsigned long end); #else static inline void memory_present(int nid, unsigned long start, unsigned long end) {} #endif #if defined(CONFIG_SPARSEMEM) void memblocks_present(void); #else static inline void memblocks_present(void) {} #endif #ifdef CONFIG_HAVE_MEMORYLESS_NODES int local_memory_node(int node_id); #else static inline int local_memory_node(int node_id) { return node_id; }; #endif /* * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. */ #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) /* * Returns true if a zone has pages managed by the buddy allocator. * All the reclaim decisions have to use this function rather than * populated_zone(). If the whole zone is reserved then we can easily * end up with populated_zone() && !managed_zone(). */ static inline bool managed_zone(struct zone *zone) { return zone_managed_pages(zone); } /* Returns true if a zone has memory */ static inline bool populated_zone(struct zone *zone) { return zone->present_pages; } #ifdef CONFIG_NUMA static inline int zone_to_nid(struct zone *zone) { return zone->node; } static inline void zone_set_nid(struct zone *zone, int nid) { zone->node = nid; } #else static inline int zone_to_nid(struct zone *zone) { return 0; } static inline void zone_set_nid(struct zone *zone, int nid) {} #endif extern int movable_zone; #ifdef CONFIG_HIGHMEM static inline int zone_movable_is_highmem(void) { #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP return movable_zone == ZONE_HIGHMEM; #else return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; #endif } #endif static inline int is_highmem_idx(enum zone_type idx) { #ifdef CONFIG_HIGHMEM return (idx == ZONE_HIGHMEM || (idx == ZONE_MOVABLE && zone_movable_is_highmem())); #else return 0; #endif } /** * is_highmem - helper function to quickly check if a struct zone is a * highmem zone or not. This is an attempt to keep references * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. * @zone - pointer to struct zone variable */ static inline int is_highmem(struct zone *zone) { #ifdef CONFIG_HIGHMEM return is_highmem_idx(zone_idx(zone)); #else return 0; #endif } /* These two functions are used to setup the per zone pages min values */ struct ctl_table; int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); int watermark_boost_factor_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); extern int numa_zonelist_order_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); extern char numa_zonelist_order[]; #define NUMA_ZONELIST_ORDER_LEN 16 #ifndef CONFIG_NEED_MULTIPLE_NODES extern struct pglist_data contig_page_data; #define NODE_DATA(nid) (&contig_page_data) #define NODE_MEM_MAP(nid) mem_map #else /* CONFIG_NEED_MULTIPLE_NODES */ #include #endif /* !CONFIG_NEED_MULTIPLE_NODES */ extern struct pglist_data *first_online_pgdat(void); extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); extern struct zone *next_zone(struct zone *zone); /** * for_each_online_pgdat - helper macro to iterate over all online nodes * @pgdat - pointer to a pg_data_t variable */ #define for_each_online_pgdat(pgdat) \ for (pgdat = first_online_pgdat(); \ pgdat; \ pgdat = next_online_pgdat(pgdat)) /** * for_each_zone - helper macro to iterate over all memory zones * @zone - pointer to struct zone variable * * The user only needs to declare the zone variable, for_each_zone * fills it in. */ #define for_each_zone(zone) \ for (zone = (first_online_pgdat())->node_zones; \ zone; \ zone = next_zone(zone)) #define for_each_populated_zone(zone) \ for (zone = (first_online_pgdat())->node_zones; \ zone; \ zone = next_zone(zone)) \ if (!populated_zone(zone)) \ ; /* do nothing */ \ else static inline struct zone *zonelist_zone(struct zoneref *zoneref) { return zoneref->zone; } static inline int zonelist_zone_idx(struct zoneref *zoneref) { return zoneref->zone_idx; } static inline int zonelist_node_idx(struct zoneref *zoneref) { return zone_to_nid(zoneref->zone); } struct zoneref *__next_zones_zonelist(struct zoneref *z, enum zone_type highest_zoneidx, nodemask_t *nodes); /** * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point * @z - The cursor used as a starting point for the search * @highest_zoneidx - The zone index of the highest zone to return * @nodes - An optional nodemask to filter the zonelist with * * This function returns the next zone at or below a given zone index that is * within the allowed nodemask using a cursor as the starting point for the * search. The zoneref returned is a cursor that represents the current zone * being examined. It should be advanced by one before calling * next_zones_zonelist again. */ static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, enum zone_type highest_zoneidx, nodemask_t *nodes) { if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) return z; return __next_zones_zonelist(z, highest_zoneidx, nodes); } /** * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist * @zonelist - The zonelist to search for a suitable zone * @highest_zoneidx - The zone index of the highest zone to return * @nodes - An optional nodemask to filter the zonelist with * @return - Zoneref pointer for the first suitable zone found (see below) * * This function returns the first zone at or below a given zone index that is * within the allowed nodemask. The zoneref returned is a cursor that can be * used to iterate the zonelist with next_zones_zonelist by advancing it by * one before calling. * * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is * never NULL). This may happen either genuinely, or due to concurrent nodemask * update due to cpuset modification. */ static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, enum zone_type highest_zoneidx, nodemask_t *nodes) { return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes); } /** * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask * @zone - The current zone in the iterator * @z - The current pointer within zonelist->_zonerefs being iterated * @zlist - The zonelist being iterated * @highidx - The zone index of the highest zone to return * @nodemask - Nodemask allowed by the allocator * * This iterator iterates though all zones at or below a given zone index and * within a given nodemask */ #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ zone; \ z = next_zones_zonelist(++z, highidx, nodemask), \ zone = zonelist_zone(z)) #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ for (zone = z->zone; \ zone; \ z = next_zones_zonelist(++z, highidx, nodemask), \ zone = zonelist_zone(z)) /** * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index * @zone - The current zone in the iterator * @z - The current pointer within zonelist->zones being iterated * @zlist - The zonelist being iterated * @highidx - The zone index of the highest zone to return * * This iterator iterates though all zones at or below a given zone index. */ #define for_each_zone_zonelist(zone, z, zlist, highidx) \ for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) #ifdef CONFIG_SPARSEMEM #include #endif #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) static inline unsigned long early_pfn_to_nid(unsigned long pfn) { BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA)); return 0; } #endif #ifdef CONFIG_FLATMEM #define pfn_to_nid(pfn) (0) #endif #ifdef CONFIG_SPARSEMEM /* * SECTION_SHIFT #bits space required to store a section # * * PA_SECTION_SHIFT physical address to/from section number * PFN_SECTION_SHIFT pfn to/from section number */ #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) #define SECTION_BLOCKFLAGS_BITS \ ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS #error Allocator MAX_ORDER exceeds SECTION_SIZE #endif static inline unsigned long pfn_to_section_nr(unsigned long pfn) { return pfn >> PFN_SECTION_SHIFT; } static inline unsigned long section_nr_to_pfn(unsigned long sec) { return sec << PFN_SECTION_SHIFT; } #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) #define SUBSECTION_SHIFT 21 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) #if SUBSECTION_SHIFT > SECTION_SIZE_BITS #error Subsection size exceeds section size #else #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) #endif #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) struct mem_section_usage { DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); /* See declaration of similar field in struct zone */ unsigned long pageblock_flags[0]; }; void subsection_map_init(unsigned long pfn, unsigned long nr_pages); struct page; struct page_ext; struct mem_section { /* * This is, logically, a pointer to an array of struct * pages. However, it is stored with some other magic. * (see sparse.c::sparse_init_one_section()) * * Additionally during early boot we encode node id of * the location of the section here to guide allocation. * (see sparse.c::memory_present()) * * Making it a UL at least makes someone do a cast * before using it wrong. */ unsigned long section_mem_map; struct mem_section_usage *usage; #ifdef CONFIG_PAGE_EXTENSION /* * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use * section. (see page_ext.h about this.) */ struct page_ext *page_ext; unsigned long pad; #endif /* * WARNING: mem_section must be a power-of-2 in size for the * calculation and use of SECTION_ROOT_MASK to make sense. */ }; #ifdef CONFIG_SPARSEMEM_EXTREME #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) #else #define SECTIONS_PER_ROOT 1 #endif #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) #ifdef CONFIG_SPARSEMEM_EXTREME extern struct mem_section **mem_section; #else extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; #endif static inline unsigned long *section_to_usemap(struct mem_section *ms) { return ms->usage->pageblock_flags; } static inline struct mem_section *__nr_to_section(unsigned long nr) { #ifdef CONFIG_SPARSEMEM_EXTREME if (!mem_section) return NULL; #endif if (!mem_section[SECTION_NR_TO_ROOT(nr)]) return NULL; return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; } extern unsigned long __section_nr(struct mem_section *ms); extern size_t mem_section_usage_size(void); /* * We use the lower bits of the mem_map pointer to store * a little bit of information. The pointer is calculated * as mem_map - section_nr_to_pfn(pnum). The result is * aligned to the minimum alignment of the two values: * 1. All mem_map arrays are page-aligned. * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT * lowest bits. PFN_SECTION_SHIFT is arch-specific * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the * worst combination is powerpc with 256k pages, * which results in PFN_SECTION_SHIFT equal 6. * To sum it up, at least 6 bits are available. */ #define SECTION_MARKED_PRESENT (1UL<<0) #define SECTION_HAS_MEM_MAP (1UL<<1) #define SECTION_IS_ONLINE (1UL<<2) #define SECTION_IS_EARLY (1UL<<3) #define SECTION_MAP_LAST_BIT (1UL<<4) #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) #define SECTION_NID_SHIFT 3 static inline struct page *__section_mem_map_addr(struct mem_section *section) { unsigned long map = section->section_mem_map; map &= SECTION_MAP_MASK; return (struct page *)map; } static inline int present_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); } static inline int present_section_nr(unsigned long nr) { return present_section(__nr_to_section(nr)); } static inline int valid_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); } static inline int early_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_IS_EARLY)); } static inline int valid_section_nr(unsigned long nr) { return valid_section(__nr_to_section(nr)); } static inline int online_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_IS_ONLINE)); } static inline int online_section_nr(unsigned long nr) { return online_section(__nr_to_section(nr)); } #ifdef CONFIG_MEMORY_HOTPLUG void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); #ifdef CONFIG_MEMORY_HOTREMOVE void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); #endif #endif static inline struct mem_section *__pfn_to_section(unsigned long pfn) { return __nr_to_section(pfn_to_section_nr(pfn)); } extern unsigned long __highest_present_section_nr; static inline int subsection_map_index(unsigned long pfn) { return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; } #ifdef CONFIG_SPARSEMEM_VMEMMAP static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) { int idx = subsection_map_index(pfn); return test_bit(idx, ms->usage->subsection_map); } #else static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) { return 1; } #endif #ifndef CONFIG_HAVE_ARCH_PFN_VALID static inline int pfn_valid(unsigned long pfn) { struct mem_section *ms; if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) return 0; ms = __nr_to_section(pfn_to_section_nr(pfn)); if (!valid_section(ms)) return 0; /* * Traditionally early sections always returned pfn_valid() for * the entire section-sized span. */ return early_section(ms) || pfn_section_valid(ms, pfn); } #endif static inline int pfn_in_present_section(unsigned long pfn) { if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) return 0; return present_section(__nr_to_section(pfn_to_section_nr(pfn))); } static inline unsigned long next_present_section_nr(unsigned long section_nr) { while (++section_nr <= __highest_present_section_nr) { if (present_section_nr(section_nr)) return section_nr; } return -1; } /* * These are _only_ used during initialisation, therefore they * can use __initdata ... They could have names to indicate * this restriction. */ #ifdef CONFIG_NUMA #define pfn_to_nid(pfn) \ ({ \ unsigned long __pfn_to_nid_pfn = (pfn); \ page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ }) #else #define pfn_to_nid(pfn) (0) #endif #define early_pfn_valid(pfn) pfn_valid(pfn) void sparse_init(void); #else #define sparse_init() do {} while (0) #define sparse_index_init(_sec, _nid) do {} while (0) #define pfn_in_present_section pfn_valid #define subsection_map_init(_pfn, _nr_pages) do {} while (0) #endif /* CONFIG_SPARSEMEM */ /* * During memory init memblocks map pfns to nids. The search is expensive and * this caches recent lookups. The implementation of __early_pfn_to_nid * may treat start/end as pfns or sections. */ struct mminit_pfnnid_cache { unsigned long last_start; unsigned long last_end; int last_nid; }; #ifndef early_pfn_valid #define early_pfn_valid(pfn) (1) #endif void memory_present(int nid, unsigned long start, unsigned long end); /* * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we * need to check pfn validity within that MAX_ORDER_NR_PAGES block. * pfn_valid_within() should be used in this case; we optimise this away * when we have no holes within a MAX_ORDER_NR_PAGES block. */ #ifdef CONFIG_HOLES_IN_ZONE #define pfn_valid_within(pfn) pfn_valid(pfn) #else #define pfn_valid_within(pfn) (1) #endif #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL /* * pfn_valid() is meant to be able to tell if a given PFN has valid memmap * associated with it or not. This means that a struct page exists for this * pfn. The caller cannot assume the page is fully initialized in general. * Hotplugable pages might not have been onlined yet. pfn_to_online_page() * will ensure the struct page is fully online and initialized. Special pages * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. * * In FLATMEM, it is expected that holes always have valid memmap as long as * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed * that a valid section has a memmap for the entire section. * * However, an ARM, and maybe other embedded architectures in the future * free memmap backing holes to save memory on the assumption the memmap is * never used. The page_zone linkages are then broken even though pfn_valid() * returns true. A walker of the full memmap must then do this additional * check to ensure the memmap they are looking at is sane by making sure * the zone and PFN linkages are still valid. This is expensive, but walkers * of the full memmap are extremely rare. */ bool memmap_valid_within(unsigned long pfn, struct page *page, struct zone *zone); #else static inline bool memmap_valid_within(unsigned long pfn, struct page *page, struct zone *zone) { return true; } #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ #endif /* !__GENERATING_BOUNDS.H */ #endif /* !__ASSEMBLY__ */ #endif /* _LINUX_MMZONE_H */