/* * Performance events: * * Copyright (C) 2008-2009, Thomas Gleixner * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra * * Data type definitions, declarations, prototypes. * * Started by: Thomas Gleixner and Ingo Molnar * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_PERF_EVENT_H #define _LINUX_PERF_EVENT_H #include #include /* * Kernel-internal data types and definitions: */ #ifdef CONFIG_PERF_EVENTS # include # include #endif #define PERF_GUEST_ACTIVE 0x01 #define PERF_GUEST_USER 0x02 struct perf_guest_info_callbacks { unsigned int (*state)(void); unsigned long (*get_ip)(void); unsigned int (*handle_intel_pt_intr)(void); }; #ifdef CONFIG_HAVE_HW_BREAKPOINT #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct perf_callchain_entry { __u64 nr; __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ }; struct perf_callchain_entry_ctx { struct perf_callchain_entry *entry; u32 max_stack; u32 nr; short contexts; bool contexts_maxed; }; typedef unsigned long (*perf_copy_f)(void *dst, const void *src, unsigned long off, unsigned long len); struct perf_raw_frag { union { struct perf_raw_frag *next; unsigned long pad; }; perf_copy_f copy; void *data; u32 size; } __packed; struct perf_raw_record { struct perf_raw_frag frag; u32 size; }; static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) { return frag->pad < sizeof(u64); } /* * branch stack layout: * nr: number of taken branches stored in entries[] * hw_idx: The low level index of raw branch records * for the most recent branch. * -1ULL means invalid/unknown. * * Note that nr can vary from sample to sample * branches (to, from) are stored from most recent * to least recent, i.e., entries[0] contains the most * recent branch. * The entries[] is an abstraction of raw branch records, * which may not be stored in age order in HW, e.g. Intel LBR. * The hw_idx is to expose the low level index of raw * branch record for the most recent branch aka entries[0]. * The hw_idx index is between -1 (unknown) and max depth, * which can be retrieved in /sys/devices/cpu/caps/branches. * For the architectures whose raw branch records are * already stored in age order, the hw_idx should be 0. */ struct perf_branch_stack { __u64 nr; __u64 hw_idx; struct perf_branch_entry entries[]; }; struct task_struct; /* * extra PMU register associated with an event */ struct hw_perf_event_extra { u64 config; /* register value */ unsigned int reg; /* register address or index */ int alloc; /* extra register already allocated */ int idx; /* index in shared_regs->regs[] */ }; /** * hw_perf_event::flag values * * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific * usage. */ #define PERF_EVENT_FLAG_ARCH 0x000fffff #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); /** * struct hw_perf_event - performance event hardware details: */ struct hw_perf_event { #ifdef CONFIG_PERF_EVENTS union { struct { /* hardware */ u64 config; u64 last_tag; unsigned long config_base; unsigned long event_base; int event_base_rdpmc; int idx; int last_cpu; int flags; struct hw_perf_event_extra extra_reg; struct hw_perf_event_extra branch_reg; }; struct { /* aux / Intel-PT */ u64 aux_config; }; struct { /* software */ struct hrtimer hrtimer; }; struct { /* tracepoint */ /* for tp_event->class */ struct list_head tp_list; }; struct { /* amd_power */ u64 pwr_acc; u64 ptsc; }; #ifdef CONFIG_HAVE_HW_BREAKPOINT struct { /* breakpoint */ /* * Crufty hack to avoid the chicken and egg * problem hw_breakpoint has with context * creation and event initalization. */ struct arch_hw_breakpoint info; struct rhlist_head bp_list; }; #endif struct { /* amd_iommu */ u8 iommu_bank; u8 iommu_cntr; u16 padding; u64 conf; u64 conf1; }; }; /* * If the event is a per task event, this will point to the task in * question. See the comment in perf_event_alloc(). */ struct task_struct *target; /* * PMU would store hardware filter configuration * here. */ void *addr_filters; /* Last sync'ed generation of filters */ unsigned long addr_filters_gen; /* * hw_perf_event::state flags; used to track the PERF_EF_* state. */ #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ #define PERF_HES_ARCH 0x04 int state; /* * The last observed hardware counter value, updated with a * local64_cmpxchg() such that pmu::read() can be called nested. */ local64_t prev_count; /* * The period to start the next sample with. */ u64 sample_period; union { struct { /* Sampling */ /* * The period we started this sample with. */ u64 last_period; /* * However much is left of the current period; * note that this is a full 64bit value and * allows for generation of periods longer * than hardware might allow. */ local64_t period_left; }; struct { /* Topdown events counting for context switch */ u64 saved_metric; u64 saved_slots; }; }; /* * State for throttling the event, see __perf_event_overflow() and * perf_adjust_freq_unthr_context(). */ u64 interrupts_seq; u64 interrupts; /* * State for freq target events, see __perf_event_overflow() and * perf_adjust_freq_unthr_context(). */ u64 freq_time_stamp; u64 freq_count_stamp; #endif }; struct perf_event; struct perf_event_pmu_context; /* * Common implementation detail of pmu::{start,commit,cancel}_txn */ #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ /** * pmu::capabilities flags */ #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 #define PERF_PMU_CAP_NO_NMI 0x0002 #define PERF_PMU_CAP_AUX_NO_SG 0x0004 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 #define PERF_PMU_CAP_EXCLUSIVE 0x0010 #define PERF_PMU_CAP_ITRACE 0x0020 #define PERF_PMU_CAP_NO_EXCLUDE 0x0040 #define PERF_PMU_CAP_AUX_OUTPUT 0x0080 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100 /** * pmu::scope */ enum perf_pmu_scope { PERF_PMU_SCOPE_NONE = 0, PERF_PMU_SCOPE_CORE, PERF_PMU_SCOPE_DIE, PERF_PMU_SCOPE_CLUSTER, PERF_PMU_SCOPE_PKG, PERF_PMU_SCOPE_SYS_WIDE, PERF_PMU_MAX_SCOPE, }; struct perf_output_handle; #define PMU_NULL_DEV ((void *)(~0UL)) /** * struct pmu - generic performance monitoring unit */ struct pmu { struct list_head entry; struct module *module; struct device *dev; struct device *parent; const struct attribute_group **attr_groups; const struct attribute_group **attr_update; const char *name; int type; /* * various common per-pmu feature flags */ int capabilities; /* * PMU scope */ unsigned int scope; int __percpu *pmu_disable_count; struct perf_cpu_pmu_context __percpu *cpu_pmu_context; atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ int task_ctx_nr; int hrtimer_interval_ms; /* number of address filters this PMU can do */ unsigned int nr_addr_filters; /* * Fully disable/enable this PMU, can be used to protect from the PMI * as well as for lazy/batch writing of the MSRs. */ void (*pmu_enable) (struct pmu *pmu); /* optional */ void (*pmu_disable) (struct pmu *pmu); /* optional */ /* * Try and initialize the event for this PMU. * * Returns: * -ENOENT -- @event is not for this PMU * * -ENODEV -- @event is for this PMU but PMU not present * -EBUSY -- @event is for this PMU but PMU temporarily unavailable * -EINVAL -- @event is for this PMU but @event is not valid * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported * -EACCES -- @event is for this PMU, @event is valid, but no privileges * * 0 -- @event is for this PMU and valid * * Other error return values are allowed. */ int (*event_init) (struct perf_event *event); /* * Notification that the event was mapped or unmapped. Called * in the context of the mapping task. */ void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ /* * Flags for ->add()/->del()/ ->start()/->stop(). There are * matching hw_perf_event::state flags. */ #define PERF_EF_START 0x01 /* start the counter when adding */ #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ /* * Adds/Removes a counter to/from the PMU, can be done inside a * transaction, see the ->*_txn() methods. * * The add/del callbacks will reserve all hardware resources required * to service the event, this includes any counter constraint * scheduling etc. * * Called with IRQs disabled and the PMU disabled on the CPU the event * is on. * * ->add() called without PERF_EF_START should result in the same state * as ->add() followed by ->stop(). * * ->del() must always PERF_EF_UPDATE stop an event. If it calls * ->stop() that must deal with already being stopped without * PERF_EF_UPDATE. */ int (*add) (struct perf_event *event, int flags); void (*del) (struct perf_event *event, int flags); /* * Starts/Stops a counter present on the PMU. * * The PMI handler should stop the counter when perf_event_overflow() * returns !0. ->start() will be used to continue. * * Also used to change the sample period. * * Called with IRQs disabled and the PMU disabled on the CPU the event * is on -- will be called from NMI context with the PMU generates * NMIs. * * ->stop() with PERF_EF_UPDATE will read the counter and update * period/count values like ->read() would. * * ->start() with PERF_EF_RELOAD will reprogram the counter * value, must be preceded by a ->stop() with PERF_EF_UPDATE. */ void (*start) (struct perf_event *event, int flags); void (*stop) (struct perf_event *event, int flags); /* * Updates the counter value of the event. * * For sampling capable PMUs this will also update the software period * hw_perf_event::period_left field. */ void (*read) (struct perf_event *event); /* * Group events scheduling is treated as a transaction, add * group events as a whole and perform one schedulability test. * If the test fails, roll back the whole group * * Start the transaction, after this ->add() doesn't need to * do schedulability tests. * * Optional. */ void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); /* * If ->start_txn() disabled the ->add() schedulability test * then ->commit_txn() is required to perform one. On success * the transaction is closed. On error the transaction is kept * open until ->cancel_txn() is called. * * Optional. */ int (*commit_txn) (struct pmu *pmu); /* * Will cancel the transaction, assumes ->del() is called * for each successful ->add() during the transaction. * * Optional. */ void (*cancel_txn) (struct pmu *pmu); /* * Will return the value for perf_event_mmap_page::index for this event, * if no implementation is provided it will default to 0 (see * perf_event_idx_default). */ int (*event_idx) (struct perf_event *event); /*optional */ /* * context-switches callback */ void (*sched_task) (struct perf_event_pmu_context *pmu_ctx, bool sched_in); /* * Kmem cache of PMU specific data */ struct kmem_cache *task_ctx_cache; /* * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) * can be synchronized using this function. See Intel LBR callstack support * implementation and Perf core context switch handling callbacks for usage * examples. */ void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc, struct perf_event_pmu_context *next_epc); /* optional */ /* * Set up pmu-private data structures for an AUX area */ void *(*setup_aux) (struct perf_event *event, void **pages, int nr_pages, bool overwrite); /* optional */ /* * Free pmu-private AUX data structures */ void (*free_aux) (void *aux); /* optional */ /* * Take a snapshot of the AUX buffer without touching the event * state, so that preempting ->start()/->stop() callbacks does * not interfere with their logic. Called in PMI context. * * Returns the size of AUX data copied to the output handle. * * Optional. */ long (*snapshot_aux) (struct perf_event *event, struct perf_output_handle *handle, unsigned long size); /* * Validate address range filters: make sure the HW supports the * requested configuration and number of filters; return 0 if the * supplied filters are valid, -errno otherwise. * * Runs in the context of the ioctl()ing process and is not serialized * with the rest of the PMU callbacks. */ int (*addr_filters_validate) (struct list_head *filters); /* optional */ /* * Synchronize address range filter configuration: * translate hw-agnostic filters into hardware configuration in * event::hw::addr_filters. * * Runs as a part of filter sync sequence that is done in ->start() * callback by calling perf_event_addr_filters_sync(). * * May (and should) traverse event::addr_filters::list, for which its * caller provides necessary serialization. */ void (*addr_filters_sync) (struct perf_event *event); /* optional */ /* * Check if event can be used for aux_output purposes for * events of this PMU. * * Runs from perf_event_open(). Should return 0 for "no match" * or non-zero for "match". */ int (*aux_output_match) (struct perf_event *event); /* optional */ /* * Skip programming this PMU on the given CPU. Typically needed for * big.LITTLE things. */ bool (*filter) (struct pmu *pmu, int cpu); /* optional */ /* * Check period value for PERF_EVENT_IOC_PERIOD ioctl. */ int (*check_period) (struct perf_event *event, u64 value); /* optional */ }; enum perf_addr_filter_action_t { PERF_ADDR_FILTER_ACTION_STOP = 0, PERF_ADDR_FILTER_ACTION_START, PERF_ADDR_FILTER_ACTION_FILTER, }; /** * struct perf_addr_filter - address range filter definition * @entry: event's filter list linkage * @path: object file's path for file-based filters * @offset: filter range offset * @size: filter range size (size==0 means single address trigger) * @action: filter/start/stop * * This is a hardware-agnostic filter configuration as specified by the user. */ struct perf_addr_filter { struct list_head entry; struct path path; unsigned long offset; unsigned long size; enum perf_addr_filter_action_t action; }; /** * struct perf_addr_filters_head - container for address range filters * @list: list of filters for this event * @lock: spinlock that serializes accesses to the @list and event's * (and its children's) filter generations. * @nr_file_filters: number of file-based filters * * A child event will use parent's @list (and therefore @lock), so they are * bundled together; see perf_event_addr_filters(). */ struct perf_addr_filters_head { struct list_head list; raw_spinlock_t lock; unsigned int nr_file_filters; }; struct perf_addr_filter_range { unsigned long start; unsigned long size; }; /** * enum perf_event_state - the states of an event: */ enum perf_event_state { PERF_EVENT_STATE_DEAD = -4, PERF_EVENT_STATE_EXIT = -3, PERF_EVENT_STATE_ERROR = -2, PERF_EVENT_STATE_OFF = -1, PERF_EVENT_STATE_INACTIVE = 0, PERF_EVENT_STATE_ACTIVE = 1, }; struct file; struct perf_sample_data; typedef void (*perf_overflow_handler_t)(struct perf_event *, struct perf_sample_data *, struct pt_regs *regs); /* * Event capabilities. For event_caps and groups caps. * * PERF_EV_CAP_SOFTWARE: Is a software event. * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read * from any CPU in the package where it is active. * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and * cannot be a group leader. If an event with this flag is detached from the * group it is scheduled out and moved into an unrecoverable ERROR state. * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the * PMU scope where it is active. */ #define PERF_EV_CAP_SOFTWARE BIT(0) #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) #define PERF_EV_CAP_SIBLING BIT(2) #define PERF_EV_CAP_READ_SCOPE BIT(3) #define SWEVENT_HLIST_BITS 8 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) struct swevent_hlist { struct hlist_head heads[SWEVENT_HLIST_SIZE]; struct rcu_head rcu_head; }; #define PERF_ATTACH_CONTEXT 0x01 #define PERF_ATTACH_GROUP 0x02 #define PERF_ATTACH_TASK 0x04 #define PERF_ATTACH_TASK_DATA 0x08 #define PERF_ATTACH_ITRACE 0x10 #define PERF_ATTACH_SCHED_CB 0x20 #define PERF_ATTACH_CHILD 0x40 struct bpf_prog; struct perf_cgroup; struct perf_buffer; struct pmu_event_list { raw_spinlock_t lock; struct list_head list; }; /* * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex * as such iteration must hold either lock. However, since ctx->lock is an IRQ * safe lock, and is only held by the CPU doing the modification, having IRQs * disabled is sufficient since it will hold-off the IPIs. */ #ifdef CONFIG_PROVE_LOCKING #define lockdep_assert_event_ctx(event) \ WARN_ON_ONCE(__lockdep_enabled && \ (this_cpu_read(hardirqs_enabled) && \ lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) #else #define lockdep_assert_event_ctx(event) #endif #define for_each_sibling_event(sibling, event) \ lockdep_assert_event_ctx(event); \ if ((event)->group_leader == (event)) \ list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) /** * struct perf_event - performance event kernel representation: */ struct perf_event { #ifdef CONFIG_PERF_EVENTS /* * entry onto perf_event_context::event_list; * modifications require ctx->lock * RCU safe iterations. */ struct list_head event_entry; /* * Locked for modification by both ctx->mutex and ctx->lock; holding * either sufficies for read. */ struct list_head sibling_list; struct list_head active_list; /* * Node on the pinned or flexible tree located at the event context; */ struct rb_node group_node; u64 group_index; /* * We need storage to track the entries in perf_pmu_migrate_context; we * cannot use the event_entry because of RCU and we want to keep the * group in tact which avoids us using the other two entries. */ struct list_head migrate_entry; struct hlist_node hlist_entry; struct list_head active_entry; int nr_siblings; /* Not serialized. Only written during event initialization. */ int event_caps; /* The cumulative AND of all event_caps for events in this group. */ int group_caps; unsigned int group_generation; struct perf_event *group_leader; /* * event->pmu will always point to pmu in which this event belongs. * Whereas event->pmu_ctx->pmu may point to other pmu when group of * different pmu events is created. */ struct pmu *pmu; void *pmu_private; enum perf_event_state state; unsigned int attach_state; local64_t count; atomic64_t child_count; /* * These are the total time in nanoseconds that the event * has been enabled (i.e. eligible to run, and the task has * been scheduled in, if this is a per-task event) * and running (scheduled onto the CPU), respectively. */ u64 total_time_enabled; u64 total_time_running; u64 tstamp; struct perf_event_attr attr; u16 header_size; u16 id_header_size; u16 read_size; struct hw_perf_event hw; struct perf_event_context *ctx; /* * event->pmu_ctx points to perf_event_pmu_context in which the event * is added. This pmu_ctx can be of other pmu for sw event when that * sw event is part of a group which also contains non-sw events. */ struct perf_event_pmu_context *pmu_ctx; atomic_long_t refcount; /* * These accumulate total time (in nanoseconds) that children * events have been enabled and running, respectively. */ atomic64_t child_total_time_enabled; atomic64_t child_total_time_running; /* * Protect attach/detach and child_list: */ struct mutex child_mutex; struct list_head child_list; struct perf_event *parent; int oncpu; int cpu; struct list_head owner_entry; struct task_struct *owner; /* mmap bits */ struct mutex mmap_mutex; atomic_t mmap_count; struct perf_buffer *rb; struct list_head rb_entry; unsigned long rcu_batches; int rcu_pending; /* poll related */ wait_queue_head_t waitq; struct fasync_struct *fasync; /* delayed work for NMIs and such */ unsigned int pending_wakeup; unsigned int pending_kill; unsigned int pending_disable; unsigned long pending_addr; /* SIGTRAP */ struct irq_work pending_irq; struct irq_work pending_disable_irq; struct callback_head pending_task; unsigned int pending_work; struct rcuwait pending_work_wait; atomic_t event_limit; /* address range filters */ struct perf_addr_filters_head addr_filters; /* vma address array for file-based filders */ struct perf_addr_filter_range *addr_filter_ranges; unsigned long addr_filters_gen; /* for aux_output events */ struct perf_event *aux_event; void (*destroy)(struct perf_event *); struct rcu_head rcu_head; struct pid_namespace *ns; u64 id; atomic64_t lost_samples; u64 (*clock)(void); perf_overflow_handler_t overflow_handler; void *overflow_handler_context; struct bpf_prog *prog; u64 bpf_cookie; #ifdef CONFIG_EVENT_TRACING struct trace_event_call *tp_event; struct event_filter *filter; #ifdef CONFIG_FUNCTION_TRACER struct ftrace_ops ftrace_ops; #endif #endif #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; /* cgroup event is attach to */ #endif #ifdef CONFIG_SECURITY void *security; #endif struct list_head sb_list; /* * Certain events gets forwarded to another pmu internally by over- * writing kernel copy of event->attr.type without user being aware * of it. event->orig_type contains original 'type' requested by * user. */ __u32 orig_type; #endif /* CONFIG_PERF_EVENTS */ }; /* * ,-----------------------[1:n]------------------------. * V V * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event * | | * `--[n:1]-> pmu <-[1:n]--' * * * struct perf_event_pmu_context lifetime is refcount based and RCU freed * (similar to perf_event_context). Locking is as if it were a member of * perf_event_context; specifically: * * modification, both: ctx->mutex && ctx->lock * reading, either: ctx->mutex || ctx->lock * * There is one exception to this; namely put_pmu_ctx() isn't always called * with ctx->mutex held; this means that as long as we can guarantee the epc * has events the above rules hold. * * Specificially, sys_perf_event_open()'s group_leader case depends on * ctx->mutex pinning the configuration. Since we hold a reference on * group_leader (through the filedesc) it can't go away, therefore it's * associated pmu_ctx must exist and cannot change due to ctx->mutex. * * perf_event holds a refcount on perf_event_context * perf_event holds a refcount on perf_event_pmu_context */ struct perf_event_pmu_context { struct pmu *pmu; struct perf_event_context *ctx; struct list_head pmu_ctx_entry; struct list_head pinned_active; struct list_head flexible_active; /* Used to avoid freeing per-cpu perf_event_pmu_context */ unsigned int embedded : 1; unsigned int nr_events; unsigned int nr_cgroups; unsigned int nr_freq; atomic_t refcount; /* event <-> epc */ struct rcu_head rcu_head; void *task_ctx_data; /* pmu specific data */ /* * Set when one or more (plausibly active) event can't be scheduled * due to pmu overcommit or pmu constraints, except tolerant to * events not necessary to be active due to scheduling constraints, * such as cgroups. */ int rotate_necessary; }; static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc) { return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active); } struct perf_event_groups { struct rb_root tree; u64 index; }; /** * struct perf_event_context - event context structure * * Used as a container for task events and CPU events as well: */ struct perf_event_context { /* * Protect the states of the events in the list, * nr_active, and the list: */ raw_spinlock_t lock; /* * Protect the list of events. Locking either mutex or lock * is sufficient to ensure the list doesn't change; to change * the list you need to lock both the mutex and the spinlock. */ struct mutex mutex; struct list_head pmu_ctx_list; struct perf_event_groups pinned_groups; struct perf_event_groups flexible_groups; struct list_head event_list; int nr_events; int nr_user; int is_active; int nr_task_data; int nr_stat; int nr_freq; int rotate_disable; refcount_t refcount; /* event <-> ctx */ struct task_struct *task; /* * Context clock, runs when context enabled. */ u64 time; u64 timestamp; u64 timeoffset; /* * These fields let us detect when two contexts have both * been cloned (inherited) from a common ancestor. */ struct perf_event_context *parent_ctx; u64 parent_gen; u64 generation; int pin_count; #ifdef CONFIG_CGROUP_PERF int nr_cgroups; /* cgroup evts */ #endif struct rcu_head rcu_head; /* * The count of events for which using the switch-out fast path * should be avoided. * * Sum (event->pending_work + events with * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))) * * The SIGTRAP is targeted at ctx->task, as such it won't do changing * that until the signal is delivered. */ local_t nr_no_switch_fast; }; struct perf_cpu_pmu_context { struct perf_event_pmu_context epc; struct perf_event_pmu_context *task_epc; struct list_head sched_cb_entry; int sched_cb_usage; int active_oncpu; int exclusive; raw_spinlock_t hrtimer_lock; struct hrtimer hrtimer; ktime_t hrtimer_interval; unsigned int hrtimer_active; }; /** * struct perf_event_cpu_context - per cpu event context structure */ struct perf_cpu_context { struct perf_event_context ctx; struct perf_event_context *task_ctx; int online; #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; #endif /* * Per-CPU storage for iterators used in visit_groups_merge. The default * storage is of size 2 to hold the CPU and any CPU event iterators. */ int heap_size; struct perf_event **heap; struct perf_event *heap_default[2]; }; struct perf_output_handle { struct perf_event *event; struct perf_buffer *rb; unsigned long wakeup; unsigned long size; u64 aux_flags; union { void *addr; unsigned long head; }; int page; }; struct bpf_perf_event_data_kern { bpf_user_pt_regs_t *regs; struct perf_sample_data *data; struct perf_event *event; }; #ifdef CONFIG_CGROUP_PERF /* * perf_cgroup_info keeps track of time_enabled for a cgroup. * This is a per-cpu dynamically allocated data structure. */ struct perf_cgroup_info { u64 time; u64 timestamp; u64 timeoffset; int active; }; struct perf_cgroup { struct cgroup_subsys_state css; struct perf_cgroup_info __percpu *info; }; /* * Must ensure cgroup is pinned (css_get) before calling * this function. In other words, we cannot call this function * if there is no cgroup event for the current CPU context. */ static inline struct perf_cgroup * perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) { return container_of(task_css_check(task, perf_event_cgrp_id, ctx ? lockdep_is_held(&ctx->lock) : true), struct perf_cgroup, css); } #endif /* CONFIG_CGROUP_PERF */ #ifdef CONFIG_PERF_EVENTS extern struct perf_event_context *perf_cpu_task_ctx(void); extern void *perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event); extern void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size); extern int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size); extern void *perf_get_aux(struct perf_output_handle *handle); extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); extern void perf_event_itrace_started(struct perf_event *event); extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); extern void perf_pmu_unregister(struct pmu *pmu); extern void __perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task); extern void __perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next); extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); extern void perf_event_exit_task(struct task_struct *child); extern void perf_event_free_task(struct task_struct *task); extern void perf_event_delayed_put(struct task_struct *task); extern struct file *perf_event_get(unsigned int fd); extern const struct perf_event *perf_get_event(struct file *file); extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); extern void perf_event_print_debug(void); extern void perf_pmu_disable(struct pmu *pmu); extern void perf_pmu_enable(struct pmu *pmu); extern void perf_sched_cb_dec(struct pmu *pmu); extern void perf_sched_cb_inc(struct pmu *pmu); extern int perf_event_task_disable(void); extern int perf_event_task_enable(void); extern void perf_pmu_resched(struct pmu *pmu); extern int perf_event_refresh(struct perf_event *event, int refresh); extern void perf_event_update_userpage(struct perf_event *event); extern int perf_event_release_kernel(struct perf_event *event); extern struct perf_event * perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, struct task_struct *task, perf_overflow_handler_t callback, void *context); extern void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu); int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running); extern u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running); extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); static inline bool branch_sample_no_flags(const struct perf_event *event) { return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; } static inline bool branch_sample_no_cycles(const struct perf_event *event) { return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; } static inline bool branch_sample_type(const struct perf_event *event) { return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; } static inline bool branch_sample_hw_index(const struct perf_event *event) { return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; } static inline bool branch_sample_priv(const struct perf_event *event) { return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; } static inline bool branch_sample_counters(const struct perf_event *event) { return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS; } static inline bool branch_sample_call_stack(const struct perf_event *event) { return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK; } struct perf_sample_data { /* * Fields set by perf_sample_data_init() unconditionally, * group so as to minimize the cachelines touched. */ u64 sample_flags; u64 period; u64 dyn_size; /* * Fields commonly set by __perf_event_header__init_id(), * group so as to minimize the cachelines touched. */ u64 type; struct { u32 pid; u32 tid; } tid_entry; u64 time; u64 id; struct { u32 cpu; u32 reserved; } cpu_entry; /* * The other fields, optionally {set,used} by * perf_{prepare,output}_sample(). */ u64 ip; struct perf_callchain_entry *callchain; struct perf_raw_record *raw; struct perf_branch_stack *br_stack; u64 *br_stack_cntr; union perf_sample_weight weight; union perf_mem_data_src data_src; u64 txn; struct perf_regs regs_user; struct perf_regs regs_intr; u64 stack_user_size; u64 stream_id; u64 cgroup; u64 addr; u64 phys_addr; u64 data_page_size; u64 code_page_size; u64 aux_size; } ____cacheline_aligned; /* default value for data source */ #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ PERF_MEM_S(LVL, NA) |\ PERF_MEM_S(SNOOP, NA) |\ PERF_MEM_S(LOCK, NA) |\ PERF_MEM_S(TLB, NA) |\ PERF_MEM_S(LVLNUM, NA)) static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr, u64 period) { /* remaining struct members initialized in perf_prepare_sample() */ data->sample_flags = PERF_SAMPLE_PERIOD; data->period = period; data->dyn_size = 0; if (addr) { data->addr = addr; data->sample_flags |= PERF_SAMPLE_ADDR; } } static inline void perf_sample_save_callchain(struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs) { int size = 1; data->callchain = perf_callchain(event, regs); size += data->callchain->nr; data->dyn_size += size * sizeof(u64); data->sample_flags |= PERF_SAMPLE_CALLCHAIN; } static inline void perf_sample_save_raw_data(struct perf_sample_data *data, struct perf_raw_record *raw) { struct perf_raw_frag *frag = &raw->frag; u32 sum = 0; int size; do { sum += frag->size; if (perf_raw_frag_last(frag)) break; frag = frag->next; } while (1); size = round_up(sum + sizeof(u32), sizeof(u64)); raw->size = size - sizeof(u32); frag->pad = raw->size - sum; data->raw = raw; data->dyn_size += size; data->sample_flags |= PERF_SAMPLE_RAW; } static inline void perf_sample_save_brstack(struct perf_sample_data *data, struct perf_event *event, struct perf_branch_stack *brs, u64 *brs_cntr) { int size = sizeof(u64); /* nr */ if (branch_sample_hw_index(event)) size += sizeof(u64); size += brs->nr * sizeof(struct perf_branch_entry); /* * The extension space for counters is appended after the * struct perf_branch_stack. It is used to store the occurrences * of events of each branch. */ if (brs_cntr) size += brs->nr * sizeof(u64); data->br_stack = brs; data->br_stack_cntr = brs_cntr; data->dyn_size += size; data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; } static inline u32 perf_sample_data_size(struct perf_sample_data *data, struct perf_event *event) { u32 size = sizeof(struct perf_event_header); size += event->header_size + event->id_header_size; size += data->dyn_size; return size; } /* * Clear all bitfields in the perf_branch_entry. * The to and from fields are not cleared because they are * systematically modified by caller. */ static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) { br->mispred = 0; br->predicted = 0; br->in_tx = 0; br->abort = 0; br->cycles = 0; br->type = 0; br->spec = PERF_BR_SPEC_NA; br->reserved = 0; } extern void perf_output_sample(struct perf_output_handle *handle, struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_prepare_sample(struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs); extern void perf_prepare_header(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs); extern int perf_event_overflow(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern void perf_event_output_forward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern void perf_event_output_backward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern int perf_event_output(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); static inline bool is_default_overflow_handler(struct perf_event *event) { perf_overflow_handler_t overflow_handler = event->overflow_handler; if (likely(overflow_handler == perf_event_output_forward)) return true; if (unlikely(overflow_handler == perf_event_output_backward)) return true; return false; } extern void perf_event_header__init_id(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_event__output_id_sample(struct perf_event *event, struct perf_output_handle *handle, struct perf_sample_data *sample); extern void perf_log_lost_samples(struct perf_event *event, u64 lost); static inline bool event_has_any_exclude_flag(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; return attr->exclude_idle || attr->exclude_user || attr->exclude_kernel || attr->exclude_hv || attr->exclude_guest || attr->exclude_host; } static inline bool is_sampling_event(struct perf_event *event) { return event->attr.sample_period != 0; } /* * Return 1 for a software event, 0 for a hardware event */ static inline int is_software_event(struct perf_event *event) { return event->event_caps & PERF_EV_CAP_SOFTWARE; } /* * Return 1 for event in sw context, 0 for event in hw context */ static inline int in_software_context(struct perf_event *event) { return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context; } static inline int is_exclusive_pmu(struct pmu *pmu) { return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; } extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); #ifndef perf_arch_fetch_caller_regs static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } #endif /* * When generating a perf sample in-line, instead of from an interrupt / * exception, we lack a pt_regs. This is typically used from software events * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. * * We typically don't need a full set, but (for x86) do require: * - ip for PERF_SAMPLE_IP * - cs for user_mode() tests * - sp for PERF_SAMPLE_CALLCHAIN * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) * * NOTE: assumes @regs is otherwise already 0 filled; this is important for * things like PERF_SAMPLE_REGS_INTR. */ static inline void perf_fetch_caller_regs(struct pt_regs *regs) { perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); } static __always_inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { if (static_key_false(&perf_swevent_enabled[event_id])) __perf_sw_event(event_id, nr, regs, addr); } DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); /* * 'Special' version for the scheduler, it hard assumes no recursion, * which is guaranteed by us not actually scheduling inside other swevents * because those disable preemption. */ static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); perf_fetch_caller_regs(regs); ___perf_sw_event(event_id, nr, regs, addr); } extern struct static_key_false perf_sched_events; static __always_inline bool __perf_sw_enabled(int swevt) { return static_key_false(&perf_swevent_enabled[swevt]); } static inline void perf_event_task_migrate(struct task_struct *task) { if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) task->sched_migrated = 1; } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_in(prev, task); if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && task->sched_migrated) { __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); task->sched_migrated = 0; } } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); #ifdef CONFIG_CGROUP_PERF if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && perf_cgroup_from_task(prev, NULL) != perf_cgroup_from_task(next, NULL)) __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); #endif if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_out(prev, next); } extern void perf_event_mmap(struct vm_area_struct *vma); extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym); extern void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags); #ifdef CONFIG_GUEST_PERF_EVENTS extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); static inline unsigned int perf_guest_state(void) { return static_call(__perf_guest_state)(); } static inline unsigned long perf_guest_get_ip(void) { return static_call(__perf_guest_get_ip)(); } static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return static_call(__perf_guest_handle_intel_pt_intr)(); } extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); #else static inline unsigned int perf_guest_state(void) { return 0; } static inline unsigned long perf_guest_get_ip(void) { return 0; } static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } #endif /* CONFIG_GUEST_PERF_EVENTS */ extern void perf_event_exec(void); extern void perf_event_comm(struct task_struct *tsk, bool exec); extern void perf_event_namespaces(struct task_struct *tsk); extern void perf_event_fork(struct task_struct *tsk); extern void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len); /* Callchains */ DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); extern struct perf_callchain_entry * get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, u32 max_stack, bool crosstask, bool add_mark); extern int get_callchain_buffers(int max_stack); extern void put_callchain_buffers(void); extern struct perf_callchain_entry *get_callchain_entry(int *rctx); extern void put_callchain_entry(int rctx); extern int sysctl_perf_event_max_stack; extern int sysctl_perf_event_max_contexts_per_stack; static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) { if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { struct perf_callchain_entry *entry = ctx->entry; entry->ip[entry->nr++] = ip; ++ctx->contexts; return 0; } else { ctx->contexts_maxed = true; return -1; /* no more room, stop walking the stack */ } } static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) { if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { struct perf_callchain_entry *entry = ctx->entry; entry->ip[entry->nr++] = ip; ++ctx->nr; return 0; } else { return -1; /* no more room, stop walking the stack */ } } extern int sysctl_perf_event_paranoid; extern int sysctl_perf_event_mlock; extern int sysctl_perf_event_sample_rate; extern int sysctl_perf_cpu_time_max_percent; extern void perf_sample_event_took(u64 sample_len_ns); int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int perf_event_max_stack_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); /* Access to perf_event_open(2) syscall. */ #define PERF_SECURITY_OPEN 0 /* Finer grained perf_event_open(2) access control. */ #define PERF_SECURITY_CPU 1 #define PERF_SECURITY_KERNEL 2 #define PERF_SECURITY_TRACEPOINT 3 static inline int perf_is_paranoid(void) { return sysctl_perf_event_paranoid > -1; } int perf_allow_kernel(struct perf_event_attr *attr); static inline int perf_allow_cpu(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) return -EACCES; return security_perf_event_open(attr, PERF_SECURITY_CPU); } static inline int perf_allow_tracepoint(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) return -EPERM; return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); } extern void perf_event_init(void); extern void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, struct pt_regs *regs, struct hlist_head *head, int rctx, struct task_struct *task); extern void perf_bp_event(struct perf_event *event, void *data); #ifndef perf_misc_flags # define perf_misc_flags(regs) \ (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) # define perf_instruction_pointer(regs) instruction_pointer(regs) #endif #ifndef perf_arch_bpf_user_pt_regs # define perf_arch_bpf_user_pt_regs(regs) regs #endif static inline bool has_branch_stack(struct perf_event *event) { return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; } static inline bool needs_branch_stack(struct perf_event *event) { return event->attr.branch_sample_type != 0; } static inline bool has_aux(struct perf_event *event) { return event->pmu->setup_aux; } static inline bool is_write_backward(struct perf_event *event) { return !!event->attr.write_backward; } static inline bool has_addr_filter(struct perf_event *event) { return event->pmu->nr_addr_filters; } /* * An inherited event uses parent's filters */ static inline struct perf_addr_filters_head * perf_event_addr_filters(struct perf_event *event) { struct perf_addr_filters_head *ifh = &event->addr_filters; if (event->parent) ifh = &event->parent->addr_filters; return ifh; } static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) { /* Only the parent has fasync state */ if (event->parent) event = event->parent; return &event->fasync; } extern void perf_event_addr_filters_sync(struct perf_event *event); extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); extern int perf_output_begin(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern int perf_output_begin_forward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern int perf_output_begin_backward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern void perf_output_end(struct perf_output_handle *handle); extern unsigned int perf_output_copy(struct perf_output_handle *handle, const void *buf, unsigned int len); extern unsigned int perf_output_skip(struct perf_output_handle *handle, unsigned int len); extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, struct perf_output_handle *handle, unsigned long from, unsigned long to); extern int perf_swevent_get_recursion_context(void); extern void perf_swevent_put_recursion_context(int rctx); extern u64 perf_swevent_set_period(struct perf_event *event); extern void perf_event_enable(struct perf_event *event); extern void perf_event_disable(struct perf_event *event); extern void perf_event_disable_local(struct perf_event *event); extern void perf_event_disable_inatomic(struct perf_event *event); extern void perf_event_task_tick(void); extern int perf_event_account_interrupt(struct perf_event *event); extern int perf_event_period(struct perf_event *event, u64 value); extern u64 perf_event_pause(struct perf_event *event, bool reset); #else /* !CONFIG_PERF_EVENTS: */ static inline void * perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event) { return NULL; } static inline void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) { } static inline int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) { return -EINVAL; } static inline void * perf_get_aux(struct perf_output_handle *handle) { return NULL; } static inline void perf_event_task_migrate(struct task_struct *task) { } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { } static inline int perf_event_init_task(struct task_struct *child, u64 clone_flags) { return 0; } static inline void perf_event_exit_task(struct task_struct *child) { } static inline void perf_event_free_task(struct task_struct *task) { } static inline void perf_event_delayed_put(struct task_struct *task) { } static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } static inline const struct perf_event *perf_get_event(struct file *file) { return ERR_PTR(-EINVAL); } static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) { return ERR_PTR(-EINVAL); } static inline int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running) { return -EINVAL; } static inline void perf_event_print_debug(void) { } static inline int perf_event_task_disable(void) { return -EINVAL; } static inline int perf_event_task_enable(void) { return -EINVAL; } static inline int perf_event_refresh(struct perf_event *event, int refresh) { return -EINVAL; } static inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } static inline void perf_bp_event(struct perf_event *event, void *data) { } static inline void perf_event_mmap(struct vm_area_struct *vma) { } typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym) { } static inline void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags) { } static inline void perf_event_exec(void) { } static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } static inline void perf_event_namespaces(struct task_struct *tsk) { } static inline void perf_event_fork(struct task_struct *tsk) { } static inline void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len) { } static inline void perf_event_init(void) { } static inline int perf_swevent_get_recursion_context(void) { return -1; } static inline void perf_swevent_put_recursion_context(int rctx) { } static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } static inline void perf_event_enable(struct perf_event *event) { } static inline void perf_event_disable(struct perf_event *event) { } static inline int __perf_event_disable(void *info) { return -1; } static inline void perf_event_task_tick(void) { } static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } static inline int perf_event_period(struct perf_event *event, u64 value) { return -EINVAL; } static inline u64 perf_event_pause(struct perf_event *event, bool reset) { return 0; } #endif #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) extern void perf_restore_debug_store(void); #else static inline void perf_restore_debug_store(void) { } #endif #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) struct perf_pmu_events_attr { struct device_attribute attr; u64 id; const char *event_str; }; struct perf_pmu_events_ht_attr { struct device_attribute attr; u64 id; const char *event_str_ht; const char *event_str_noht; }; struct perf_pmu_events_hybrid_attr { struct device_attribute attr; u64 id; const char *event_str; u64 pmu_type; }; struct perf_pmu_format_hybrid_attr { struct device_attribute attr; u64 pmu_type; }; ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, char *page); #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, _show, NULL), \ .id = _id, \ }; #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ .id = 0, \ .event_str = _str, \ }; #define PMU_EVENT_ATTR_ID(_name, _show, _id) \ (&((struct perf_pmu_events_attr[]) { \ { .attr = __ATTR(_name, 0444, _show, NULL), \ .id = _id, } \ })[0].attr.attr) #define PMU_FORMAT_ATTR_SHOW(_name, _format) \ static ssize_t \ _name##_show(struct device *dev, \ struct device_attribute *attr, \ char *page) \ { \ BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ return sprintf(page, _format "\n"); \ } \ #define PMU_FORMAT_ATTR(_name, _format) \ PMU_FORMAT_ATTR_SHOW(_name, _format) \ \ static struct device_attribute format_attr_##_name = __ATTR_RO(_name) /* Performance counter hotplug functions */ #ifdef CONFIG_PERF_EVENTS int perf_event_init_cpu(unsigned int cpu); int perf_event_exit_cpu(unsigned int cpu); #else #define perf_event_init_cpu NULL #define perf_event_exit_cpu NULL #endif extern void arch_perf_update_userpage(struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now); /* * Snapshot branch stack on software events. * * Branch stack can be very useful in understanding software events. For * example, when a long function, e.g. sys_perf_event_open, returns an * errno, it is not obvious why the function failed. Branch stack could * provide very helpful information in this type of scenarios. * * On software event, it is necessary to stop the hardware branch recorder * fast. Otherwise, the hardware register/buffer will be flushed with * entries of the triggering event. Therefore, static call is used to * stop the hardware recorder. */ /* * cnt is the number of entries allocated for entries. * Return number of entries copied to . */ typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, unsigned int cnt); DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); #ifndef PERF_NEEDS_LOPWR_CB static inline void perf_lopwr_cb(bool mode) { } #endif #endif /* _LINUX_PERF_EVENT_H */