/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PGTABLE_H #define _LINUX_PGTABLE_H #include #include #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) #ifndef __ASSEMBLY__ #ifdef CONFIG_MMU #include #include #include #include #include #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED #endif /* * On almost all architectures and configurations, 0 can be used as the * upper ceiling to free_pgtables(): on many architectures it has the same * effect as using TASK_SIZE. However, there is one configuration which * must impose a more careful limit, to avoid freeing kernel pgtables. */ #ifndef USER_PGTABLES_CEILING #define USER_PGTABLES_CEILING 0UL #endif /* * This defines the first usable user address. Platforms * can override its value with custom FIRST_USER_ADDRESS * defined in their respective . */ #ifndef FIRST_USER_ADDRESS #define FIRST_USER_ADDRESS 0UL #endif /* * This defines the generic helper for accessing PMD page * table page. Although platforms can still override this * via their respective . */ #ifndef pmd_pgtable #define pmd_pgtable(pmd) pmd_page(pmd) #endif #define pmd_folio(pmd) page_folio(pmd_page(pmd)) /* * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] * * The pXx_index() functions return the index of the entry in the page * table page which would control the given virtual address * * As these functions may be used by the same code for different levels of * the page table folding, they are always available, regardless of * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 * because in such cases PTRS_PER_PxD equals 1. */ static inline unsigned long pte_index(unsigned long address) { return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); } #ifndef pmd_index static inline unsigned long pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } #define pmd_index pmd_index #endif #ifndef pud_index static inline unsigned long pud_index(unsigned long address) { return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); } #define pud_index pud_index #endif #ifndef pgd_index /* Must be a compile-time constant, so implement it as a macro */ #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) #endif #ifndef pte_offset_kernel static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) { return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); } #define pte_offset_kernel pte_offset_kernel #endif #ifdef CONFIG_HIGHPTE #define __pte_map(pmd, address) \ ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) #define pte_unmap(pte) do { \ kunmap_local((pte)); \ rcu_read_unlock(); \ } while (0) #else static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) { return pte_offset_kernel(pmd, address); } static inline void pte_unmap(pte_t *pte) { rcu_read_unlock(); } #endif void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); /* Find an entry in the second-level page table.. */ #ifndef pmd_offset static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { return pud_pgtable(*pud) + pmd_index(address); } #define pmd_offset pmd_offset #endif #ifndef pud_offset static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) { return p4d_pgtable(*p4d) + pud_index(address); } #define pud_offset pud_offset #endif static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) { return (pgd + pgd_index(address)); }; /* * a shortcut to get a pgd_t in a given mm */ #ifndef pgd_offset #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) #endif /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) /* * In many cases it is known that a virtual address is mapped at PMD or PTE * level, so instead of traversing all the page table levels, we can get a * pointer to the PMD entry in user or kernel page table or translate a virtual * address to the pointer in the PTE in the kernel page tables with simple * helpers. */ static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) { return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); } static inline pmd_t *pmd_off_k(unsigned long va) { return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); } static inline pte_t *virt_to_kpte(unsigned long vaddr) { pmd_t *pmd = pmd_off_k(vaddr); return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); } #ifndef pmd_young static inline int pmd_young(pmd_t pmd) { return 0; } #endif #ifndef pmd_dirty static inline int pmd_dirty(pmd_t pmd) { return 0; } #endif /* * A facility to provide lazy MMU batching. This allows PTE updates and * page invalidations to be delayed until a call to leave lazy MMU mode * is issued. Some architectures may benefit from doing this, and it is * beneficial for both shadow and direct mode hypervisors, which may batch * the PTE updates which happen during this window. Note that using this * interface requires that read hazards be removed from the code. A read * hazard could result in the direct mode hypervisor case, since the actual * write to the page tables may not yet have taken place, so reads though * a raw PTE pointer after it has been modified are not guaranteed to be * up to date. This mode can only be entered and left under the protection of * the page table locks for all page tables which may be modified. In the UP * case, this is required so that preemption is disabled, and in the SMP case, * it must synchronize the delayed page table writes properly on other CPUs. */ #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE #define arch_enter_lazy_mmu_mode() do {} while (0) #define arch_leave_lazy_mmu_mode() do {} while (0) #define arch_flush_lazy_mmu_mode() do {} while (0) #endif #ifndef pte_batch_hint /** * pte_batch_hint - Number of pages that can be added to batch without scanning. * @ptep: Page table pointer for the entry. * @pte: Page table entry. * * Some architectures know that a set of contiguous ptes all map the same * contiguous memory with the same permissions. In this case, it can provide a * hint to aid pte batching without the core code needing to scan every pte. * * An architecture implementation may ignore the PTE accessed state. Further, * the dirty state must apply atomically to all the PTEs described by the hint. * * May be overridden by the architecture, else pte_batch_hint is always 1. */ static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) { return 1; } #endif #ifndef pte_advance_pfn static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) { return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); } #endif #define pte_next_pfn(pte) pte_advance_pfn(pte, 1) #ifndef set_ptes /** * set_ptes - Map consecutive pages to a contiguous range of addresses. * @mm: Address space to map the pages into. * @addr: Address to map the first page at. * @ptep: Page table pointer for the first entry. * @pte: Page table entry for the first page. * @nr: Number of pages to map. * * When nr==1, initial state of pte may be present or not present, and new state * may be present or not present. When nr>1, initial state of all ptes must be * not present, and new state must be present. * * May be overridden by the architecture, or the architecture can define * set_pte() and PFN_PTE_SHIFT. * * Context: The caller holds the page table lock. The pages all belong * to the same folio. The PTEs are all in the same PMD. */ static inline void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, unsigned int nr) { page_table_check_ptes_set(mm, ptep, pte, nr); arch_enter_lazy_mmu_mode(); for (;;) { set_pte(ptep, pte); if (--nr == 0) break; ptep++; pte = pte_next_pfn(pte); } arch_leave_lazy_mmu_mode(); } #endif #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #endif #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #else static inline int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { BUILD_BUG(); return 0; } static inline int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef ptep_get static inline pte_t ptep_get(pte_t *ptep) { return READ_ONCE(*ptep); } #endif #ifndef pmdp_get static inline pmd_t pmdp_get(pmd_t *pmdp) { return READ_ONCE(*pmdp); } #endif #ifndef pudp_get static inline pud_t pudp_get(pud_t *pudp) { return READ_ONCE(*pudp); } #endif #ifndef p4dp_get static inline p4d_t p4dp_get(p4d_t *p4dp) { return READ_ONCE(*p4dp); } #endif #ifndef pgdp_get static inline pgd_t pgdp_get(pgd_t *pgdp) { return READ_ONCE(*pgdp); } #endif #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t pte = ptep_get(ptep); int r = 1; if (!pte_young(pte)) r = 0; else set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); return r; } #endif #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; int r = 1; if (!pmd_young(pmd)) r = 0; else set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); return r; } #else static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #else /* * Despite relevant to THP only, this API is called from generic rmap code * under PageTransHuge(), hence needs a dummy implementation for !THP */ static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef arch_has_hw_nonleaf_pmd_young /* * Return whether the accessed bit in non-leaf PMD entries is supported on the * local CPU. */ static inline bool arch_has_hw_nonleaf_pmd_young(void) { return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); } #endif #ifndef arch_has_hw_pte_young /* * Return whether the accessed bit is supported on the local CPU. * * This stub assumes accessing through an old PTE triggers a page fault. * Architectures that automatically set the access bit should overwrite it. */ static inline bool arch_has_hw_pte_young(void) { return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG); } #endif #ifndef arch_check_zapped_pte static inline void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte) { } #endif #ifndef arch_check_zapped_pmd static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd) { } #endif #ifndef arch_check_zapped_pud static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud) { } #endif #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t pte = ptep_get(ptep); pte_clear(mm, address, ptep); page_table_check_pte_clear(mm, pte); return pte; } #endif #ifndef clear_young_dirty_ptes /** * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the * same folio as old/clean. * @mm: Address space the pages are mapped into. * @addr: Address the first page is mapped at. * @ptep: Page table pointer for the first entry. * @nr: Number of entries to mark old/clean. * @flags: Flags to modify the PTE batch semantics. * * May be overridden by the architecture; otherwise, implemented by * get_and_clear/modify/set for each pte in the range. * * Note that PTE bits in the PTE range besides the PFN can differ. For example, * some PTEs might be write-protected. * * Context: The caller holds the page table lock. The PTEs map consecutive * pages that belong to the same folio. The PTEs are all in the same PMD. */ static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, unsigned int nr, cydp_t flags) { pte_t pte; for (;;) { if (flags == CYDP_CLEAR_YOUNG) ptep_test_and_clear_young(vma, addr, ptep); else { pte = ptep_get_and_clear(vma->vm_mm, addr, ptep); if (flags & CYDP_CLEAR_YOUNG) pte = pte_mkold(pte); if (flags & CYDP_CLEAR_DIRTY) pte = pte_mkclean(pte); set_pte_at(vma->vm_mm, addr, ptep, pte); } if (--nr == 0) break; ptep++; addr += PAGE_SIZE; } } #endif static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { ptep_get_and_clear(mm, addr, ptep); } #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH /* * For walking the pagetables without holding any locks. Some architectures * (eg x86-32 PAE) cannot load the entries atomically without using expensive * instructions. We are guaranteed that a PTE will only either go from not * present to present, or present to not present -- it will not switch to a * completely different present page without a TLB flush inbetween; which we * are blocking by holding interrupts off. * * Setting ptes from not present to present goes: * * ptep->pte_high = h; * smp_wmb(); * ptep->pte_low = l; * * And present to not present goes: * * ptep->pte_low = 0; * smp_wmb(); * ptep->pte_high = 0; * * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. * We load pte_high *after* loading pte_low, which ensures we don't see an older * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't * picked up a changed pte high. We might have gotten rubbish values from * pte_low and pte_high, but we are guaranteed that pte_low will not have the * present bit set *unless* it is 'l'. Because get_user_pages_fast() only * operates on present ptes we're safe. */ static inline pte_t ptep_get_lockless(pte_t *ptep) { pte_t pte; do { pte.pte_low = ptep->pte_low; smp_rmb(); pte.pte_high = ptep->pte_high; smp_rmb(); } while (unlikely(pte.pte_low != ptep->pte_low)); return pte; } #define ptep_get_lockless ptep_get_lockless #if CONFIG_PGTABLE_LEVELS > 2 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) { pmd_t pmd; do { pmd.pmd_low = pmdp->pmd_low; smp_rmb(); pmd.pmd_high = pmdp->pmd_high; smp_rmb(); } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); return pmd; } #define pmdp_get_lockless pmdp_get_lockless #define pmdp_get_lockless_sync() tlb_remove_table_sync_one() #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ /* * We require that the PTE can be read atomically. */ #ifndef ptep_get_lockless static inline pte_t ptep_get_lockless(pte_t *ptep) { return ptep_get(ptep); } #endif #ifndef pmdp_get_lockless static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) { return pmdp_get(pmdp); } static inline void pmdp_get_lockless_sync(void) { } #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; pmd_clear(pmdp); page_table_check_pmd_clear(mm, pmd); return pmd; } #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pud_t *pudp) { pud_t pud = *pudp; pud_clear(pudp); page_table_check_pud_clear(mm, pud); return pud; } #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, int full) { return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); } #endif #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, int full) { return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { return ptep_get_and_clear(mm, address, ptep); } #endif #ifndef get_and_clear_full_ptes /** * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of * the same folio, collecting dirty/accessed bits. * @mm: Address space the pages are mapped into. * @addr: Address the first page is mapped at. * @ptep: Page table pointer for the first entry. * @nr: Number of entries to clear. * @full: Whether we are clearing a full mm. * * May be overridden by the architecture; otherwise, implemented as a simple * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the * returned PTE. * * Note that PTE bits in the PTE range besides the PFN can differ. For example, * some PTEs might be write-protected. * * Context: The caller holds the page table lock. The PTEs map consecutive * pages that belong to the same folio. The PTEs are all in the same PMD. */ static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned int nr, int full) { pte_t pte, tmp_pte; pte = ptep_get_and_clear_full(mm, addr, ptep, full); while (--nr) { ptep++; addr += PAGE_SIZE; tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full); if (pte_dirty(tmp_pte)) pte = pte_mkdirty(pte); if (pte_young(tmp_pte)) pte = pte_mkyoung(pte); } return pte; } #endif #ifndef clear_full_ptes /** * clear_full_ptes - Clear present PTEs that map consecutive pages of the same * folio. * @mm: Address space the pages are mapped into. * @addr: Address the first page is mapped at. * @ptep: Page table pointer for the first entry. * @nr: Number of entries to clear. * @full: Whether we are clearing a full mm. * * May be overridden by the architecture; otherwise, implemented as a simple * loop over ptep_get_and_clear_full(). * * Note that PTE bits in the PTE range besides the PFN can differ. For example, * some PTEs might be write-protected. * * Context: The caller holds the page table lock. The PTEs map consecutive * pages that belong to the same folio. The PTEs are all in the same PMD. */ static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned int nr, int full) { for (;;) { ptep_get_and_clear_full(mm, addr, ptep, full); if (--nr == 0) break; ptep++; addr += PAGE_SIZE; } } #endif /* * If two threads concurrently fault at the same page, the thread that * won the race updates the PTE and its local TLB/Cache. The other thread * gives up, simply does nothing, and continues; on architectures where * software can update TLB, local TLB can be updated here to avoid next page * fault. This function updates TLB only, do nothing with cache or others. * It is the difference with function update_mmu_cache. */ #ifndef update_mmu_tlb_range static inline void update_mmu_tlb_range(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, unsigned int nr) { } #endif static inline void update_mmu_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { update_mmu_tlb_range(vma, address, ptep, 1); } /* * Some architectures may be able to avoid expensive synchronization * primitives when modifications are made to PTE's which are already * not present, or in the process of an address space destruction. */ #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL static inline void pte_clear_not_present_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { pte_clear(mm, address, ptep); } #endif #ifndef clear_not_present_full_ptes /** * clear_not_present_full_ptes - Clear multiple not present PTEs which are * consecutive in the pgtable. * @mm: Address space the ptes represent. * @addr: Address of the first pte. * @ptep: Page table pointer for the first entry. * @nr: Number of entries to clear. * @full: Whether we are clearing a full mm. * * May be overridden by the architecture; otherwise, implemented as a simple * loop over pte_clear_not_present_full(). * * Context: The caller holds the page table lock. The PTEs are all not present. * The PTEs are all in the same PMD. */ static inline void clear_not_present_full_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned int nr, int full) { for (;;) { pte_clear_not_present_full(mm, addr, ptep, full); if (--nr == 0) break; ptep++; addr += PAGE_SIZE; } } #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH extern pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, pud_t *pudp); #endif #ifndef pte_mkwrite static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) { return pte_mkwrite_novma(pte); } #endif #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) { return pmd_mkwrite_novma(pmd); } #endif #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT struct mm_struct; static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t old_pte = ptep_get(ptep); set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); } #endif #ifndef wrprotect_ptes /** * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same * folio. * @mm: Address space the pages are mapped into. * @addr: Address the first page is mapped at. * @ptep: Page table pointer for the first entry. * @nr: Number of entries to write-protect. * * May be overridden by the architecture; otherwise, implemented as a simple * loop over ptep_set_wrprotect(). * * Note that PTE bits in the PTE range besides the PFN can differ. For example, * some PTEs might be write-protected. * * Context: The caller holds the page table lock. The PTEs map consecutive * pages that belong to the same folio. The PTEs are all in the same PMD. */ static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned int nr) { for (;;) { ptep_set_wrprotect(mm, addr, ptep); if (--nr == 0) break; ptep++; addr += PAGE_SIZE; } } #endif /* * On some architectures hardware does not set page access bit when accessing * memory page, it is responsibility of software setting this bit. It brings * out extra page fault penalty to track page access bit. For optimization page * access bit can be set during all page fault flow on these arches. * To be differentiate with macro pte_mkyoung, this macro is used on platforms * where software maintains page access bit. */ #ifndef pte_sw_mkyoung static inline pte_t pte_sw_mkyoung(pte_t pte) { return pte; } #define pte_sw_mkyoung pte_sw_mkyoung #endif #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t old_pmd = *pmdp; set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); } #else static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { pud_t old_pud = *pudp; set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); } #else static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { BUILD_BUG(); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ #endif #ifndef pmdp_collapse_flush #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #else static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return *pmdp; } #define pmdp_collapse_flush pmdp_collapse_flush #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); #endif #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); #endif #ifndef arch_needs_pgtable_deposit #define arch_needs_pgtable_deposit() (false) #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * This is an implementation of pmdp_establish() that is only suitable for an * architecture that doesn't have hardware dirty/accessed bits. In this case we * can't race with CPU which sets these bits and non-atomic approach is fine. */ static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { pmd_t old_pmd = *pmdp; set_pmd_at(vma->vm_mm, address, pmdp, pmd); return old_pmd; } #endif #ifndef __HAVE_ARCH_PMDP_INVALIDATE extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD /* * pmdp_invalidate_ad() invalidates the PMD while changing a transparent * hugepage mapping in the page tables. This function is similar to * pmdp_invalidate(), but should only be used if the access and dirty bits would * not be cleared by the software in the new PMD value. The function ensures * that hardware changes of the access and dirty bits updates would not be lost. * * Doing so can allow in certain architectures to avoid a TLB flush in most * cases. Yet, another TLB flush might be necessary later if the PMD update * itself requires such flush (e.g., if protection was set to be stricter). Yet, * even when a TLB flush is needed because of the update, the caller may be able * to batch these TLB flushing operations, so fewer TLB flush operations are * needed. */ extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif #ifndef __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t pte_a, pte_t pte_b) { return pte_val(pte_a) == pte_val(pte_b); } #endif #ifndef __HAVE_ARCH_PTE_UNUSED /* * Some architectures provide facilities to virtualization guests * so that they can flag allocated pages as unused. This allows the * host to transparently reclaim unused pages. This function returns * whether the pte's page is unused. */ static inline int pte_unused(pte_t pte) { return 0; } #endif #ifndef pte_access_permitted #define pte_access_permitted(pte, write) \ (pte_present(pte) && (!(write) || pte_write(pte))) #endif #ifndef pmd_access_permitted #define pmd_access_permitted(pmd, write) \ (pmd_present(pmd) && (!(write) || pmd_write(pmd))) #endif #ifndef pud_access_permitted #define pud_access_permitted(pud, write) \ (pud_present(pud) && (!(write) || pud_write(pud))) #endif #ifndef p4d_access_permitted #define p4d_access_permitted(p4d, write) \ (p4d_present(p4d) && (!(write) || p4d_write(p4d))) #endif #ifndef pgd_access_permitted #define pgd_access_permitted(pgd, write) \ (pgd_present(pgd) && (!(write) || pgd_write(pgd))) #endif #ifndef __HAVE_ARCH_PMD_SAME static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { return pmd_val(pmd_a) == pmd_val(pmd_b); } #endif #ifndef pud_same static inline int pud_same(pud_t pud_a, pud_t pud_b) { return pud_val(pud_a) == pud_val(pud_b); } #define pud_same pud_same #endif #ifndef __HAVE_ARCH_P4D_SAME static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) { return p4d_val(p4d_a) == p4d_val(p4d_b); } #endif #ifndef __HAVE_ARCH_PGD_SAME static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) { return pgd_val(pgd_a) == pgd_val(pgd_b); } #endif /* * Use set_p*_safe(), and elide TLB flushing, when confident that *no* * TLB flush will be required as a result of the "set". For example, use * in scenarios where it is known ahead of time that the routine is * setting non-present entries, or re-setting an existing entry to the * same value. Otherwise, use the typical "set" helpers and flush the * TLB. */ #define set_pte_safe(ptep, pte) \ ({ \ WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ set_pte(ptep, pte); \ }) #define set_pmd_safe(pmdp, pmd) \ ({ \ WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ set_pmd(pmdp, pmd); \ }) #define set_pud_safe(pudp, pud) \ ({ \ WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ set_pud(pudp, pud); \ }) #define set_p4d_safe(p4dp, p4d) \ ({ \ WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ set_p4d(p4dp, p4d); \ }) #define set_pgd_safe(pgdp, pgd) \ ({ \ WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ set_pgd(pgdp, pgd); \ }) #ifndef __HAVE_ARCH_DO_SWAP_PAGE static inline void arch_do_swap_page_nr(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t pte, pte_t oldpte, int nr) { } #else /* * Some architectures support metadata associated with a page. When a * page is being swapped out, this metadata must be saved so it can be * restored when the page is swapped back in. SPARC M7 and newer * processors support an ADI (Application Data Integrity) tag for the * page as metadata for the page. arch_do_swap_page() can restore this * metadata when a page is swapped back in. */ static inline void arch_do_swap_page_nr(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t pte, pte_t oldpte, int nr) { for (int i = 0; i < nr; i++) { arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE, pte_advance_pfn(pte, i), pte_advance_pfn(oldpte, i)); } } #endif #ifndef __HAVE_ARCH_UNMAP_ONE /* * Some architectures support metadata associated with a page. When a * page is being swapped out, this metadata must be saved so it can be * restored when the page is swapped back in. SPARC M7 and newer * processors support an ADI (Application Data Integrity) tag for the * page as metadata for the page. arch_unmap_one() can save this * metadata on a swap-out of a page. */ static inline int arch_unmap_one(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t orig_pte) { return 0; } #endif /* * Allow architectures to preserve additional metadata associated with * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function * prototypes must be defined in the arch-specific asm/pgtable.h file. */ #ifndef __HAVE_ARCH_PREPARE_TO_SWAP static inline int arch_prepare_to_swap(struct folio *folio) { return 0; } #endif #ifndef __HAVE_ARCH_SWAP_INVALIDATE static inline void arch_swap_invalidate_page(int type, pgoff_t offset) { } static inline void arch_swap_invalidate_area(int type) { } #endif #ifndef __HAVE_ARCH_SWAP_RESTORE static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) { } #endif #ifndef __HAVE_ARCH_PGD_OFFSET_GATE #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) #endif #ifndef __HAVE_ARCH_MOVE_PTE #define move_pte(pte, old_addr, new_addr) (pte) #endif #ifndef pte_accessible # define pte_accessible(mm, pte) ((void)(pte), 1) #endif #ifndef flush_tlb_fix_spurious_fault #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) #endif /* * When walking page tables, get the address of the next boundary, * or the end address of the range if that comes earlier. Although no * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. */ #define pgd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #ifndef p4d_addr_end #define p4d_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef pud_addr_end #define pud_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef pmd_addr_end #define pmd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif /* * When walking page tables, we usually want to skip any p?d_none entries; * and any p?d_bad entries - reporting the error before resetting to none. * Do the tests inline, but report and clear the bad entry in mm/memory.c. */ void pgd_clear_bad(pgd_t *); #ifndef __PAGETABLE_P4D_FOLDED void p4d_clear_bad(p4d_t *); #else #define p4d_clear_bad(p4d) do { } while (0) #endif #ifndef __PAGETABLE_PUD_FOLDED void pud_clear_bad(pud_t *); #else #define pud_clear_bad(p4d) do { } while (0) #endif void pmd_clear_bad(pmd_t *); static inline int pgd_none_or_clear_bad(pgd_t *pgd) { if (pgd_none(*pgd)) return 1; if (unlikely(pgd_bad(*pgd))) { pgd_clear_bad(pgd); return 1; } return 0; } static inline int p4d_none_or_clear_bad(p4d_t *p4d) { if (p4d_none(*p4d)) return 1; if (unlikely(p4d_bad(*p4d))) { p4d_clear_bad(p4d); return 1; } return 0; } static inline int pud_none_or_clear_bad(pud_t *pud) { if (pud_none(*pud)) return 1; if (unlikely(pud_bad(*pud))) { pud_clear_bad(pud); return 1; } return 0; } static inline int pmd_none_or_clear_bad(pmd_t *pmd) { if (pmd_none(*pmd)) return 1; if (unlikely(pmd_bad(*pmd))) { pmd_clear_bad(pmd); return 1; } return 0; } static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { /* * Get the current pte state, but zero it out to make it * non-present, preventing the hardware from asynchronously * updating it. */ return ptep_get_and_clear(vma->vm_mm, addr, ptep); } static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t pte) { /* * The pte is non-present, so there's no hardware state to * preserve. */ set_pte_at(vma->vm_mm, addr, ptep, pte); } #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION /* * Start a pte protection read-modify-write transaction, which * protects against asynchronous hardware modifications to the pte. * The intention is not to prevent the hardware from making pte * updates, but to prevent any updates it may make from being lost. * * This does not protect against other software modifications of the * pte; the appropriate pte lock must be held over the transaction. * * Note that this interface is intended to be batchable, meaning that * ptep_modify_prot_commit may not actually update the pte, but merely * queue the update to be done at some later time. The update must be * actually committed before the pte lock is released, however. */ static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return __ptep_modify_prot_start(vma, addr, ptep); } /* * Commit an update to a pte, leaving any hardware-controlled bits in * the PTE unmodified. */ static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { __ptep_modify_prot_commit(vma, addr, ptep, pte); } #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ #endif /* CONFIG_MMU */ /* * No-op macros that just return the current protection value. Defined here * because these macros can be used even if CONFIG_MMU is not defined. */ #ifndef pgprot_nx #define pgprot_nx(prot) (prot) #endif #ifndef pgprot_noncached #define pgprot_noncached(prot) (prot) #endif #ifndef pgprot_writecombine #define pgprot_writecombine pgprot_noncached #endif #ifndef pgprot_writethrough #define pgprot_writethrough pgprot_noncached #endif #ifndef pgprot_device #define pgprot_device pgprot_noncached #endif #ifndef pgprot_mhp #define pgprot_mhp(prot) (prot) #endif #ifdef CONFIG_MMU #ifndef pgprot_modify #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) newprot = pgprot_noncached(newprot); if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) newprot = pgprot_writecombine(newprot); if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) newprot = pgprot_device(newprot); return newprot; } #endif #endif /* CONFIG_MMU */ #ifndef pgprot_encrypted #define pgprot_encrypted(prot) (prot) #endif #ifndef pgprot_decrypted #define pgprot_decrypted(prot) (prot) #endif /* * A facility to provide batching of the reload of page tables and * other process state with the actual context switch code for * paravirtualized guests. By convention, only one of the batched * update (lazy) modes (CPU, MMU) should be active at any given time, * entry should never be nested, and entry and exits should always be * paired. This is for sanity of maintaining and reasoning about the * kernel code. In this case, the exit (end of the context switch) is * in architecture-specific code, and so doesn't need a generic * definition. */ #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH #define arch_start_context_switch(prev) do {} while (0) #endif #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd; } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return 0; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd; } #endif #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ static inline int pte_soft_dirty(pte_t pte) { return 0; } static inline int pmd_soft_dirty(pmd_t pmd) { return 0; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd; } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd; } static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte; } static inline int pte_swp_soft_dirty(pte_t pte) { return 0; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd; } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return 0; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd; } #endif #ifndef __HAVE_PFNMAP_TRACKING /* * Interfaces that can be used by architecture code to keep track of * memory type of pfn mappings specified by the remap_pfn_range, * vmf_insert_pfn. */ /* * track_pfn_remap is called when a _new_ pfn mapping is being established * by remap_pfn_range() for physical range indicated by pfn and size. */ static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size) { return 0; } /* * track_pfn_insert is called when a _new_ single pfn is established * by vmf_insert_pfn(). */ static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn) { } /* * track_pfn_copy is called when vma that is covering the pfnmap gets * copied through copy_page_range(). */ static inline int track_pfn_copy(struct vm_area_struct *vma) { return 0; } /* * untrack_pfn is called while unmapping a pfnmap for a region. * untrack can be called for a specific region indicated by pfn and size or * can be for the entire vma (in which case pfn, size are zero). */ static inline void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size, bool mm_wr_locked) { } /* * untrack_pfn_clear is called while mremapping a pfnmap for a new region * or fails to copy pgtable during duplicate vm area. */ static inline void untrack_pfn_clear(struct vm_area_struct *vma) { } #else extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size); extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn); extern int track_pfn_copy(struct vm_area_struct *vma); extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size, bool mm_wr_locked); extern void untrack_pfn_clear(struct vm_area_struct *vma); #endif #ifdef CONFIG_MMU #ifdef __HAVE_COLOR_ZERO_PAGE static inline int is_zero_pfn(unsigned long pfn) { extern unsigned long zero_pfn; unsigned long offset_from_zero_pfn = pfn - zero_pfn; return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); } #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) #else static inline int is_zero_pfn(unsigned long pfn) { extern unsigned long zero_pfn; return pfn == zero_pfn; } static inline unsigned long my_zero_pfn(unsigned long addr) { extern unsigned long zero_pfn; return zero_pfn; } #endif #else static inline int is_zero_pfn(unsigned long pfn) { return 0; } static inline unsigned long my_zero_pfn(unsigned long addr) { return 0; } #endif /* CONFIG_MMU */ #ifdef CONFIG_MMU #ifndef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_trans_huge(pmd_t pmd) { return 0; } #ifndef pmd_write static inline int pmd_write(pmd_t pmd) { BUG(); return 0; } #endif /* pmd_write */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifndef pud_write static inline int pud_write(pud_t pud) { BUG(); return 0; } #endif /* pud_write */ #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) static inline int pmd_devmap(pmd_t pmd) { return 0; } static inline int pud_devmap(pud_t pud) { return 0; } static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) static inline int pud_trans_huge(pud_t pud) { return 0; } #endif static inline int pud_trans_unstable(pud_t *pud) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) pud_t pudval = READ_ONCE(*pud); if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) return 1; if (unlikely(pud_bad(pudval))) { pud_clear_bad(pud); return 1; } #endif return 0; } #ifndef CONFIG_NUMA_BALANCING /* * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is * perfectly valid to indicate "no" in that case, which is why our default * implementation defaults to "always no". * * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE * page protection due to NUMA hinting. NUMA hinting faults only apply in * accessible VMAs. * * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, * looking at the VMA accessibility is sufficient. */ static inline int pte_protnone(pte_t pte) { return 0; } static inline int pmd_protnone(pmd_t pmd) { return 0; } #endif /* CONFIG_NUMA_BALANCING */ #endif /* CONFIG_MMU */ #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP #ifndef __PAGETABLE_P4D_FOLDED int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); void p4d_clear_huge(p4d_t *p4d); #else static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } static inline void p4d_clear_huge(p4d_t *p4d) { } #endif /* !__PAGETABLE_P4D_FOLDED */ int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); int pud_clear_huge(pud_t *pud); int pmd_clear_huge(pmd_t *pmd); int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); int pud_free_pmd_page(pud_t *pud, unsigned long addr); int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) { return 0; } static inline void p4d_clear_huge(p4d_t *p4d) { } static inline int pud_clear_huge(pud_t *pud) { return 0; } static inline int pmd_clear_huge(pmd_t *pmd) { return 0; } static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) { return 0; } static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) { return 0; } static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) { return 0; } #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * ARCHes with special requirements for evicting THP backing TLB entries can * implement this. Otherwise also, it can help optimize normal TLB flush in * THP regime. Stock flush_tlb_range() typically has optimization to nuke the * entire TLB if flush span is greater than a threshold, which will * likely be true for a single huge page. Thus a single THP flush will * invalidate the entire TLB which is not desirable. * e.g. see arch/arc: flush_pmd_tlb_range */ #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) #else #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() #endif #endif struct file; int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, unsigned long size, pgprot_t *vma_prot); #ifndef CONFIG_X86_ESPFIX64 static inline void init_espfix_bsp(void) { } #endif extern void __init pgtable_cache_init(void); #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) { return true; } static inline bool arch_has_pfn_modify_check(void) { return false; } #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ /* * Architecture PAGE_KERNEL_* fallbacks * * Some architectures don't define certain PAGE_KERNEL_* flags. This is either * because they really don't support them, or the port needs to be updated to * reflect the required functionality. Below are a set of relatively safe * fallbacks, as best effort, which we can count on in lieu of the architectures * not defining them on their own yet. */ #ifndef PAGE_KERNEL_RO # define PAGE_KERNEL_RO PAGE_KERNEL #endif #ifndef PAGE_KERNEL_EXEC # define PAGE_KERNEL_EXEC PAGE_KERNEL #endif /* * Page Table Modification bits for pgtbl_mod_mask. * * These are used by the p?d_alloc_track*() set of functions an in the generic * vmalloc/ioremap code to track at which page-table levels entries have been * modified. Based on that the code can better decide when vmalloc and ioremap * mapping changes need to be synchronized to other page-tables in the system. */ #define __PGTBL_PGD_MODIFIED 0 #define __PGTBL_P4D_MODIFIED 1 #define __PGTBL_PUD_MODIFIED 2 #define __PGTBL_PMD_MODIFIED 3 #define __PGTBL_PTE_MODIFIED 4 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) /* Page-Table Modification Mask */ typedef unsigned int pgtbl_mod_mask; #endif /* !__ASSEMBLY__ */ #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) #ifdef CONFIG_PHYS_ADDR_T_64BIT /* * ZSMALLOC needs to know the highest PFN on 32-bit architectures * with physical address space extension, but falls back to * BITS_PER_LONG otherwise. */ #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition #else #define MAX_POSSIBLE_PHYSMEM_BITS 32 #endif #endif #ifndef has_transparent_hugepage #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) #endif #ifndef has_transparent_pud_hugepage #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) #endif /* * On some architectures it depends on the mm if the p4d/pud or pmd * layer of the page table hierarchy is folded or not. */ #ifndef mm_p4d_folded #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) #endif #ifndef mm_pud_folded #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) #endif #ifndef mm_pmd_folded #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) #endif #ifndef p4d_offset_lockless #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) #endif #ifndef pud_offset_lockless #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) #endif #ifndef pmd_offset_lockless #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) #endif /* * pXd_leaf() is the API to check whether a pgtable entry is a huge page * mapping. It should work globally across all archs, without any * dependency on CONFIG_* options. For architectures that do not support * huge mappings on specific levels, below fallbacks will be used. * * A leaf pgtable entry should always imply the following: * * - It is a "present" entry. IOW, before using this API, please check it * with pXd_present() first. NOTE: it may not always mean the "present * bit" is set. For example, PROT_NONE entries are always "present". * * - It should _never_ be a swap entry of any type. Above "present" check * should have guarded this, but let's be crystal clear on this. * * - It should contain a huge PFN, which points to a huge page larger than * PAGE_SIZE of the platform. The PFN format isn't important here. * * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(), * pXd_devmap(), or hugetlb mappings). */ #ifndef pgd_leaf #define pgd_leaf(x) false #endif #ifndef p4d_leaf #define p4d_leaf(x) false #endif #ifndef pud_leaf #define pud_leaf(x) false #endif #ifndef pmd_leaf #define pmd_leaf(x) false #endif #ifndef pgd_leaf_size #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) #endif #ifndef p4d_leaf_size #define p4d_leaf_size(x) P4D_SIZE #endif #ifndef pud_leaf_size #define pud_leaf_size(x) PUD_SIZE #endif #ifndef pmd_leaf_size #define pmd_leaf_size(x) PMD_SIZE #endif #ifndef __pte_leaf_size #ifndef pte_leaf_size #define pte_leaf_size(x) PAGE_SIZE #endif #define __pte_leaf_size(x,y) pte_leaf_size(y) #endif /* * We always define pmd_pfn for all archs as it's used in lots of generic * code. Now it happens too for pud_pfn (and can happen for larger * mappings too in the future; we're not there yet). Instead of defining * it for all archs (like pmd_pfn), provide a fallback. * * Note that returning 0 here means any arch that didn't define this can * get severely wrong when it hits a real pud leaf. It's arch's * responsibility to properly define it when a huge pud is possible. */ #ifndef pud_pfn #define pud_pfn(x) 0 #endif /* * Some architectures have MMUs that are configurable or selectable at boot * time. These lead to variable PTRS_PER_x. For statically allocated arrays it * helps to have a static maximum value. */ #ifndef MAX_PTRS_PER_PTE #define MAX_PTRS_PER_PTE PTRS_PER_PTE #endif #ifndef MAX_PTRS_PER_PMD #define MAX_PTRS_PER_PMD PTRS_PER_PMD #endif #ifndef MAX_PTRS_PER_PUD #define MAX_PTRS_PER_PUD PTRS_PER_PUD #endif #ifndef MAX_PTRS_PER_P4D #define MAX_PTRS_PER_P4D PTRS_PER_P4D #endif #ifndef pte_pgprot #define pte_pgprot(x) ((pgprot_t) {0}) #endif #ifndef pmd_pgprot #define pmd_pgprot(x) ((pgprot_t) {0}) #endif #ifndef pud_pgprot #define pud_pgprot(x) ((pgprot_t) {0}) #endif /* description of effects of mapping type and prot in current implementation. * this is due to the limited x86 page protection hardware. The expected * behavior is in parens: * * map_type prot * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes * w: (no) no w: (no) no w: (yes) yes w: (no) no * x: (no) no x: (no) yes x: (no) yes x: (yes) yes * * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes * w: (no) no w: (no) no w: (copy) copy w: (no) no * x: (no) no x: (no) yes x: (no) yes x: (yes) yes * * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and * MAP_PRIVATE (with Enhanced PAN supported): * r: (no) no * w: (no) no * x: (yes) yes */ #define DECLARE_VM_GET_PAGE_PROT \ pgprot_t vm_get_page_prot(unsigned long vm_flags) \ { \ return protection_map[vm_flags & \ (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ } \ EXPORT_SYMBOL(vm_get_page_prot); #endif /* _LINUX_PGTABLE_H */