// SPDX-License-Identifier: GPL-2.0 /* * NUMA emulation */ #include #include #include #include #include #include #define FAKE_NODE_MIN_SIZE ((u64)32 << 20) #define FAKE_NODE_MIN_HASH_MASK (~(FAKE_NODE_MIN_SIZE - 1UL)) static int emu_nid_to_phys[MAX_NUMNODES]; static char *emu_cmdline __initdata; int __init numa_emu_cmdline(char *str) { emu_cmdline = str; return 0; } static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi) { int i; for (i = 0; i < mi->nr_blks; i++) if (mi->blk[i].nid == nid) return i; return -ENOENT; } static u64 __init mem_hole_size(u64 start, u64 end) { unsigned long start_pfn = PFN_UP(start); unsigned long end_pfn = PFN_DOWN(end); if (start_pfn < end_pfn) return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn)); return 0; } /* * Sets up nid to range from @start to @end. The return value is -errno if * something went wrong, 0 otherwise. */ static int __init emu_setup_memblk(struct numa_meminfo *ei, struct numa_meminfo *pi, int nid, int phys_blk, u64 size) { struct numa_memblk *eb = &ei->blk[ei->nr_blks]; struct numa_memblk *pb = &pi->blk[phys_blk]; if (ei->nr_blks >= NR_NODE_MEMBLKS) { pr_err("NUMA: Too many emulated memblks, failing emulation\n"); return -EINVAL; } ei->nr_blks++; eb->start = pb->start; eb->end = pb->start + size; eb->nid = nid; if (emu_nid_to_phys[nid] == NUMA_NO_NODE) emu_nid_to_phys[nid] = pb->nid; pb->start += size; if (pb->start >= pb->end) { WARN_ON_ONCE(pb->start > pb->end); numa_remove_memblk_from(phys_blk, pi); } printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n", nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20); return 0; } /* * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr * to max_addr. * * Returns zero on success or negative on error. */ static int __init split_nodes_interleave(struct numa_meminfo *ei, struct numa_meminfo *pi, u64 addr, u64 max_addr, int nr_nodes) { nodemask_t physnode_mask = numa_nodes_parsed; u64 size; int big; int nid = 0; int i, ret; if (nr_nodes <= 0) return -1; if (nr_nodes > MAX_NUMNODES) { pr_info("numa=fake=%d too large, reducing to %d\n", nr_nodes, MAX_NUMNODES); nr_nodes = MAX_NUMNODES; } /* * Calculate target node size. x86_32 freaks on __udivdi3() so do * the division in ulong number of pages and convert back. */ size = max_addr - addr - mem_hole_size(addr, max_addr); size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes); /* * Calculate the number of big nodes that can be allocated as a result * of consolidating the remainder. */ big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) / FAKE_NODE_MIN_SIZE; size &= FAKE_NODE_MIN_HASH_MASK; if (!size) { pr_err("Not enough memory for each node. " "NUMA emulation disabled.\n"); return -1; } /* * Continue to fill physical nodes with fake nodes until there is no * memory left on any of them. */ while (!nodes_empty(physnode_mask)) { for_each_node_mask(i, physnode_mask) { u64 dma32_end = numa_emu_dma_end(); u64 start, limit, end; int phys_blk; phys_blk = emu_find_memblk_by_nid(i, pi); if (phys_blk < 0) { node_clear(i, physnode_mask); continue; } start = pi->blk[phys_blk].start; limit = pi->blk[phys_blk].end; end = start + size; if (nid < big) end += FAKE_NODE_MIN_SIZE; /* * Continue to add memory to this fake node if its * non-reserved memory is less than the per-node size. */ while (end - start - mem_hole_size(start, end) < size) { end += FAKE_NODE_MIN_SIZE; if (end > limit) { end = limit; break; } } /* * If there won't be at least FAKE_NODE_MIN_SIZE of * non-reserved memory in ZONE_DMA32 for the next node, * this one must extend to the boundary. */ if (end < dma32_end && dma32_end - end - mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) end = dma32_end; /* * If there won't be enough non-reserved memory for the * next node, this one must extend to the end of the * physical node. */ if (limit - end - mem_hole_size(end, limit) < size) end = limit; ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes, phys_blk, min(end, limit) - start); if (ret < 0) return ret; } } return 0; } /* * Returns the end address of a node so that there is at least `size' amount of * non-reserved memory or `max_addr' is reached. */ static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size) { u64 end = start + size; while (end - start - mem_hole_size(start, end) < size) { end += FAKE_NODE_MIN_SIZE; if (end > max_addr) { end = max_addr; break; } } return end; } static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes) { unsigned long max_pfn = PHYS_PFN(max_addr); unsigned long base_pfn = PHYS_PFN(base); unsigned long hole_pfns = PHYS_PFN(hole); return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes); } /* * Sets up fake nodes of `size' interleaved over physical nodes ranging from * `addr' to `max_addr'. * * Returns zero on success or negative on error. */ static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei, struct numa_meminfo *pi, u64 addr, u64 max_addr, u64 size, int nr_nodes, struct numa_memblk *pblk, int nid) { nodemask_t physnode_mask = numa_nodes_parsed; int i, ret, uniform = 0; u64 min_size; if ((!size && !nr_nodes) || (nr_nodes && !pblk)) return -1; /* * In the 'uniform' case split the passed in physical node by * nr_nodes, in the non-uniform case, ignore the passed in * physical block and try to create nodes of at least size * @size. * * In the uniform case, split the nodes strictly by physical * capacity, i.e. ignore holes. In the non-uniform case account * for holes and treat @size as a minimum floor. */ if (!nr_nodes) nr_nodes = MAX_NUMNODES; else { nodes_clear(physnode_mask); node_set(pblk->nid, physnode_mask); uniform = 1; } if (uniform) { min_size = uniform_size(max_addr, addr, 0, nr_nodes); size = min_size; } else { /* * The limit on emulated nodes is MAX_NUMNODES, so the * size per node is increased accordingly if the * requested size is too small. This creates a uniform * distribution of node sizes across the entire machine * (but not necessarily over physical nodes). */ min_size = uniform_size(max_addr, addr, mem_hole_size(addr, max_addr), nr_nodes); } min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE); if (size < min_size) { pr_err("Fake node size %LuMB too small, increasing to %LuMB\n", size >> 20, min_size >> 20); size = min_size; } size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE); /* * Fill physical nodes with fake nodes of size until there is no memory * left on any of them. */ while (!nodes_empty(physnode_mask)) { for_each_node_mask(i, physnode_mask) { u64 dma32_end = numa_emu_dma_end(); u64 start, limit, end; int phys_blk; phys_blk = emu_find_memblk_by_nid(i, pi); if (phys_blk < 0) { node_clear(i, physnode_mask); continue; } start = pi->blk[phys_blk].start; limit = pi->blk[phys_blk].end; if (uniform) end = start + size; else end = find_end_of_node(start, limit, size); /* * If there won't be at least FAKE_NODE_MIN_SIZE of * non-reserved memory in ZONE_DMA32 for the next node, * this one must extend to the boundary. */ if (end < dma32_end && dma32_end - end - mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) end = dma32_end; /* * If there won't be enough non-reserved memory for the * next node, this one must extend to the end of the * physical node. */ if ((limit - end - mem_hole_size(end, limit) < size) && !uniform) end = limit; ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES, phys_blk, min(end, limit) - start); if (ret < 0) return ret; } } return nid; } static int __init split_nodes_size_interleave(struct numa_meminfo *ei, struct numa_meminfo *pi, u64 addr, u64 max_addr, u64 size) { return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size, 0, NULL, 0); } static int __init setup_emu2phys_nid(int *dfl_phys_nid) { int i, max_emu_nid = 0; *dfl_phys_nid = NUMA_NO_NODE; for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) { if (emu_nid_to_phys[i] != NUMA_NO_NODE) { max_emu_nid = i; if (*dfl_phys_nid == NUMA_NO_NODE) *dfl_phys_nid = emu_nid_to_phys[i]; } } return max_emu_nid; } /** * numa_emulation - Emulate NUMA nodes * @numa_meminfo: NUMA configuration to massage * @numa_dist_cnt: The size of the physical NUMA distance table * * Emulate NUMA nodes according to the numa=fake kernel parameter. * @numa_meminfo contains the physical memory configuration and is modified * to reflect the emulated configuration on success. @numa_dist_cnt is * used to determine the size of the physical distance table. * * On success, the following modifications are made. * * - @numa_meminfo is updated to reflect the emulated nodes. * * - __apicid_to_node[] is updated such that APIC IDs are mapped to the * emulated nodes. * * - NUMA distance table is rebuilt to represent distances between emulated * nodes. The distances are determined considering how emulated nodes * are mapped to physical nodes and match the actual distances. * * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical * nodes. This is used by numa_add_cpu() and numa_remove_cpu(). * * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with * identity mapping and no other modification is made. */ void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt) { static struct numa_meminfo ei __initdata; static struct numa_meminfo pi __initdata; const u64 max_addr = PFN_PHYS(max_pfn); u8 *phys_dist = NULL; size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]); int max_emu_nid, dfl_phys_nid; int i, j, ret; if (!emu_cmdline) goto no_emu; memset(&ei, 0, sizeof(ei)); pi = *numa_meminfo; for (i = 0; i < MAX_NUMNODES; i++) emu_nid_to_phys[i] = NUMA_NO_NODE; /* * If the numa=fake command-line contains a 'M' or 'G', it represents * the fixed node size. Otherwise, if it is just a single number N, * split the system RAM into N fake nodes. */ if (strchr(emu_cmdline, 'U')) { nodemask_t physnode_mask = numa_nodes_parsed; unsigned long n; int nid = 0; n = simple_strtoul(emu_cmdline, &emu_cmdline, 0); ret = -1; for_each_node_mask(i, physnode_mask) { /* * The reason we pass in blk[0] is due to * numa_remove_memblk_from() called by * emu_setup_memblk() will delete entry 0 * and then move everything else up in the pi.blk * array. Therefore we should always be looking * at blk[0]. */ ret = split_nodes_size_interleave_uniform(&ei, &pi, pi.blk[0].start, pi.blk[0].end, 0, n, &pi.blk[0], nid); if (ret < 0) break; if (ret < n) { pr_info("%s: phys: %d only got %d of %ld nodes, failing\n", __func__, i, ret, n); ret = -1; break; } nid = ret; } } else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) { u64 size; size = memparse(emu_cmdline, &emu_cmdline); ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size); } else { unsigned long n; n = simple_strtoul(emu_cmdline, &emu_cmdline, 0); ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n); } if (*emu_cmdline == ':') emu_cmdline++; if (ret < 0) goto no_emu; if (numa_cleanup_meminfo(&ei) < 0) { pr_warn("NUMA: Warning: constructed meminfo invalid, disabling emulation\n"); goto no_emu; } /* copy the physical distance table */ if (numa_dist_cnt) { phys_dist = memblock_alloc(phys_size, PAGE_SIZE); if (!phys_dist) { pr_warn("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n"); goto no_emu; } for (i = 0; i < numa_dist_cnt; i++) for (j = 0; j < numa_dist_cnt; j++) phys_dist[i * numa_dist_cnt + j] = node_distance(i, j); } /* * Determine the max emulated nid and the default phys nid to use * for unmapped nodes. */ max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid); /* commit */ *numa_meminfo = ei; /* Make sure numa_nodes_parsed only contains emulated nodes */ nodes_clear(numa_nodes_parsed); for (i = 0; i < ARRAY_SIZE(ei.blk); i++) if (ei.blk[i].start != ei.blk[i].end && ei.blk[i].nid != NUMA_NO_NODE) node_set(ei.blk[i].nid, numa_nodes_parsed); numa_emu_update_cpu_to_node(emu_nid_to_phys, ARRAY_SIZE(emu_nid_to_phys)); /* make sure all emulated nodes are mapped to a physical node */ for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) if (emu_nid_to_phys[i] == NUMA_NO_NODE) emu_nid_to_phys[i] = dfl_phys_nid; /* transform distance table */ numa_reset_distance(); for (i = 0; i < max_emu_nid + 1; i++) { for (j = 0; j < max_emu_nid + 1; j++) { int physi = emu_nid_to_phys[i]; int physj = emu_nid_to_phys[j]; int dist; if (get_option(&emu_cmdline, &dist) == 2) ; else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt) dist = physi == physj ? LOCAL_DISTANCE : REMOTE_DISTANCE; else dist = phys_dist[physi * numa_dist_cnt + physj]; numa_set_distance(i, j, dist); } } /* free the copied physical distance table */ memblock_free(phys_dist, phys_size); return; no_emu: /* No emulation. Build identity emu_nid_to_phys[] for numa_add_cpu() */ for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) emu_nid_to_phys[i] = i; } #ifndef CONFIG_DEBUG_PER_CPU_MAPS void numa_add_cpu(unsigned int cpu) { int physnid, nid; nid = early_cpu_to_node(cpu); BUG_ON(nid == NUMA_NO_NODE || !node_online(nid)); physnid = emu_nid_to_phys[nid]; /* * Map the cpu to each emulated node that is allocated on the physical * node of the cpu's apic id. */ for_each_online_node(nid) if (emu_nid_to_phys[nid] == physnid) cpumask_set_cpu(cpu, node_to_cpumask_map[nid]); } void numa_remove_cpu(unsigned int cpu) { int i; for_each_online_node(i) cpumask_clear_cpu(cpu, node_to_cpumask_map[i]); } #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ static void numa_set_cpumask(unsigned int cpu, bool enable) { int nid, physnid; nid = early_cpu_to_node(cpu); if (nid == NUMA_NO_NODE) { /* early_cpu_to_node() already emits a warning and trace */ return; } physnid = emu_nid_to_phys[nid]; for_each_online_node(nid) { if (emu_nid_to_phys[nid] != physnid) continue; debug_cpumask_set_cpu(cpu, nid, enable); } } void numa_add_cpu(unsigned int cpu) { numa_set_cpumask(cpu, true); } void numa_remove_cpu(unsigned int cpu) { numa_set_cpumask(cpu, false); } #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */