/* * af_can.c - Protocol family CAN core module * (used by different CAN protocol modules) * * Copyright (c) 2002-2017 Volkswagen Group Electronic Research * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Volkswagen nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * The provided data structures and external interfaces from this code * are not restricted to be used by modules with a GPL compatible license. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "af_can.h" MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Urs Thuermann , " "Oliver Hartkopp "); MODULE_ALIAS_NETPROTO(PF_CAN); static int stats_timer __read_mostly = 1; module_param(stats_timer, int, S_IRUGO); MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); static struct kmem_cache *rcv_cache __read_mostly; /* table of registered CAN protocols */ static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly; static DEFINE_MUTEX(proto_tab_lock); static atomic_t skbcounter = ATOMIC_INIT(0); /* * af_can socket functions */ int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; switch (cmd) { case SIOCGSTAMP: return sock_get_timestamp(sk, (struct timeval __user *)arg); default: return -ENOIOCTLCMD; } } EXPORT_SYMBOL(can_ioctl); static void can_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_receive_queue); } static const struct can_proto *can_get_proto(int protocol) { const struct can_proto *cp; rcu_read_lock(); cp = rcu_dereference(proto_tab[protocol]); if (cp && !try_module_get(cp->prot->owner)) cp = NULL; rcu_read_unlock(); return cp; } static inline void can_put_proto(const struct can_proto *cp) { module_put(cp->prot->owner); } static int can_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; const struct can_proto *cp; int err = 0; sock->state = SS_UNCONNECTED; if (protocol < 0 || protocol >= CAN_NPROTO) return -EINVAL; cp = can_get_proto(protocol); #ifdef CONFIG_MODULES if (!cp) { /* try to load protocol module if kernel is modular */ err = request_module("can-proto-%d", protocol); /* * In case of error we only print a message but don't * return the error code immediately. Below we will * return -EPROTONOSUPPORT */ if (err) printk_ratelimited(KERN_ERR "can: request_module " "(can-proto-%d) failed.\n", protocol); cp = can_get_proto(protocol); } #endif /* check for available protocol and correct usage */ if (!cp) return -EPROTONOSUPPORT; if (cp->type != sock->type) { err = -EPROTOTYPE; goto errout; } sock->ops = cp->ops; sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern); if (!sk) { err = -ENOMEM; goto errout; } sock_init_data(sock, sk); sk->sk_destruct = can_sock_destruct; if (sk->sk_prot->init) err = sk->sk_prot->init(sk); if (err) { /* release sk on errors */ sock_orphan(sk); sock_put(sk); } errout: can_put_proto(cp); return err; } /* * af_can tx path */ /** * can_send - transmit a CAN frame (optional with local loopback) * @skb: pointer to socket buffer with CAN frame in data section * @loop: loopback for listeners on local CAN sockets (recommended default!) * * Due to the loopback this routine must not be called from hardirq context. * * Return: * 0 on success * -ENETDOWN when the selected interface is down * -ENOBUFS on full driver queue (see net_xmit_errno()) * -ENOMEM when local loopback failed at calling skb_clone() * -EPERM when trying to send on a non-CAN interface * -EMSGSIZE CAN frame size is bigger than CAN interface MTU * -EINVAL when the skb->data does not contain a valid CAN frame */ int can_send(struct sk_buff *skb, int loop) { struct sk_buff *newskb = NULL; struct canfd_frame *cfd = (struct canfd_frame *)skb->data; struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats; int err = -EINVAL; if (skb->len == CAN_MTU) { skb->protocol = htons(ETH_P_CAN); if (unlikely(cfd->len > CAN_MAX_DLEN)) goto inval_skb; } else if (skb->len == CANFD_MTU) { skb->protocol = htons(ETH_P_CANFD); if (unlikely(cfd->len > CANFD_MAX_DLEN)) goto inval_skb; } else goto inval_skb; /* * Make sure the CAN frame can pass the selected CAN netdevice. * As structs can_frame and canfd_frame are similar, we can provide * CAN FD frames to legacy CAN drivers as long as the length is <= 8 */ if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) { err = -EMSGSIZE; goto inval_skb; } if (unlikely(skb->dev->type != ARPHRD_CAN)) { err = -EPERM; goto inval_skb; } if (unlikely(!(skb->dev->flags & IFF_UP))) { err = -ENETDOWN; goto inval_skb; } skb->ip_summed = CHECKSUM_UNNECESSARY; skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); if (loop) { /* local loopback of sent CAN frames */ /* indication for the CAN driver: do loopback */ skb->pkt_type = PACKET_LOOPBACK; /* * The reference to the originating sock may be required * by the receiving socket to check whether the frame is * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS * Therefore we have to ensure that skb->sk remains the * reference to the originating sock by restoring skb->sk * after each skb_clone() or skb_orphan() usage. */ if (!(skb->dev->flags & IFF_ECHO)) { /* * If the interface is not capable to do loopback * itself, we do it here. */ newskb = skb_clone(skb, GFP_ATOMIC); if (!newskb) { kfree_skb(skb); return -ENOMEM; } can_skb_set_owner(newskb, skb->sk); newskb->ip_summed = CHECKSUM_UNNECESSARY; newskb->pkt_type = PACKET_BROADCAST; } } else { /* indication for the CAN driver: no loopback required */ skb->pkt_type = PACKET_HOST; } /* send to netdevice */ err = dev_queue_xmit(skb); if (err > 0) err = net_xmit_errno(err); if (err) { kfree_skb(newskb); return err; } if (newskb) netif_rx_ni(newskb); /* update statistics */ can_stats->tx_frames++; can_stats->tx_frames_delta++; return 0; inval_skb: kfree_skb(skb); return err; } EXPORT_SYMBOL(can_send); /* * af_can rx path */ static struct can_dev_rcv_lists *find_dev_rcv_lists(struct net *net, struct net_device *dev) { if (!dev) return net->can.can_rx_alldev_list; else return (struct can_dev_rcv_lists *)dev->ml_priv; } /** * effhash - hash function for 29 bit CAN identifier reduction * @can_id: 29 bit CAN identifier * * Description: * To reduce the linear traversal in one linked list of _single_ EFF CAN * frame subscriptions the 29 bit identifier is mapped to 10 bits. * (see CAN_EFF_RCV_HASH_BITS definition) * * Return: * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask ) */ static unsigned int effhash(canid_t can_id) { unsigned int hash; hash = can_id; hash ^= can_id >> CAN_EFF_RCV_HASH_BITS; hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS); return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1); } /** * find_rcv_list - determine optimal filterlist inside device filter struct * @can_id: pointer to CAN identifier of a given can_filter * @mask: pointer to CAN mask of a given can_filter * @d: pointer to the device filter struct * * Description: * Returns the optimal filterlist to reduce the filter handling in the * receive path. This function is called by service functions that need * to register or unregister a can_filter in the filter lists. * * A filter matches in general, when * * & mask == can_id & mask * * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe * relevant bits for the filter. * * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg * frames there is a special filterlist and a special rx path filter handling. * * Return: * Pointer to optimal filterlist for the given can_id/mask pair. * Constistency checked mask. * Reduced can_id to have a preprocessed filter compare value. */ static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask, struct can_dev_rcv_lists *d) { canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ /* filter for error message frames in extra filterlist */ if (*mask & CAN_ERR_FLAG) { /* clear CAN_ERR_FLAG in filter entry */ *mask &= CAN_ERR_MASK; return &d->rx[RX_ERR]; } /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) /* ensure valid values in can_mask for 'SFF only' frame filtering */ if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); /* reduce condition testing at receive time */ *can_id &= *mask; /* inverse can_id/can_mask filter */ if (inv) return &d->rx[RX_INV]; /* mask == 0 => no condition testing at receive time */ if (!(*mask)) return &d->rx[RX_ALL]; /* extra filterlists for the subscription of a single non-RTR can_id */ if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && !(*can_id & CAN_RTR_FLAG)) { if (*can_id & CAN_EFF_FLAG) { if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) return &d->rx_eff[effhash(*can_id)]; } else { if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) return &d->rx_sff[*can_id]; } } /* default: filter via can_id/can_mask */ return &d->rx[RX_FIL]; } /** * can_rx_register - subscribe CAN frames from a specific interface * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) * @can_id: CAN identifier (see description) * @mask: CAN mask (see description) * @func: callback function on filter match * @data: returned parameter for callback function * @ident: string for calling module identification * @sk: socket pointer (might be NULL) * * Description: * Invokes the callback function with the received sk_buff and the given * parameter 'data' on a matching receive filter. A filter matches, when * * & mask == can_id & mask * * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can * filter for error message frames (CAN_ERR_FLAG bit set in mask). * * The provided pointer to the sk_buff is guaranteed to be valid as long as * the callback function is running. The callback function must *not* free * the given sk_buff while processing it's task. When the given sk_buff is * needed after the end of the callback function it must be cloned inside * the callback function with skb_clone(). * * Return: * 0 on success * -ENOMEM on missing cache mem to create subscription entry * -ENODEV unknown device */ int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id, canid_t mask, void (*func)(struct sk_buff *, void *), void *data, char *ident, struct sock *sk) { struct receiver *r; struct hlist_head *rl; struct can_dev_rcv_lists *d; struct s_pstats *can_pstats = net->can.can_pstats; int err = 0; /* insert new receiver (dev,canid,mask) -> (func,data) */ if (dev && dev->type != ARPHRD_CAN) return -ENODEV; if (dev && !net_eq(net, dev_net(dev))) return -ENODEV; r = kmem_cache_alloc(rcv_cache, GFP_KERNEL); if (!r) return -ENOMEM; spin_lock(&net->can.can_rcvlists_lock); d = find_dev_rcv_lists(net, dev); if (d) { rl = find_rcv_list(&can_id, &mask, d); r->can_id = can_id; r->mask = mask; r->matches = 0; r->func = func; r->data = data; r->ident = ident; r->sk = sk; hlist_add_head_rcu(&r->list, rl); d->entries++; can_pstats->rcv_entries++; if (can_pstats->rcv_entries_max < can_pstats->rcv_entries) can_pstats->rcv_entries_max = can_pstats->rcv_entries; } else { kmem_cache_free(rcv_cache, r); err = -ENODEV; } spin_unlock(&net->can.can_rcvlists_lock); return err; } EXPORT_SYMBOL(can_rx_register); /* * can_rx_delete_receiver - rcu callback for single receiver entry removal */ static void can_rx_delete_receiver(struct rcu_head *rp) { struct receiver *r = container_of(rp, struct receiver, rcu); struct sock *sk = r->sk; kmem_cache_free(rcv_cache, r); if (sk) sock_put(sk); } /** * can_rx_unregister - unsubscribe CAN frames from a specific interface * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list) * @can_id: CAN identifier * @mask: CAN mask * @func: callback function on filter match * @data: returned parameter for callback function * * Description: * Removes subscription entry depending on given (subscription) values. */ void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id, canid_t mask, void (*func)(struct sk_buff *, void *), void *data) { struct receiver *r = NULL; struct hlist_head *rl; struct s_pstats *can_pstats = net->can.can_pstats; struct can_dev_rcv_lists *d; if (dev && dev->type != ARPHRD_CAN) return; if (dev && !net_eq(net, dev_net(dev))) return; spin_lock(&net->can.can_rcvlists_lock); d = find_dev_rcv_lists(net, dev); if (!d) { pr_err("BUG: receive list not found for " "dev %s, id %03X, mask %03X\n", DNAME(dev), can_id, mask); goto out; } rl = find_rcv_list(&can_id, &mask, d); /* * Search the receiver list for the item to delete. This should * exist, since no receiver may be unregistered that hasn't * been registered before. */ hlist_for_each_entry_rcu(r, rl, list) { if (r->can_id == can_id && r->mask == mask && r->func == func && r->data == data) break; } /* * Check for bugs in CAN protocol implementations using af_can.c: * 'r' will be NULL if no matching list item was found for removal. */ if (!r) { WARN(1, "BUG: receive list entry not found for dev %s, " "id %03X, mask %03X\n", DNAME(dev), can_id, mask); goto out; } hlist_del_rcu(&r->list); d->entries--; if (can_pstats->rcv_entries > 0) can_pstats->rcv_entries--; /* remove device structure requested by NETDEV_UNREGISTER */ if (d->remove_on_zero_entries && !d->entries) { kfree(d); dev->ml_priv = NULL; } out: spin_unlock(&net->can.can_rcvlists_lock); /* schedule the receiver item for deletion */ if (r) { if (r->sk) sock_hold(r->sk); call_rcu(&r->rcu, can_rx_delete_receiver); } } EXPORT_SYMBOL(can_rx_unregister); static inline void deliver(struct sk_buff *skb, struct receiver *r) { r->func(skb, r->data); r->matches++; } static int can_rcv_filter(struct can_dev_rcv_lists *d, struct sk_buff *skb) { struct receiver *r; int matches = 0; struct can_frame *cf = (struct can_frame *)skb->data; canid_t can_id = cf->can_id; if (d->entries == 0) return 0; if (can_id & CAN_ERR_FLAG) { /* check for error message frame entries only */ hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) { if (can_id & r->mask) { deliver(skb, r); matches++; } } return matches; } /* check for unfiltered entries */ hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) { deliver(skb, r); matches++; } /* check for can_id/mask entries */ hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) { if ((can_id & r->mask) == r->can_id) { deliver(skb, r); matches++; } } /* check for inverted can_id/mask entries */ hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) { if ((can_id & r->mask) != r->can_id) { deliver(skb, r); matches++; } } /* check filterlists for single non-RTR can_ids */ if (can_id & CAN_RTR_FLAG) return matches; if (can_id & CAN_EFF_FLAG) { hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) { if (r->can_id == can_id) { deliver(skb, r); matches++; } } } else { can_id &= CAN_SFF_MASK; hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) { deliver(skb, r); matches++; } } return matches; } static void can_receive(struct sk_buff *skb, struct net_device *dev) { struct can_dev_rcv_lists *d; struct net *net = dev_net(dev); struct s_stats *can_stats = net->can.can_stats; int matches; /* update statistics */ can_stats->rx_frames++; can_stats->rx_frames_delta++; /* create non-zero unique skb identifier together with *skb */ while (!(can_skb_prv(skb)->skbcnt)) can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter); rcu_read_lock(); /* deliver the packet to sockets listening on all devices */ matches = can_rcv_filter(net->can.can_rx_alldev_list, skb); /* find receive list for this device */ d = find_dev_rcv_lists(net, dev); if (d) matches += can_rcv_filter(d, skb); rcu_read_unlock(); /* consume the skbuff allocated by the netdevice driver */ consume_skb(skb); if (matches > 0) { can_stats->matches++; can_stats->matches_delta++; } } static int can_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct canfd_frame *cfd = (struct canfd_frame *)skb->data; if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU || cfd->len > CAN_MAX_DLEN)) { pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n", dev->type, skb->len, cfd->len); kfree_skb(skb); return NET_RX_DROP; } can_receive(skb, dev); return NET_RX_SUCCESS; } static int canfd_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct canfd_frame *cfd = (struct canfd_frame *)skb->data; if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU || cfd->len > CANFD_MAX_DLEN)) { pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n", dev->type, skb->len, cfd->len); kfree_skb(skb); return NET_RX_DROP; } can_receive(skb, dev); return NET_RX_SUCCESS; } /* * af_can protocol functions */ /** * can_proto_register - register CAN transport protocol * @cp: pointer to CAN protocol structure * * Return: * 0 on success * -EINVAL invalid (out of range) protocol number * -EBUSY protocol already in use * -ENOBUF if proto_register() fails */ int can_proto_register(const struct can_proto *cp) { int proto = cp->protocol; int err = 0; if (proto < 0 || proto >= CAN_NPROTO) { pr_err("can: protocol number %d out of range\n", proto); return -EINVAL; } err = proto_register(cp->prot, 0); if (err < 0) return err; mutex_lock(&proto_tab_lock); if (rcu_access_pointer(proto_tab[proto])) { pr_err("can: protocol %d already registered\n", proto); err = -EBUSY; } else RCU_INIT_POINTER(proto_tab[proto], cp); mutex_unlock(&proto_tab_lock); if (err < 0) proto_unregister(cp->prot); return err; } EXPORT_SYMBOL(can_proto_register); /** * can_proto_unregister - unregister CAN transport protocol * @cp: pointer to CAN protocol structure */ void can_proto_unregister(const struct can_proto *cp) { int proto = cp->protocol; mutex_lock(&proto_tab_lock); BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp); RCU_INIT_POINTER(proto_tab[proto], NULL); mutex_unlock(&proto_tab_lock); synchronize_rcu(); proto_unregister(cp->prot); } EXPORT_SYMBOL(can_proto_unregister); /* * af_can notifier to create/remove CAN netdevice specific structs */ static int can_notifier(struct notifier_block *nb, unsigned long msg, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct can_dev_rcv_lists *d; if (dev->type != ARPHRD_CAN) return NOTIFY_DONE; switch (msg) { case NETDEV_REGISTER: /* create new dev_rcv_lists for this device */ d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) return NOTIFY_DONE; BUG_ON(dev->ml_priv); dev->ml_priv = d; break; case NETDEV_UNREGISTER: spin_lock(&dev_net(dev)->can.can_rcvlists_lock); d = dev->ml_priv; if (d) { if (d->entries) d->remove_on_zero_entries = 1; else { kfree(d); dev->ml_priv = NULL; } } else pr_err("can: notifier: receive list not found for dev " "%s\n", dev->name); spin_unlock(&dev_net(dev)->can.can_rcvlists_lock); break; } return NOTIFY_DONE; } static int can_pernet_init(struct net *net) { spin_lock_init(&net->can.can_rcvlists_lock); net->can.can_rx_alldev_list = kzalloc(sizeof(struct can_dev_rcv_lists), GFP_KERNEL); if (!net->can.can_rx_alldev_list) goto out; net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL); if (!net->can.can_stats) goto out_free_alldev_list; net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL); if (!net->can.can_pstats) goto out_free_can_stats; if (IS_ENABLED(CONFIG_PROC_FS)) { /* the statistics are updated every second (timer triggered) */ if (stats_timer) { timer_setup(&net->can.can_stattimer, can_stat_update, 0); mod_timer(&net->can.can_stattimer, round_jiffies(jiffies + HZ)); } net->can.can_stats->jiffies_init = jiffies; can_init_proc(net); } return 0; out_free_can_stats: kfree(net->can.can_stats); out_free_alldev_list: kfree(net->can.can_rx_alldev_list); out: return -ENOMEM; } static void can_pernet_exit(struct net *net) { struct net_device *dev; if (IS_ENABLED(CONFIG_PROC_FS)) { can_remove_proc(net); if (stats_timer) del_timer_sync(&net->can.can_stattimer); } /* remove created dev_rcv_lists from still registered CAN devices */ rcu_read_lock(); for_each_netdev_rcu(net, dev) { if (dev->type == ARPHRD_CAN && dev->ml_priv) { struct can_dev_rcv_lists *d = dev->ml_priv; BUG_ON(d->entries); kfree(d); dev->ml_priv = NULL; } } rcu_read_unlock(); kfree(net->can.can_rx_alldev_list); kfree(net->can.can_stats); kfree(net->can.can_pstats); } /* * af_can module init/exit functions */ static struct packet_type can_packet __read_mostly = { .type = cpu_to_be16(ETH_P_CAN), .func = can_rcv, }; static struct packet_type canfd_packet __read_mostly = { .type = cpu_to_be16(ETH_P_CANFD), .func = canfd_rcv, }; static const struct net_proto_family can_family_ops = { .family = PF_CAN, .create = can_create, .owner = THIS_MODULE, }; /* notifier block for netdevice event */ static struct notifier_block can_netdev_notifier __read_mostly = { .notifier_call = can_notifier, }; static struct pernet_operations can_pernet_ops __read_mostly = { .init = can_pernet_init, .exit = can_pernet_exit, .async = true, }; static __init int can_init(void) { /* check for correct padding to be able to use the structs similarly */ BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) != offsetof(struct canfd_frame, len) || offsetof(struct can_frame, data) != offsetof(struct canfd_frame, data)); pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n"); rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 0, 0, NULL); if (!rcv_cache) return -ENOMEM; register_pernet_subsys(&can_pernet_ops); /* protocol register */ sock_register(&can_family_ops); register_netdevice_notifier(&can_netdev_notifier); dev_add_pack(&can_packet); dev_add_pack(&canfd_packet); return 0; } static __exit void can_exit(void) { /* protocol unregister */ dev_remove_pack(&canfd_packet); dev_remove_pack(&can_packet); unregister_netdevice_notifier(&can_netdev_notifier); sock_unregister(PF_CAN); unregister_pernet_subsys(&can_pernet_ops); rcu_barrier(); /* Wait for completion of call_rcu()'s */ kmem_cache_destroy(rcv_cache); } module_init(can_init); module_exit(can_exit);