// SPDX-License-Identifier: GPL-2.0-only /* * AMD ALSA SoC Pink Sardine SoundWire DMA Driver * * Copyright 2023 Advanced Micro Devices, Inc. */ #include #include #include #include #include #include #include #include #include #include "acp63.h" #define DRV_NAME "amd_ps_sdw_dma" static struct sdw_dma_ring_buf_reg sdw0_dma_ring_buf_reg[ACP63_SDW0_DMA_MAX_STREAMS] = { {ACP_AUDIO0_TX_DMA_SIZE, ACP_AUDIO0_TX_FIFOADDR, ACP_AUDIO0_TX_FIFOSIZE, ACP_AUDIO0_TX_RINGBUFSIZE, ACP_AUDIO0_TX_RINGBUFADDR, ACP_AUDIO0_TX_INTR_WATERMARK_SIZE, ACP_AUDIO0_TX_LINEARPOSITIONCNTR_LOW, ACP_AUDIO0_TX_LINEARPOSITIONCNTR_HIGH}, {ACP_AUDIO1_TX_DMA_SIZE, ACP_AUDIO1_TX_FIFOADDR, ACP_AUDIO1_TX_FIFOSIZE, ACP_AUDIO1_TX_RINGBUFSIZE, ACP_AUDIO1_TX_RINGBUFADDR, ACP_AUDIO1_TX_INTR_WATERMARK_SIZE, ACP_AUDIO1_TX_LINEARPOSITIONCNTR_LOW, ACP_AUDIO1_TX_LINEARPOSITIONCNTR_HIGH}, {ACP_AUDIO2_TX_DMA_SIZE, ACP_AUDIO2_TX_FIFOADDR, ACP_AUDIO2_TX_FIFOSIZE, ACP_AUDIO2_TX_RINGBUFSIZE, ACP_AUDIO2_TX_RINGBUFADDR, ACP_AUDIO2_TX_INTR_WATERMARK_SIZE, ACP_AUDIO2_TX_LINEARPOSITIONCNTR_LOW, ACP_AUDIO2_TX_LINEARPOSITIONCNTR_HIGH}, {ACP_AUDIO0_RX_DMA_SIZE, ACP_AUDIO0_RX_FIFOADDR, ACP_AUDIO0_RX_FIFOSIZE, ACP_AUDIO0_RX_RINGBUFSIZE, ACP_AUDIO0_RX_RINGBUFADDR, ACP_AUDIO0_RX_INTR_WATERMARK_SIZE, ACP_AUDIO0_RX_LINEARPOSITIONCNTR_LOW, ACP_AUDIO0_RX_LINEARPOSITIONCNTR_HIGH}, {ACP_AUDIO1_RX_DMA_SIZE, ACP_AUDIO1_RX_FIFOADDR, ACP_AUDIO1_RX_FIFOSIZE, ACP_AUDIO1_RX_RINGBUFSIZE, ACP_AUDIO1_RX_RINGBUFADDR, ACP_AUDIO1_RX_INTR_WATERMARK_SIZE, ACP_AUDIO1_RX_LINEARPOSITIONCNTR_LOW, ACP_AUDIO1_RX_LINEARPOSITIONCNTR_HIGH}, {ACP_AUDIO2_RX_DMA_SIZE, ACP_AUDIO2_RX_FIFOADDR, ACP_AUDIO2_RX_FIFOSIZE, ACP_AUDIO2_RX_RINGBUFSIZE, ACP_AUDIO2_RX_RINGBUFADDR, ACP_AUDIO2_RX_INTR_WATERMARK_SIZE, ACP_AUDIO2_RX_LINEARPOSITIONCNTR_LOW, ACP_AUDIO2_RX_LINEARPOSITIONCNTR_HIGH} }; /* * SDW1 instance supports one TX stream and one RX stream. * For TX/RX streams DMA registers programming for SDW1 instance, it uses ACP_P1_AUDIO1 register * set as per hardware register documentation */ static struct sdw_dma_ring_buf_reg sdw1_dma_ring_buf_reg[ACP63_SDW1_DMA_MAX_STREAMS] = { {ACP_P1_AUDIO1_TX_DMA_SIZE, ACP_P1_AUDIO1_TX_FIFOADDR, ACP_P1_AUDIO1_TX_FIFOSIZE, ACP_P1_AUDIO1_TX_RINGBUFSIZE, ACP_P1_AUDIO1_TX_RINGBUFADDR, ACP_P1_AUDIO1_TX_INTR_WATERMARK_SIZE, ACP_P1_AUDIO1_TX_LINEARPOSITIONCNTR_LOW, ACP_P1_AUDIO1_TX_LINEARPOSITIONCNTR_HIGH}, {ACP_P1_AUDIO1_RX_DMA_SIZE, ACP_P1_AUDIO1_RX_FIFOADDR, ACP_P1_AUDIO1_RX_FIFOSIZE, ACP_P1_AUDIO1_RX_RINGBUFSIZE, ACP_P1_AUDIO1_RX_RINGBUFADDR, ACP_P1_AUDIO1_RX_INTR_WATERMARK_SIZE, ACP_P1_AUDIO1_RX_LINEARPOSITIONCNTR_LOW, ACP_P1_AUDIO1_RX_LINEARPOSITIONCNTR_HIGH}, }; static u32 sdw0_dma_enable_reg[ACP63_SDW0_DMA_MAX_STREAMS] = { ACP_SW0_AUDIO0_TX_EN, ACP_SW0_AUDIO1_TX_EN, ACP_SW0_AUDIO2_TX_EN, ACP_SW0_AUDIO0_RX_EN, ACP_SW0_AUDIO1_RX_EN, ACP_SW0_AUDIO2_RX_EN, }; /* * SDW1 instance supports one TX stream and one RX stream. * For TX/RX streams DMA enable register programming for SDW1 instance, * it uses ACP_SW1_AUDIO1_TX_EN and ACP_SW1_AUDIO1_RX_EN registers * as per hardware register documentation. */ static u32 sdw1_dma_enable_reg[ACP63_SDW1_DMA_MAX_STREAMS] = { ACP_SW1_AUDIO1_TX_EN, ACP_SW1_AUDIO1_RX_EN, }; static const struct snd_pcm_hardware acp63_sdw_hardware_playback = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .channels_min = 2, .channels_max = 2, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .buffer_bytes_max = SDW_PLAYBACK_MAX_NUM_PERIODS * SDW_PLAYBACK_MAX_PERIOD_SIZE, .period_bytes_min = SDW_PLAYBACK_MIN_PERIOD_SIZE, .period_bytes_max = SDW_PLAYBACK_MAX_PERIOD_SIZE, .periods_min = SDW_PLAYBACK_MIN_NUM_PERIODS, .periods_max = SDW_PLAYBACK_MAX_NUM_PERIODS, }; static const struct snd_pcm_hardware acp63_sdw_hardware_capture = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE, .channels_min = 2, .channels_max = 2, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .buffer_bytes_max = SDW_CAPTURE_MAX_NUM_PERIODS * SDW_CAPTURE_MAX_PERIOD_SIZE, .period_bytes_min = SDW_CAPTURE_MIN_PERIOD_SIZE, .period_bytes_max = SDW_CAPTURE_MAX_PERIOD_SIZE, .periods_min = SDW_CAPTURE_MIN_NUM_PERIODS, .periods_max = SDW_CAPTURE_MAX_NUM_PERIODS, }; static void acp63_enable_disable_sdw_dma_interrupts(void __iomem *acp_base, bool enable) { u32 ext_intr_cntl, ext_intr_cntl1; u32 irq_mask = ACP_SDW_DMA_IRQ_MASK; u32 irq_mask1 = ACP_P1_SDW_DMA_IRQ_MASK; if (enable) { ext_intr_cntl = readl(acp_base + ACP_EXTERNAL_INTR_CNTL); ext_intr_cntl |= irq_mask; writel(ext_intr_cntl, acp_base + ACP_EXTERNAL_INTR_CNTL); ext_intr_cntl1 = readl(acp_base + ACP_EXTERNAL_INTR_CNTL1); ext_intr_cntl1 |= irq_mask1; writel(ext_intr_cntl1, acp_base + ACP_EXTERNAL_INTR_CNTL1); } else { ext_intr_cntl = readl(acp_base + ACP_EXTERNAL_INTR_CNTL); ext_intr_cntl &= ~irq_mask; writel(ext_intr_cntl, acp_base + ACP_EXTERNAL_INTR_CNTL); ext_intr_cntl1 = readl(acp_base + ACP_EXTERNAL_INTR_CNTL1); ext_intr_cntl1 &= ~irq_mask1; writel(ext_intr_cntl1, acp_base + ACP_EXTERNAL_INTR_CNTL1); } } static void acp63_config_dma(struct acp_sdw_dma_stream *stream, void __iomem *acp_base, u32 stream_id) { u16 page_idx; u32 low, high, val; u32 sdw_dma_pte_offset; dma_addr_t addr; addr = stream->dma_addr; sdw_dma_pte_offset = SDW_PTE_OFFSET(stream->instance); val = sdw_dma_pte_offset + (stream_id * ACP_SDW_PTE_OFFSET); /* Group Enable */ writel(ACP_SDW_SRAM_PTE_OFFSET | BIT(31), acp_base + ACPAXI2AXI_ATU_BASE_ADDR_GRP_2); writel(PAGE_SIZE_4K_ENABLE, acp_base + ACPAXI2AXI_ATU_PAGE_SIZE_GRP_2); for (page_idx = 0; page_idx < stream->num_pages; page_idx++) { /* Load the low address of page int ACP SRAM through SRBM */ low = lower_32_bits(addr); high = upper_32_bits(addr); writel(low, acp_base + ACP_SCRATCH_REG_0 + val); high |= BIT(31); writel(high, acp_base + ACP_SCRATCH_REG_0 + val + 4); val += 8; addr += PAGE_SIZE; } writel(0x1, acp_base + ACPAXI2AXI_ATU_CTRL); } static int acp63_configure_sdw_ringbuffer(void __iomem *acp_base, u32 stream_id, u32 size, u32 manager_instance) { u32 reg_dma_size; u32 reg_fifo_addr; u32 reg_fifo_size; u32 reg_ring_buf_size; u32 reg_ring_buf_addr; u32 sdw_fifo_addr; u32 sdw_fifo_offset; u32 sdw_ring_buf_addr; u32 sdw_ring_buf_size; u32 sdw_mem_window_offset; switch (manager_instance) { case ACP_SDW0: reg_dma_size = sdw0_dma_ring_buf_reg[stream_id].reg_dma_size; reg_fifo_addr = sdw0_dma_ring_buf_reg[stream_id].reg_fifo_addr; reg_fifo_size = sdw0_dma_ring_buf_reg[stream_id].reg_fifo_size; reg_ring_buf_size = sdw0_dma_ring_buf_reg[stream_id].reg_ring_buf_size; reg_ring_buf_addr = sdw0_dma_ring_buf_reg[stream_id].reg_ring_buf_addr; break; case ACP_SDW1: reg_dma_size = sdw1_dma_ring_buf_reg[stream_id].reg_dma_size; reg_fifo_addr = sdw1_dma_ring_buf_reg[stream_id].reg_fifo_addr; reg_fifo_size = sdw1_dma_ring_buf_reg[stream_id].reg_fifo_size; reg_ring_buf_size = sdw1_dma_ring_buf_reg[stream_id].reg_ring_buf_size; reg_ring_buf_addr = sdw1_dma_ring_buf_reg[stream_id].reg_ring_buf_addr; break; default: return -EINVAL; } sdw_fifo_offset = ACP_SDW_FIFO_OFFSET(manager_instance); sdw_mem_window_offset = SDW_MEM_WINDOW_START(manager_instance); sdw_fifo_addr = sdw_fifo_offset + (stream_id * SDW_FIFO_OFFSET); sdw_ring_buf_addr = sdw_mem_window_offset + (stream_id * ACP_SDW_RING_BUFF_ADDR_OFFSET); sdw_ring_buf_size = size; writel(sdw_ring_buf_size, acp_base + reg_ring_buf_size); writel(sdw_ring_buf_addr, acp_base + reg_ring_buf_addr); writel(sdw_fifo_addr, acp_base + reg_fifo_addr); writel(SDW_DMA_SIZE, acp_base + reg_dma_size); writel(SDW_FIFO_SIZE, acp_base + reg_fifo_size); return 0; } static int acp63_sdw_dma_open(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime; struct acp_sdw_dma_stream *stream; struct snd_soc_dai *cpu_dai; struct amd_sdw_manager *amd_manager; struct snd_soc_pcm_runtime *prtd = substream->private_data; int ret; runtime = substream->runtime; cpu_dai = snd_soc_rtd_to_cpu(prtd, 0); amd_manager = snd_soc_dai_get_drvdata(cpu_dai); stream = kzalloc(sizeof(*stream), GFP_KERNEL); if (!stream) return -ENOMEM; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) runtime->hw = acp63_sdw_hardware_playback; else runtime->hw = acp63_sdw_hardware_capture; ret = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (ret < 0) { dev_err(component->dev, "set integer constraint failed\n"); kfree(stream); return ret; } stream->stream_id = cpu_dai->id; stream->instance = amd_manager->instance; runtime->private_data = stream; return ret; } static int acp63_sdw_dma_hw_params(struct snd_soc_component *component, struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct acp_sdw_dma_stream *stream; struct sdw_dma_dev_data *sdw_data; u32 period_bytes; u32 water_mark_size_reg; u32 irq_mask, ext_intr_ctrl; u64 size; u32 stream_id; u32 acp_ext_intr_cntl_reg; int ret; sdw_data = dev_get_drvdata(component->dev); stream = substream->runtime->private_data; if (!stream) return -EINVAL; stream_id = stream->stream_id; switch (stream->instance) { case ACP_SDW0: sdw_data->sdw0_dma_stream[stream_id] = substream; water_mark_size_reg = sdw0_dma_ring_buf_reg[stream_id].water_mark_size_reg; acp_ext_intr_cntl_reg = ACP_EXTERNAL_INTR_CNTL; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) irq_mask = BIT(SDW0_DMA_TX_IRQ_MASK(stream_id)); else irq_mask = BIT(SDW0_DMA_RX_IRQ_MASK(stream_id)); break; case ACP_SDW1: sdw_data->sdw1_dma_stream[stream_id] = substream; acp_ext_intr_cntl_reg = ACP_EXTERNAL_INTR_CNTL1; water_mark_size_reg = sdw1_dma_ring_buf_reg[stream_id].water_mark_size_reg; irq_mask = BIT(SDW1_DMA_IRQ_MASK(stream_id)); break; default: return -EINVAL; } size = params_buffer_bytes(params); period_bytes = params_period_bytes(params); stream->dma_addr = substream->runtime->dma_addr; stream->num_pages = (PAGE_ALIGN(size) >> PAGE_SHIFT); acp63_config_dma(stream, sdw_data->acp_base, stream_id); ret = acp63_configure_sdw_ringbuffer(sdw_data->acp_base, stream_id, size, stream->instance); if (ret) { dev_err(component->dev, "Invalid DMA channel\n"); return -EINVAL; } ext_intr_ctrl = readl(sdw_data->acp_base + acp_ext_intr_cntl_reg); ext_intr_ctrl |= irq_mask; writel(ext_intr_ctrl, sdw_data->acp_base + acp_ext_intr_cntl_reg); writel(period_bytes, sdw_data->acp_base + water_mark_size_reg); return 0; } static u64 acp63_sdw_get_byte_count(struct acp_sdw_dma_stream *stream, void __iomem *acp_base) { union acp_sdw_dma_count byte_count; u32 pos_low_reg, pos_high_reg; byte_count.bytescount = 0; switch (stream->instance) { case ACP_SDW0: pos_low_reg = sdw0_dma_ring_buf_reg[stream->stream_id].pos_low_reg; pos_high_reg = sdw0_dma_ring_buf_reg[stream->stream_id].pos_high_reg; break; case ACP_SDW1: pos_low_reg = sdw1_dma_ring_buf_reg[stream->stream_id].pos_low_reg; pos_high_reg = sdw1_dma_ring_buf_reg[stream->stream_id].pos_high_reg; break; default: goto POINTER_RETURN_BYTES; } if (pos_low_reg) { byte_count.bcount.high = readl(acp_base + pos_high_reg); byte_count.bcount.low = readl(acp_base + pos_low_reg); } POINTER_RETURN_BYTES: return byte_count.bytescount; } static snd_pcm_uframes_t acp63_sdw_dma_pointer(struct snd_soc_component *comp, struct snd_pcm_substream *substream) { struct sdw_dma_dev_data *sdw_data; struct acp_sdw_dma_stream *stream; u32 pos, buffersize; u64 bytescount; sdw_data = dev_get_drvdata(comp->dev); stream = substream->runtime->private_data; buffersize = frames_to_bytes(substream->runtime, substream->runtime->buffer_size); bytescount = acp63_sdw_get_byte_count(stream, sdw_data->acp_base); if (bytescount > stream->bytescount) bytescount -= stream->bytescount; pos = do_div(bytescount, buffersize); return bytes_to_frames(substream->runtime, pos); } static int acp63_sdw_dma_new(struct snd_soc_component *component, struct snd_soc_pcm_runtime *rtd) { struct device *parent = component->dev->parent; snd_pcm_set_managed_buffer_all(rtd->pcm, SNDRV_DMA_TYPE_DEV, parent, SDW_MIN_BUFFER, SDW_MAX_BUFFER); return 0; } static int acp63_sdw_dma_close(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct sdw_dma_dev_data *sdw_data; struct acp_sdw_dma_stream *stream; sdw_data = dev_get_drvdata(component->dev); stream = substream->runtime->private_data; if (!stream) return -EINVAL; switch (stream->instance) { case ACP_SDW0: sdw_data->sdw0_dma_stream[stream->stream_id] = NULL; break; case ACP_SDW1: sdw_data->sdw1_dma_stream[stream->stream_id] = NULL; break; default: return -EINVAL; } kfree(stream); return 0; } static int acp63_sdw_dma_enable(struct snd_pcm_substream *substream, void __iomem *acp_base, bool sdw_dma_enable) { struct acp_sdw_dma_stream *stream; u32 stream_id; u32 sdw_dma_en_reg; u32 sdw_dma_en_stat_reg; u32 sdw_dma_stat; u32 dma_enable; stream = substream->runtime->private_data; stream_id = stream->stream_id; switch (stream->instance) { case ACP_SDW0: sdw_dma_en_reg = sdw0_dma_enable_reg[stream_id]; break; case ACP_SDW1: sdw_dma_en_reg = sdw1_dma_enable_reg[stream_id]; break; default: return -EINVAL; } sdw_dma_en_stat_reg = sdw_dma_en_reg + 4; dma_enable = sdw_dma_enable; writel(dma_enable, acp_base + sdw_dma_en_reg); return readl_poll_timeout(acp_base + sdw_dma_en_stat_reg, sdw_dma_stat, (sdw_dma_stat == dma_enable), ACP_DELAY_US, ACP_COUNTER); } static int acp63_sdw_dma_trigger(struct snd_soc_component *comp, struct snd_pcm_substream *substream, int cmd) { struct sdw_dma_dev_data *sdw_data; int ret; sdw_data = dev_get_drvdata(comp->dev); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: ret = acp63_sdw_dma_enable(substream, sdw_data->acp_base, true); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: ret = acp63_sdw_dma_enable(substream, sdw_data->acp_base, false); break; default: ret = -EINVAL; } if (ret) dev_err(comp->dev, "trigger %d failed: %d", cmd, ret); return ret; } static const struct snd_soc_component_driver acp63_sdw_component = { .name = DRV_NAME, .open = acp63_sdw_dma_open, .close = acp63_sdw_dma_close, .hw_params = acp63_sdw_dma_hw_params, .trigger = acp63_sdw_dma_trigger, .pointer = acp63_sdw_dma_pointer, .pcm_construct = acp63_sdw_dma_new, }; static int acp63_sdw_platform_probe(struct platform_device *pdev) { struct resource *res; struct sdw_dma_dev_data *sdw_data; struct acp63_dev_data *acp_data; struct device *parent; int status; parent = pdev->dev.parent; acp_data = dev_get_drvdata(parent); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "IORESOURCE_MEM FAILED\n"); return -ENODEV; } sdw_data = devm_kzalloc(&pdev->dev, sizeof(*sdw_data), GFP_KERNEL); if (!sdw_data) return -ENOMEM; sdw_data->acp_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!sdw_data->acp_base) return -ENOMEM; sdw_data->acp_lock = &acp_data->acp_lock; dev_set_drvdata(&pdev->dev, sdw_data); status = devm_snd_soc_register_component(&pdev->dev, &acp63_sdw_component, NULL, 0); if (status) { dev_err(&pdev->dev, "Fail to register sdw dma component\n"); return status; } pm_runtime_set_autosuspend_delay(&pdev->dev, ACP_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); return 0; } static void acp63_sdw_platform_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); } static int acp_restore_sdw_dma_config(struct sdw_dma_dev_data *sdw_data) { struct acp_sdw_dma_stream *stream; struct snd_pcm_substream *substream; struct snd_pcm_runtime *runtime; u32 period_bytes, buf_size, water_mark_size_reg; u32 stream_count; int index, instance, ret; for (instance = 0; instance < AMD_SDW_MAX_MANAGERS; instance++) { if (instance == ACP_SDW0) stream_count = ACP63_SDW0_DMA_MAX_STREAMS; else stream_count = ACP63_SDW1_DMA_MAX_STREAMS; for (index = 0; index < stream_count; index++) { if (instance == ACP_SDW0) { substream = sdw_data->sdw0_dma_stream[index]; water_mark_size_reg = sdw0_dma_ring_buf_reg[index].water_mark_size_reg; } else { substream = sdw_data->sdw1_dma_stream[index]; water_mark_size_reg = sdw1_dma_ring_buf_reg[index].water_mark_size_reg; } if (substream && substream->runtime) { runtime = substream->runtime; stream = runtime->private_data; period_bytes = frames_to_bytes(runtime, runtime->period_size); buf_size = frames_to_bytes(runtime, runtime->buffer_size); acp63_config_dma(stream, sdw_data->acp_base, index); ret = acp63_configure_sdw_ringbuffer(sdw_data->acp_base, index, buf_size, instance); if (ret) return ret; writel(period_bytes, sdw_data->acp_base + water_mark_size_reg); } } } acp63_enable_disable_sdw_dma_interrupts(sdw_data->acp_base, true); return 0; } static int __maybe_unused acp63_sdw_pcm_resume(struct device *dev) { struct sdw_dma_dev_data *sdw_data; sdw_data = dev_get_drvdata(dev); return acp_restore_sdw_dma_config(sdw_data); } static const struct dev_pm_ops acp63_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(NULL, acp63_sdw_pcm_resume) }; static struct platform_driver acp63_sdw_dma_driver = { .probe = acp63_sdw_platform_probe, .remove_new = acp63_sdw_platform_remove, .driver = { .name = "amd_ps_sdw_dma", .pm = &acp63_pm_ops, }, }; module_platform_driver(acp63_sdw_dma_driver); MODULE_AUTHOR("Vijendar.Mukunda@amd.com"); MODULE_DESCRIPTION("AMD ACP6.3 PS SDW DMA Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRV_NAME);