// SPDX-License-Identifier: GPL-2.0 // // Helper routines for R-Car sound ADG. // // Copyright (C) 2013 Kuninori Morimoto #include #include #include "rsnd.h" #define CLKA 0 #define CLKB 1 #define CLKC 2 #define CLKI 3 #define CLKINMAX 4 #define CLKOUT 0 #define CLKOUT1 1 #define CLKOUT2 2 #define CLKOUT3 3 #define CLKOUTMAX 4 #define BRRx_MASK(x) (0x3FF & x) static struct rsnd_mod_ops adg_ops = { .name = "adg", }; #define ADG_HZ_441 0 #define ADG_HZ_48 1 #define ADG_HZ_SIZE 2 struct rsnd_adg { struct clk *clkin[CLKINMAX]; struct clk *clkout[CLKOUTMAX]; struct clk *null_clk; struct clk_onecell_data onecell; struct rsnd_mod mod; int clkin_rate[CLKINMAX]; int clkin_size; int clkout_size; u32 ckr; u32 brga; u32 brgb; int brg_rate[ADG_HZ_SIZE]; /* BRGA / BRGB */ }; #define for_each_rsnd_clkin(pos, adg, i) \ for (i = 0; \ (i < adg->clkin_size) && \ ((pos) = adg->clkin[i]); \ i++) #define for_each_rsnd_clkout(pos, adg, i) \ for (i = 0; \ (i < adg->clkout_size) && \ ((pos) = adg->clkout[i]); \ i++) #define rsnd_priv_to_adg(priv) ((struct rsnd_adg *)(priv)->adg) static const char * const clkin_name_gen4[] = { [CLKA] = "clkin", }; static const char * const clkin_name_gen2[] = { [CLKA] = "clk_a", [CLKB] = "clk_b", [CLKC] = "clk_c", [CLKI] = "clk_i", }; static const char * const clkout_name_gen2[] = { [CLKOUT] = "audio_clkout", [CLKOUT1] = "audio_clkout1", [CLKOUT2] = "audio_clkout2", [CLKOUT3] = "audio_clkout3", }; static u32 rsnd_adg_calculate_brgx(unsigned long div) { int i; if (!div) return 0; for (i = 3; i >= 0; i--) { int ratio = 2 << (i * 2); if (0 == (div % ratio)) return (u32)((i << 8) | ((div / ratio) - 1)); } return ~0; } static u32 rsnd_adg_ssi_ws_timing_gen2(struct rsnd_dai_stream *io) { struct rsnd_mod *ssi_mod = rsnd_io_to_mod_ssi(io); int id = rsnd_mod_id(ssi_mod); int ws = id; if (rsnd_ssi_is_pin_sharing(io)) { switch (id) { case 1: case 2: case 9: ws = 0; break; case 4: ws = 3; break; case 8: ws = 7; break; } } else { /* * SSI8 is not connected to ADG. * Thus SSI9 is using ws = 8 */ if (id == 9) ws = 8; } return (0x6 + ws) << 8; } static void __rsnd_adg_get_timesel_ratio(struct rsnd_priv *priv, struct rsnd_dai_stream *io, unsigned int target_rate, unsigned int *target_val, unsigned int *target_en) { struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct device *dev = rsnd_priv_to_dev(priv); int sel; unsigned int val, en; unsigned int min, diff; unsigned int sel_rate[] = { adg->clkin_rate[CLKA], /* 0000: CLKA */ adg->clkin_rate[CLKB], /* 0001: CLKB */ adg->clkin_rate[CLKC], /* 0010: CLKC */ adg->brg_rate[ADG_HZ_441], /* 0011: BRGA */ adg->brg_rate[ADG_HZ_48], /* 0100: BRGB */ }; min = ~0; val = 0; en = 0; for (sel = 0; sel < ARRAY_SIZE(sel_rate); sel++) { int idx = 0; int step = 2; int div; if (!sel_rate[sel]) continue; for (div = 2; div <= 98304; div += step) { diff = abs(target_rate - sel_rate[sel] / div); if (min > diff) { val = (sel << 8) | idx; min = diff; en = 1 << (sel + 1); /* fixme */ } /* * step of 0_0000 / 0_0001 / 0_1101 * are out of order */ if ((idx > 2) && (idx % 2)) step *= 2; if (idx == 0x1c) { div += step; step *= 2; } idx++; } } if (min == ~0) { dev_err(dev, "no Input clock\n"); return; } *target_val = val; if (target_en) *target_en = en; } static void rsnd_adg_get_timesel_ratio(struct rsnd_priv *priv, struct rsnd_dai_stream *io, unsigned int in_rate, unsigned int out_rate, u32 *in, u32 *out, u32 *en) { struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); unsigned int target_rate; u32 *target_val; u32 _in; u32 _out; u32 _en; /* default = SSI WS */ _in = _out = rsnd_adg_ssi_ws_timing_gen2(io); target_rate = 0; target_val = NULL; _en = 0; if (runtime->rate != in_rate) { target_rate = out_rate; target_val = &_out; } else if (runtime->rate != out_rate) { target_rate = in_rate; target_val = &_in; } if (target_rate) __rsnd_adg_get_timesel_ratio(priv, io, target_rate, target_val, &_en); if (in) *in = _in; if (out) *out = _out; if (en) *en = _en; } int rsnd_adg_set_cmd_timsel_gen2(struct rsnd_mod *cmd_mod, struct rsnd_dai_stream *io) { struct rsnd_priv *priv = rsnd_mod_to_priv(cmd_mod); struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct rsnd_mod *adg_mod = rsnd_mod_get(adg); int id = rsnd_mod_id(cmd_mod); int shift = (id % 2) ? 16 : 0; u32 mask, val; rsnd_adg_get_timesel_ratio(priv, io, rsnd_src_get_in_rate(priv, io), rsnd_src_get_out_rate(priv, io), NULL, &val, NULL); val = val << shift; mask = 0x0f1f << shift; rsnd_mod_bset(adg_mod, CMDOUT_TIMSEL, mask, val); return 0; } int rsnd_adg_set_src_timesel_gen2(struct rsnd_mod *src_mod, struct rsnd_dai_stream *io, unsigned int in_rate, unsigned int out_rate) { struct rsnd_priv *priv = rsnd_mod_to_priv(src_mod); struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct rsnd_mod *adg_mod = rsnd_mod_get(adg); u32 in, out; u32 mask, en; int id = rsnd_mod_id(src_mod); int shift = (id % 2) ? 16 : 0; rsnd_mod_confirm_src(src_mod); rsnd_adg_get_timesel_ratio(priv, io, in_rate, out_rate, &in, &out, &en); in = in << shift; out = out << shift; mask = 0x0f1f << shift; rsnd_mod_bset(adg_mod, SRCIN_TIMSEL(id / 2), mask, in); rsnd_mod_bset(adg_mod, SRCOUT_TIMSEL(id / 2), mask, out); if (en) rsnd_mod_bset(adg_mod, DIV_EN, en, en); return 0; } static void rsnd_adg_set_ssi_clk(struct rsnd_mod *ssi_mod, u32 val) { struct rsnd_priv *priv = rsnd_mod_to_priv(ssi_mod); struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct rsnd_mod *adg_mod = rsnd_mod_get(adg); struct device *dev = rsnd_priv_to_dev(priv); int id = rsnd_mod_id(ssi_mod); int shift = (id % 4) * 8; u32 mask = 0xFF << shift; rsnd_mod_confirm_ssi(ssi_mod); val = val << shift; /* * SSI 8 is not connected to ADG. * it works with SSI 7 */ if (id == 8) return; rsnd_mod_bset(adg_mod, AUDIO_CLK_SEL(id / 4), mask, val); dev_dbg(dev, "AUDIO_CLK_SEL is 0x%x\n", val); } int rsnd_adg_clk_query(struct rsnd_priv *priv, unsigned int rate) { struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct clk *clk; int i; int sel_table[] = { [CLKA] = 0x1, [CLKB] = 0x2, [CLKC] = 0x3, [CLKI] = 0x0, }; /* * find suitable clock from * AUDIO_CLKA/AUDIO_CLKB/AUDIO_CLKC/AUDIO_CLKI. */ for_each_rsnd_clkin(clk, adg, i) if (rate == adg->clkin_rate[i]) return sel_table[i]; /* * find divided clock from BRGA/BRGB */ if (rate == adg->brg_rate[ADG_HZ_441]) return 0x10; if (rate == adg->brg_rate[ADG_HZ_48]) return 0x20; return -EIO; } int rsnd_adg_ssi_clk_stop(struct rsnd_mod *ssi_mod) { rsnd_adg_set_ssi_clk(ssi_mod, 0); return 0; } int rsnd_adg_ssi_clk_try_start(struct rsnd_mod *ssi_mod, unsigned int rate) { struct rsnd_priv *priv = rsnd_mod_to_priv(ssi_mod); struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct device *dev = rsnd_priv_to_dev(priv); struct rsnd_mod *adg_mod = rsnd_mod_get(adg); int data; u32 ckr = 0; data = rsnd_adg_clk_query(priv, rate); if (data < 0) return data; rsnd_adg_set_ssi_clk(ssi_mod, data); if (0 == (rate % 8000)) ckr = 0x80000000; /* BRGB output = 48kHz */ rsnd_mod_bset(adg_mod, BRGCKR, 0x80770000, adg->ckr | ckr); dev_dbg(dev, "CLKOUT is based on BRG%c (= %dHz)\n", (ckr) ? 'B' : 'A', (ckr) ? adg->brg_rate[ADG_HZ_48] : adg->brg_rate[ADG_HZ_441]); return 0; } void rsnd_adg_clk_control(struct rsnd_priv *priv, int enable) { struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct rsnd_mod *adg_mod = rsnd_mod_get(adg); struct clk *clk; int i; if (enable) { rsnd_mod_bset(adg_mod, BRGCKR, 0x80770000, adg->ckr); rsnd_mod_write(adg_mod, BRRA, adg->brga); rsnd_mod_write(adg_mod, BRRB, adg->brgb); } for_each_rsnd_clkin(clk, adg, i) { if (enable) { clk_prepare_enable(clk); /* * We shouldn't use clk_get_rate() under * atomic context. Let's keep it when * rsnd_adg_clk_enable() was called */ adg->clkin_rate[i] = clk_get_rate(clk); } else { clk_disable_unprepare(clk); } } } static struct clk *rsnd_adg_create_null_clk(struct rsnd_priv *priv, const char * const name, const char *parent) { struct device *dev = rsnd_priv_to_dev(priv); struct clk *clk; clk = clk_register_fixed_rate(dev, name, parent, 0, 0); if (IS_ERR_OR_NULL(clk)) { dev_err(dev, "create null clk error\n"); return ERR_CAST(clk); } return clk; } static struct clk *rsnd_adg_null_clk_get(struct rsnd_priv *priv) { struct rsnd_adg *adg = priv->adg; if (!adg->null_clk) { static const char * const name = "rsnd_adg_null"; adg->null_clk = rsnd_adg_create_null_clk(priv, name, NULL); } return adg->null_clk; } static void rsnd_adg_null_clk_clean(struct rsnd_priv *priv) { struct rsnd_adg *adg = priv->adg; if (adg->null_clk) clk_unregister_fixed_rate(adg->null_clk); } static int rsnd_adg_get_clkin(struct rsnd_priv *priv) { struct rsnd_adg *adg = priv->adg; struct device *dev = rsnd_priv_to_dev(priv); struct clk *clk; const char * const *clkin_name; int clkin_size; int i; clkin_name = clkin_name_gen2; clkin_size = ARRAY_SIZE(clkin_name_gen2); if (rsnd_is_gen4(priv)) { clkin_name = clkin_name_gen4; clkin_size = ARRAY_SIZE(clkin_name_gen4); } for (i = 0; i < clkin_size; i++) { clk = devm_clk_get(dev, clkin_name[i]); if (IS_ERR_OR_NULL(clk)) clk = rsnd_adg_null_clk_get(priv); if (IS_ERR_OR_NULL(clk)) goto err; adg->clkin[i] = clk; } adg->clkin_size = clkin_size; return 0; err: dev_err(dev, "adg clock IN get failed\n"); rsnd_adg_null_clk_clean(priv); return -EIO; } static void rsnd_adg_unregister_clkout(struct rsnd_priv *priv) { struct rsnd_adg *adg = priv->adg; struct clk *clk; int i; for_each_rsnd_clkout(clk, adg, i) clk_unregister_fixed_rate(clk); } static int rsnd_adg_get_clkout(struct rsnd_priv *priv) { struct rsnd_adg *adg = priv->adg; struct clk *clk; struct device *dev = rsnd_priv_to_dev(priv); struct device_node *np = dev->of_node; struct property *prop; u32 ckr, brgx, brga, brgb; u32 req_rate[ADG_HZ_SIZE] = {}; uint32_t count = 0; unsigned long req_Hz[ADG_HZ_SIZE]; int clkout_size; int i, req_size; int approximate = 0; const char *parent_clk_name = NULL; const char * const *clkout_name; int brg_table[] = { [CLKA] = 0x0, [CLKB] = 0x1, [CLKC] = 0x4, [CLKI] = 0x2, }; ckr = 0; brga = 0xff; /* default */ brgb = 0xff; /* default */ /* * ADG supports BRRA/BRRB output only * this means all clkout0/1/2/3 will be same rate */ prop = of_find_property(np, "clock-frequency", NULL); if (!prop) goto rsnd_adg_get_clkout_end; req_size = prop->length / sizeof(u32); if (req_size > ADG_HZ_SIZE) { dev_err(dev, "too many clock-frequency\n"); return -EINVAL; } of_property_read_u32_array(np, "clock-frequency", req_rate, req_size); req_Hz[ADG_HZ_48] = 0; req_Hz[ADG_HZ_441] = 0; for (i = 0; i < req_size; i++) { if (0 == (req_rate[i] % 44100)) req_Hz[ADG_HZ_441] = req_rate[i]; if (0 == (req_rate[i] % 48000)) req_Hz[ADG_HZ_48] = req_rate[i]; } /* * This driver is assuming that AUDIO_CLKA/AUDIO_CLKB/AUDIO_CLKC * have 44.1kHz or 48kHz base clocks for now. * * SSI itself can divide parent clock by 1/1 - 1/16 * see * rsnd_adg_ssi_clk_try_start() * rsnd_ssi_master_clk_start() */ /* * [APPROXIMATE] * * clk_i (internal clock) can't create accurate rate, it will be approximate rate. * * * * clk_i needs x2 of required maximum rate. * see * - Minimum division of BRRA/BRRB * - rsnd_ssi_clk_query() * * Sample Settings for TDM 8ch, 32bit width * * 8(ch) x 32(bit) x 44100(Hz) x 2 = 22579200 * 8(ch) x 32(bit) x 48000(Hz) x 2 = 24576000 * * clock-frequency = <22579200 24576000>; */ for_each_rsnd_clkin(clk, adg, i) { u32 rate, div; rate = clk_get_rate(clk); if (0 == rate) /* not used */ continue; /* BRGA */ if (i == CLKI) /* see [APPROXIMATE] */ rate = (clk_get_rate(clk) / req_Hz[ADG_HZ_441]) * req_Hz[ADG_HZ_441]; if (!adg->brg_rate[ADG_HZ_441] && req_Hz[ADG_HZ_441] && (0 == rate % 44100)) { div = rate / req_Hz[ADG_HZ_441]; brgx = rsnd_adg_calculate_brgx(div); if (BRRx_MASK(brgx) == brgx) { brga = brgx; adg->brg_rate[ADG_HZ_441] = rate / div; ckr |= brg_table[i] << 20; if (req_Hz[ADG_HZ_441]) parent_clk_name = __clk_get_name(clk); if (i == CLKI) approximate = 1; } } /* BRGB */ if (i == CLKI) /* see [APPROXIMATE] */ rate = (clk_get_rate(clk) / req_Hz[ADG_HZ_48]) * req_Hz[ADG_HZ_48]; if (!adg->brg_rate[ADG_HZ_48] && req_Hz[ADG_HZ_48] && (0 == rate % 48000)) { div = rate / req_Hz[ADG_HZ_48]; brgx = rsnd_adg_calculate_brgx(div); if (BRRx_MASK(brgx) == brgx) { brgb = brgx; adg->brg_rate[ADG_HZ_48] = rate / div; ckr |= brg_table[i] << 16; if (req_Hz[ADG_HZ_48]) parent_clk_name = __clk_get_name(clk); if (i == CLKI) approximate = 1; } } } if (!(adg->brg_rate[ADG_HZ_48] && req_Hz[ADG_HZ_48]) && !(adg->brg_rate[ADG_HZ_441] && req_Hz[ADG_HZ_441])) goto rsnd_adg_get_clkout_end; if (approximate) dev_info(dev, "It uses CLK_I as approximate rate"); clkout_name = clkout_name_gen2; clkout_size = ARRAY_SIZE(clkout_name_gen2); if (rsnd_is_gen4(priv)) clkout_size = 1; /* reuse clkout_name_gen2[] */ /* * ADG supports BRRA/BRRB output only. * this means all clkout0/1/2/3 will be * same rate */ of_property_read_u32(np, "#clock-cells", &count); /* * for clkout */ if (!count) { clk = clk_register_fixed_rate(dev, clkout_name[CLKOUT], parent_clk_name, 0, req_rate[0]); if (IS_ERR_OR_NULL(clk)) goto err; adg->clkout[CLKOUT] = clk; adg->clkout_size = 1; of_clk_add_provider(np, of_clk_src_simple_get, clk); } /* * for clkout0/1/2/3 */ else { for (i = 0; i < clkout_size; i++) { clk = clk_register_fixed_rate(dev, clkout_name[i], parent_clk_name, 0, req_rate[0]); if (IS_ERR_OR_NULL(clk)) goto err; adg->clkout[i] = clk; } adg->onecell.clks = adg->clkout; adg->onecell.clk_num = clkout_size; adg->clkout_size = clkout_size; of_clk_add_provider(np, of_clk_src_onecell_get, &adg->onecell); } rsnd_adg_get_clkout_end: adg->ckr = ckr; adg->brga = brga; adg->brgb = brgb; return 0; err: dev_err(dev, "adg clock OUT get failed\n"); rsnd_adg_unregister_clkout(priv); return -EIO; } #if defined(DEBUG) || defined(CONFIG_DEBUG_FS) __printf(3, 4) static void dbg_msg(struct device *dev, struct seq_file *m, const char *fmt, ...) { char msg[128]; va_list args; va_start(args, fmt); vsnprintf(msg, sizeof(msg), fmt, args); va_end(args); if (m) seq_puts(m, msg); else dev_dbg(dev, "%s", msg); } void rsnd_adg_clk_dbg_info(struct rsnd_priv *priv, struct seq_file *m) { struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct device *dev = rsnd_priv_to_dev(priv); struct clk *clk; int i; for_each_rsnd_clkin(clk, adg, i) dbg_msg(dev, m, "%-18s : %pa : %ld\n", __clk_get_name(clk), clk, clk_get_rate(clk)); dbg_msg(dev, m, "BRGCKR = 0x%08x, BRRA/BRRB = 0x%x/0x%x\n", adg->ckr, adg->brga, adg->brgb); dbg_msg(dev, m, "BRGA (for 44100 base) = %d\n", adg->brg_rate[ADG_HZ_441]); dbg_msg(dev, m, "BRGB (for 48000 base) = %d\n", adg->brg_rate[ADG_HZ_48]); /* * Actual CLKOUT will be exchanged in rsnd_adg_ssi_clk_try_start() * by BRGCKR::BRGCKR_31 */ for_each_rsnd_clkout(clk, adg, i) dbg_msg(dev, m, "%-18s : %pa : %ld\n", __clk_get_name(clk), clk, clk_get_rate(clk)); } #else #define rsnd_adg_clk_dbg_info(priv, m) #endif int rsnd_adg_probe(struct rsnd_priv *priv) { struct rsnd_adg *adg; struct device *dev = rsnd_priv_to_dev(priv); int ret; adg = devm_kzalloc(dev, sizeof(*adg), GFP_KERNEL); if (!adg) return -ENOMEM; ret = rsnd_mod_init(priv, &adg->mod, &adg_ops, NULL, 0, 0); if (ret) return ret; priv->adg = adg; ret = rsnd_adg_get_clkin(priv); if (ret) return ret; ret = rsnd_adg_get_clkout(priv); if (ret) return ret; rsnd_adg_clk_enable(priv); rsnd_adg_clk_dbg_info(priv, NULL); return 0; } void rsnd_adg_remove(struct rsnd_priv *priv) { struct device *dev = rsnd_priv_to_dev(priv); struct device_node *np = dev->of_node; rsnd_adg_unregister_clkout(priv); of_clk_del_provider(np); rsnd_adg_clk_disable(priv); /* It should be called after rsnd_adg_clk_disable() */ rsnd_adg_null_clk_clean(priv); }