/* * Renesas R-Car SSIU/SSI support * * Copyright (C) 2013 Renesas Solutions Corp. * Kuninori Morimoto * * Based on fsi.c * Kuninori Morimoto * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include "rsnd.h" #define RSND_SSI_NAME_SIZE 16 /* * SSICR */ #define FORCE (1 << 31) /* Fixed */ #define DMEN (1 << 28) /* DMA Enable */ #define UIEN (1 << 27) /* Underflow Interrupt Enable */ #define OIEN (1 << 26) /* Overflow Interrupt Enable */ #define IIEN (1 << 25) /* Idle Mode Interrupt Enable */ #define DIEN (1 << 24) /* Data Interrupt Enable */ #define CHNL_4 (1 << 22) /* Channels */ #define CHNL_6 (2 << 22) /* Channels */ #define CHNL_8 (3 << 22) /* Channels */ #define DWL_8 (0 << 19) /* Data Word Length */ #define DWL_16 (1 << 19) /* Data Word Length */ #define DWL_18 (2 << 19) /* Data Word Length */ #define DWL_20 (3 << 19) /* Data Word Length */ #define DWL_22 (4 << 19) /* Data Word Length */ #define DWL_24 (5 << 19) /* Data Word Length */ #define DWL_32 (6 << 19) /* Data Word Length */ #define SWL_32 (3 << 16) /* R/W System Word Length */ #define SCKD (1 << 15) /* Serial Bit Clock Direction */ #define SWSD (1 << 14) /* Serial WS Direction */ #define SCKP (1 << 13) /* Serial Bit Clock Polarity */ #define SWSP (1 << 12) /* Serial WS Polarity */ #define SDTA (1 << 10) /* Serial Data Alignment */ #define PDTA (1 << 9) /* Parallel Data Alignment */ #define DEL (1 << 8) /* Serial Data Delay */ #define CKDV(v) (v << 4) /* Serial Clock Division Ratio */ #define TRMD (1 << 1) /* Transmit/Receive Mode Select */ #define EN (1 << 0) /* SSI Module Enable */ /* * SSISR */ #define UIRQ (1 << 27) /* Underflow Error Interrupt Status */ #define OIRQ (1 << 26) /* Overflow Error Interrupt Status */ #define IIRQ (1 << 25) /* Idle Mode Interrupt Status */ #define DIRQ (1 << 24) /* Data Interrupt Status Flag */ /* * SSIWSR */ #define CONT (1 << 8) /* WS Continue Function */ #define WS_MODE (1 << 0) /* WS Mode */ #define SSI_NAME "ssi" struct rsnd_ssi { struct rsnd_mod mod; struct rsnd_mod *dma; u32 flags; u32 cr_own; u32 cr_clk; u32 cr_mode; u32 cr_en; u32 wsr; int chan; int rate; int irq; unsigned int usrcnt; int byte_pos; int period_pos; int byte_per_period; int next_period_byte; }; /* flags */ #define RSND_SSI_CLK_PIN_SHARE (1 << 0) #define RSND_SSI_NO_BUSIF (1 << 1) /* SSI+DMA without BUSIF */ #define RSND_SSI_HDMI0 (1 << 2) /* for HDMI0 */ #define RSND_SSI_HDMI1 (1 << 3) /* for HDMI1 */ #define RSND_SSI_PROBED (1 << 4) #define for_each_rsnd_ssi(pos, priv, i) \ for (i = 0; \ (i < rsnd_ssi_nr(priv)) && \ ((pos) = ((struct rsnd_ssi *)(priv)->ssi + i)); \ i++) #define rsnd_ssi_get(priv, id) ((struct rsnd_ssi *)(priv->ssi) + id) #define rsnd_ssi_nr(priv) ((priv)->ssi_nr) #define rsnd_mod_to_ssi(_mod) container_of((_mod), struct rsnd_ssi, mod) #define rsnd_ssi_flags_has(p, f) ((p)->flags & f) #define rsnd_ssi_flags_set(p, f) ((p)->flags |= f) #define rsnd_ssi_flags_del(p, f) ((p)->flags = ((p)->flags & ~f)) #define rsnd_ssi_is_parent(ssi, io) ((ssi) == rsnd_io_to_mod_ssip(io)) #define rsnd_ssi_is_multi_slave(mod, io) \ (rsnd_ssi_multi_slaves(io) & (1 << rsnd_mod_id(mod))) #define rsnd_ssi_is_run_mods(mod, io) \ (rsnd_ssi_run_mods(io) & (1 << rsnd_mod_id(mod))) #define rsnd_ssi_can_output_clk(mod) (!__rsnd_ssi_is_pin_sharing(mod)) int rsnd_ssi_hdmi_port(struct rsnd_dai_stream *io) { struct rsnd_mod *mod = rsnd_io_to_mod_ssi(io); struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); if (rsnd_ssi_flags_has(ssi, RSND_SSI_HDMI0)) return RSND_SSI_HDMI_PORT0; if (rsnd_ssi_flags_has(ssi, RSND_SSI_HDMI1)) return RSND_SSI_HDMI_PORT1; return 0; } int rsnd_ssi_use_busif(struct rsnd_dai_stream *io) { struct rsnd_mod *mod = rsnd_io_to_mod_ssi(io); struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); int use_busif = 0; if (!rsnd_ssi_is_dma_mode(mod)) return 0; if (!(rsnd_ssi_flags_has(ssi, RSND_SSI_NO_BUSIF))) use_busif = 1; if (rsnd_io_to_mod_src(io)) use_busif = 1; return use_busif; } static void rsnd_ssi_status_clear(struct rsnd_mod *mod) { rsnd_mod_write(mod, SSISR, 0); } static u32 rsnd_ssi_status_get(struct rsnd_mod *mod) { return rsnd_mod_read(mod, SSISR); } static void rsnd_ssi_status_check(struct rsnd_mod *mod, u32 bit) { struct rsnd_priv *priv = rsnd_mod_to_priv(mod); struct device *dev = rsnd_priv_to_dev(priv); u32 status; int i; for (i = 0; i < 1024; i++) { status = rsnd_ssi_status_get(mod); if (status & bit) return; udelay(50); } dev_warn(dev, "%s[%d] status check failed\n", rsnd_mod_name(mod), rsnd_mod_id(mod)); } static u32 rsnd_ssi_multi_slaves(struct rsnd_dai_stream *io) { struct rsnd_mod *mod; enum rsnd_mod_type types[] = { RSND_MOD_SSIM1, RSND_MOD_SSIM2, RSND_MOD_SSIM3, }; int i, mask; mask = 0; for (i = 0; i < ARRAY_SIZE(types); i++) { mod = rsnd_io_to_mod(io, types[i]); if (!mod) continue; mask |= 1 << rsnd_mod_id(mod); } return mask; } static u32 rsnd_ssi_run_mods(struct rsnd_dai_stream *io) { struct rsnd_mod *ssi_mod = rsnd_io_to_mod_ssi(io); struct rsnd_mod *ssi_parent_mod = rsnd_io_to_mod_ssip(io); u32 mods; mods = rsnd_ssi_multi_slaves_runtime(io) | 1 << rsnd_mod_id(ssi_mod); if (ssi_parent_mod) mods |= 1 << rsnd_mod_id(ssi_parent_mod); return mods; } u32 rsnd_ssi_multi_slaves_runtime(struct rsnd_dai_stream *io) { if (rsnd_runtime_is_ssi_multi(io)) return rsnd_ssi_multi_slaves(io); return 0; } unsigned int rsnd_ssi_clk_query(struct rsnd_priv *priv, int param1, int param2, int *idx) { int ssi_clk_mul_table[] = { 1, 2, 4, 8, 16, 6, 12, }; int j, ret; unsigned int main_rate; for (j = 0; j < ARRAY_SIZE(ssi_clk_mul_table); j++) { /* * It will set SSIWSR.CONT here, but SSICR.CKDV = 000 * with it is not allowed. (SSIWSR.WS_MODE with * SSICR.CKDV = 000 is not allowed either). * Skip it. See SSICR.CKDV */ if (j == 0) continue; /* * this driver is assuming that * system word is 32bit x chan * see rsnd_ssi_init() */ main_rate = 32 * param1 * param2 * ssi_clk_mul_table[j]; ret = rsnd_adg_clk_query(priv, main_rate); if (ret < 0) continue; if (idx) *idx = j; return main_rate; } return 0; } static int rsnd_ssi_master_clk_start(struct rsnd_mod *mod, struct rsnd_dai_stream *io) { struct rsnd_priv *priv = rsnd_io_to_priv(io); struct device *dev = rsnd_priv_to_dev(priv); struct rsnd_dai *rdai = rsnd_io_to_rdai(io); struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); int chan = rsnd_runtime_channel_for_ssi(io); int idx, ret; unsigned int main_rate; unsigned int rate = rsnd_io_is_play(io) ? rsnd_src_get_out_rate(priv, io) : rsnd_src_get_in_rate(priv, io); if (!rsnd_rdai_is_clk_master(rdai)) return 0; if (!rsnd_ssi_can_output_clk(mod)) return 0; if (rsnd_ssi_is_multi_slave(mod, io)) return 0; if (ssi->rate) { if (ssi->rate != rate) { dev_err(dev, "SSI parent/child should use same rate\n"); return -EINVAL; } return 0; } main_rate = rsnd_ssi_clk_query(priv, rate, chan, &idx); if (!main_rate) { dev_err(dev, "unsupported clock rate\n"); return -EIO; } ret = rsnd_adg_ssi_clk_try_start(mod, main_rate); if (ret < 0) return ret; /* * SSI clock will be output contiguously * by below settings. * This means, rsnd_ssi_master_clk_start() * and rsnd_ssi_register_setup() are necessary * for SSI parent * * SSICR : FORCE, SCKD, SWSD * SSIWSR : CONT */ ssi->cr_clk = FORCE | SWL_32 | SCKD | SWSD | CKDV(idx); ssi->wsr = CONT; ssi->rate = rate; dev_dbg(dev, "%s[%d] outputs %u Hz\n", rsnd_mod_name(mod), rsnd_mod_id(mod), rate); return 0; } static void rsnd_ssi_master_clk_stop(struct rsnd_mod *mod, struct rsnd_dai_stream *io) { struct rsnd_dai *rdai = rsnd_io_to_rdai(io); struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); if (!rsnd_rdai_is_clk_master(rdai)) return; if (!rsnd_ssi_can_output_clk(mod)) return; if (ssi->usrcnt > 1) return; ssi->cr_clk = 0; ssi->rate = 0; rsnd_adg_ssi_clk_stop(mod); } static void rsnd_ssi_config_init(struct rsnd_mod *mod, struct rsnd_dai_stream *io) { struct rsnd_dai *rdai = rsnd_io_to_rdai(io); struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); u32 cr_own; u32 cr_mode; u32 wsr; int is_tdm; if (rsnd_ssi_is_parent(mod, io)) return; is_tdm = rsnd_runtime_is_ssi_tdm(io); /* * always use 32bit system word. * see also rsnd_ssi_master_clk_enable() */ cr_own = FORCE | SWL_32; if (rdai->bit_clk_inv) cr_own |= SCKP; if (rdai->frm_clk_inv ^ is_tdm) cr_own |= SWSP; if (rdai->data_alignment) cr_own |= SDTA; if (rdai->sys_delay) cr_own |= DEL; if (rsnd_io_is_play(io)) cr_own |= TRMD; switch (runtime->sample_bits) { case 16: cr_own |= DWL_16; break; case 32: cr_own |= DWL_24; break; } if (rsnd_ssi_is_dma_mode(mod)) { cr_mode = UIEN | OIEN | /* over/under run */ DMEN; /* DMA : enable DMA */ } else { cr_mode = DIEN; /* PIO : enable Data interrupt */ } /* * TDM Extend Mode * see * rsnd_ssiu_init_gen2() */ wsr = ssi->wsr; if (is_tdm) { wsr |= WS_MODE; cr_own |= CHNL_8; } ssi->cr_own = cr_own; ssi->cr_mode = cr_mode; ssi->wsr = wsr; } static void rsnd_ssi_register_setup(struct rsnd_mod *mod) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); rsnd_mod_write(mod, SSIWSR, ssi->wsr); rsnd_mod_write(mod, SSICR, ssi->cr_own | ssi->cr_clk | ssi->cr_mode | ssi->cr_en); } static void rsnd_ssi_pointer_init(struct rsnd_mod *mod, struct rsnd_dai_stream *io) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); ssi->byte_pos = 0; ssi->period_pos = 0; ssi->byte_per_period = runtime->period_size * runtime->channels * samples_to_bytes(runtime, 1); ssi->next_period_byte = ssi->byte_per_period; } static int rsnd_ssi_pointer_offset(struct rsnd_mod *mod, struct rsnd_dai_stream *io, int additional) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); int pos = ssi->byte_pos + additional; pos %= (runtime->periods * ssi->byte_per_period); return pos; } static bool rsnd_ssi_pointer_update(struct rsnd_mod *mod, struct rsnd_dai_stream *io, int byte) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); bool ret = false; int byte_pos; byte_pos = ssi->byte_pos + byte; if (byte_pos >= ssi->next_period_byte) { struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); ssi->period_pos++; ssi->next_period_byte += ssi->byte_per_period; if (ssi->period_pos >= runtime->periods) { byte_pos = 0; ssi->period_pos = 0; ssi->next_period_byte = ssi->byte_per_period; } ret = true; } WRITE_ONCE(ssi->byte_pos, byte_pos); return ret; } /* * SSI mod common functions */ static int rsnd_ssi_init(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct rsnd_priv *priv) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); if (!rsnd_ssi_is_run_mods(mod, io)) return 0; rsnd_ssi_pointer_init(mod, io); ssi->usrcnt++; rsnd_mod_power_on(mod); rsnd_ssi_config_init(mod, io); rsnd_ssi_register_setup(mod); /* clear error status */ rsnd_ssi_status_clear(mod); return 0; } static int rsnd_ssi_quit(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct rsnd_priv *priv) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); struct device *dev = rsnd_priv_to_dev(priv); if (!rsnd_ssi_is_run_mods(mod, io)) return 0; if (!ssi->usrcnt) { dev_err(dev, "%s[%d] usrcnt error\n", rsnd_mod_name(mod), rsnd_mod_id(mod)); return -EIO; } if (!rsnd_ssi_is_parent(mod, io)) ssi->cr_own = 0; rsnd_ssi_master_clk_stop(mod, io); rsnd_mod_power_off(mod); ssi->usrcnt--; return 0; } static int rsnd_ssi_hw_params(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); int chan = params_channels(params); /* * snd_pcm_ops::hw_params will be called *before* * snd_soc_dai_ops::trigger. Thus, ssi->usrcnt is 0 * in 1st call. */ if (ssi->usrcnt) { /* * Already working. * It will happen if SSI has parent/child connection. * it is error if child <-> parent SSI uses * different channels. */ if (ssi->chan != chan) return -EIO; } ssi->chan = chan; return 0; } static int rsnd_ssi_start(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct rsnd_priv *priv) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); if (!rsnd_ssi_is_run_mods(mod, io)) return 0; /* * EN will be set via SSIU :: SSI_CONTROL * if Multi channel mode */ if (rsnd_ssi_multi_slaves_runtime(io)) return 0; /* * EN is for data output. * SSI parent EN is not needed. */ if (rsnd_ssi_is_parent(mod, io)) return 0; ssi->cr_en = EN; rsnd_mod_write(mod, SSICR, ssi->cr_own | ssi->cr_clk | ssi->cr_mode | ssi->cr_en); return 0; } static int rsnd_ssi_stop(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct rsnd_priv *priv) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); u32 cr; if (!rsnd_ssi_is_run_mods(mod, io)) return 0; if (rsnd_ssi_is_parent(mod, io)) return 0; /* * disable all IRQ, * and, wait all data was sent */ cr = ssi->cr_own | ssi->cr_clk; rsnd_mod_write(mod, SSICR, cr | EN); rsnd_ssi_status_check(mod, DIRQ); /* * disable SSI, * and, wait idle state */ rsnd_mod_write(mod, SSICR, cr); /* disabled all */ rsnd_ssi_status_check(mod, IIRQ); ssi->cr_en = 0; return 0; } static int rsnd_ssi_irq(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct rsnd_priv *priv, int enable) { u32 val = 0; if (rsnd_is_gen1(priv)) return 0; if (rsnd_ssi_is_parent(mod, io)) return 0; if (!rsnd_ssi_is_run_mods(mod, io)) return 0; if (enable) val = rsnd_ssi_is_dma_mode(mod) ? 0x0e000000 : 0x0f000000; rsnd_mod_write(mod, SSI_INT_ENABLE, val); return 0; } static void __rsnd_ssi_interrupt(struct rsnd_mod *mod, struct rsnd_dai_stream *io) { struct rsnd_priv *priv = rsnd_mod_to_priv(mod); int is_dma = rsnd_ssi_is_dma_mode(mod); u32 status; bool elapsed = false; bool stop = false; spin_lock(&priv->lock); /* ignore all cases if not working */ if (!rsnd_io_is_working(io)) goto rsnd_ssi_interrupt_out; status = rsnd_ssi_status_get(mod); /* PIO only */ if (!is_dma && (status & DIRQ)) { struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); u32 *buf = (u32 *)(runtime->dma_area + rsnd_ssi_pointer_offset(mod, io, 0)); int shift = 0; switch (runtime->sample_bits) { case 32: shift = 8; break; } /* * 8/16/32 data can be assesse to TDR/RDR register * directly as 32bit data * see rsnd_ssi_init() */ if (rsnd_io_is_play(io)) rsnd_mod_write(mod, SSITDR, (*buf) << shift); else *buf = (rsnd_mod_read(mod, SSIRDR) >> shift); elapsed = rsnd_ssi_pointer_update(mod, io, sizeof(*buf)); } /* DMA only */ if (is_dma && (status & (UIRQ | OIRQ))) stop = true; rsnd_ssi_status_clear(mod); rsnd_ssi_interrupt_out: spin_unlock(&priv->lock); if (elapsed) rsnd_dai_period_elapsed(io); if (stop) snd_pcm_stop_xrun(io->substream); } static irqreturn_t rsnd_ssi_interrupt(int irq, void *data) { struct rsnd_mod *mod = data; rsnd_mod_interrupt(mod, __rsnd_ssi_interrupt); return IRQ_HANDLED; } /* * SSI PIO */ static void rsnd_ssi_parent_attach(struct rsnd_mod *mod, struct rsnd_dai_stream *io) { struct rsnd_dai *rdai = rsnd_io_to_rdai(io); struct rsnd_priv *priv = rsnd_mod_to_priv(mod); if (!__rsnd_ssi_is_pin_sharing(mod)) return; if (!rsnd_rdai_is_clk_master(rdai)) return; switch (rsnd_mod_id(mod)) { case 1: case 2: rsnd_dai_connect(rsnd_ssi_mod_get(priv, 0), io, RSND_MOD_SSIP); break; case 4: rsnd_dai_connect(rsnd_ssi_mod_get(priv, 3), io, RSND_MOD_SSIP); break; case 8: rsnd_dai_connect(rsnd_ssi_mod_get(priv, 7), io, RSND_MOD_SSIP); break; } } static int rsnd_ssi_pcm_new(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct snd_soc_pcm_runtime *rtd) { /* * rsnd_rdai_is_clk_master() will be enabled after set_fmt, * and, pcm_new will be called after it. * This function reuse pcm_new at this point. */ rsnd_ssi_parent_attach(mod, io); return 0; } static int rsnd_ssi_common_probe(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct rsnd_priv *priv) { struct device *dev = rsnd_priv_to_dev(priv); struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); int ret; /* * SSIP/SSIU/IRQ are not needed on * SSI Multi slaves */ if (rsnd_ssi_is_multi_slave(mod, io)) return 0; /* * It can't judge ssi parent at this point * see rsnd_ssi_pcm_new() */ ret = rsnd_ssiu_attach(io, mod); if (ret < 0) return ret; /* * SSI might be called again as PIO fallback * It is easy to manual handling for IRQ request/free * * OTOH, this function might be called many times if platform is * using MIX. It needs xxx_attach() many times on xxx_probe(). * Because of it, we can't control .probe/.remove calling count by * mod->status. * But it don't need to call request_irq() many times. * Let's control it by RSND_SSI_PROBED flag. */ if (!rsnd_ssi_flags_has(ssi, RSND_SSI_PROBED)) { ret = request_irq(ssi->irq, rsnd_ssi_interrupt, IRQF_SHARED, dev_name(dev), mod); rsnd_ssi_flags_set(ssi, RSND_SSI_PROBED); } return ret; } static int rsnd_ssi_common_remove(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct rsnd_priv *priv) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); struct rsnd_mod *pure_ssi_mod = rsnd_io_to_mod_ssi(io); /* Do nothing if non SSI (= SSI parent, multi SSI) mod */ if (pure_ssi_mod != mod) return 0; /* PIO will request IRQ again */ if (rsnd_ssi_flags_has(ssi, RSND_SSI_PROBED)) { free_irq(ssi->irq, mod); rsnd_ssi_flags_del(ssi, RSND_SSI_PROBED); } return 0; } static int rsnd_ssi_pointer(struct rsnd_mod *mod, struct rsnd_dai_stream *io, snd_pcm_uframes_t *pointer) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); *pointer = bytes_to_frames(runtime, READ_ONCE(ssi->byte_pos)); return 0; } static int rsnd_ssi_prepare(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct rsnd_priv *priv) { return rsnd_ssi_master_clk_start(mod, io); } static struct rsnd_mod_ops rsnd_ssi_pio_ops = { .name = SSI_NAME, .probe = rsnd_ssi_common_probe, .remove = rsnd_ssi_common_remove, .init = rsnd_ssi_init, .quit = rsnd_ssi_quit, .start = rsnd_ssi_start, .stop = rsnd_ssi_stop, .irq = rsnd_ssi_irq, .pointer= rsnd_ssi_pointer, .pcm_new = rsnd_ssi_pcm_new, .hw_params = rsnd_ssi_hw_params, .prepare = rsnd_ssi_prepare, }; static int rsnd_ssi_dma_probe(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct rsnd_priv *priv) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); int ret; /* * SSIP/SSIU/IRQ/DMA are not needed on * SSI Multi slaves */ if (rsnd_ssi_is_multi_slave(mod, io)) return 0; ret = rsnd_ssi_common_probe(mod, io, priv); if (ret) return ret; /* SSI probe might be called many times in MUX multi path */ ret = rsnd_dma_attach(io, mod, &ssi->dma); return ret; } static int rsnd_ssi_fallback(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct rsnd_priv *priv) { struct device *dev = rsnd_priv_to_dev(priv); /* * fallback to PIO * * SSI .probe might be called again. * see * rsnd_rdai_continuance_probe() */ mod->ops = &rsnd_ssi_pio_ops; dev_info(dev, "%s[%d] fallback to PIO mode\n", rsnd_mod_name(mod), rsnd_mod_id(mod)); return 0; } static struct dma_chan *rsnd_ssi_dma_req(struct rsnd_dai_stream *io, struct rsnd_mod *mod) { struct rsnd_priv *priv = rsnd_mod_to_priv(mod); int is_play = rsnd_io_is_play(io); char *name; if (rsnd_ssi_use_busif(io)) name = is_play ? "rxu" : "txu"; else name = is_play ? "rx" : "tx"; return rsnd_dma_request_channel(rsnd_ssi_of_node(priv), mod, name); } static struct rsnd_mod_ops rsnd_ssi_dma_ops = { .name = SSI_NAME, .dma_req = rsnd_ssi_dma_req, .probe = rsnd_ssi_dma_probe, .remove = rsnd_ssi_common_remove, .init = rsnd_ssi_init, .quit = rsnd_ssi_quit, .start = rsnd_ssi_start, .stop = rsnd_ssi_stop, .irq = rsnd_ssi_irq, .pcm_new = rsnd_ssi_pcm_new, .fallback = rsnd_ssi_fallback, .hw_params = rsnd_ssi_hw_params, .prepare = rsnd_ssi_prepare, }; int rsnd_ssi_is_dma_mode(struct rsnd_mod *mod) { return mod->ops == &rsnd_ssi_dma_ops; } /* * ssi mod function */ static void rsnd_ssi_connect(struct rsnd_mod *mod, struct rsnd_dai_stream *io) { struct rsnd_dai *rdai = rsnd_io_to_rdai(io); enum rsnd_mod_type types[] = { RSND_MOD_SSI, RSND_MOD_SSIM1, RSND_MOD_SSIM2, RSND_MOD_SSIM3, }; enum rsnd_mod_type type; int i; /* try SSI -> SSIM1 -> SSIM2 -> SSIM3 */ for (i = 0; i < ARRAY_SIZE(types); i++) { type = types[i]; if (!rsnd_io_to_mod(io, type)) { rsnd_dai_connect(mod, io, type); rsnd_rdai_channels_set(rdai, (i + 1) * 2); rsnd_rdai_ssi_lane_set(rdai, (i + 1)); return; } } } void rsnd_parse_connect_ssi(struct rsnd_dai *rdai, struct device_node *playback, struct device_node *capture) { struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai); struct device_node *node; struct device_node *np; struct rsnd_mod *mod; int i; node = rsnd_ssi_of_node(priv); if (!node) return; i = 0; for_each_child_of_node(node, np) { mod = rsnd_ssi_mod_get(priv, i); if (np == playback) rsnd_ssi_connect(mod, &rdai->playback); if (np == capture) rsnd_ssi_connect(mod, &rdai->capture); i++; } of_node_put(node); } static void __rsnd_ssi_parse_hdmi_connection(struct rsnd_priv *priv, struct rsnd_dai_stream *io, struct device_node *remote_ep) { struct device *dev = rsnd_priv_to_dev(priv); struct rsnd_mod *mod = rsnd_io_to_mod_ssi(io); struct rsnd_ssi *ssi; if (!mod) return; ssi = rsnd_mod_to_ssi(mod); if (strstr(remote_ep->full_name, "hdmi0")) { rsnd_ssi_flags_set(ssi, RSND_SSI_HDMI0); dev_dbg(dev, "%s[%d] connected to HDMI0\n", rsnd_mod_name(mod), rsnd_mod_id(mod)); } if (strstr(remote_ep->full_name, "hdmi1")) { rsnd_ssi_flags_set(ssi, RSND_SSI_HDMI1); dev_dbg(dev, "%s[%d] connected to HDMI1\n", rsnd_mod_name(mod), rsnd_mod_id(mod)); } } void rsnd_ssi_parse_hdmi_connection(struct rsnd_priv *priv, struct device_node *endpoint, int dai_i) { struct rsnd_dai *rdai = rsnd_rdai_get(priv, dai_i); struct device_node *remote_ep; remote_ep = of_graph_get_remote_endpoint(endpoint); if (!remote_ep) return; __rsnd_ssi_parse_hdmi_connection(priv, &rdai->playback, remote_ep); __rsnd_ssi_parse_hdmi_connection(priv, &rdai->capture, remote_ep); } struct rsnd_mod *rsnd_ssi_mod_get(struct rsnd_priv *priv, int id) { if (WARN_ON(id < 0 || id >= rsnd_ssi_nr(priv))) id = 0; return rsnd_mod_get(rsnd_ssi_get(priv, id)); } int __rsnd_ssi_is_pin_sharing(struct rsnd_mod *mod) { struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod); return !!(rsnd_ssi_flags_has(ssi, RSND_SSI_CLK_PIN_SHARE)); } static u32 *rsnd_ssi_get_status(struct rsnd_dai_stream *io, struct rsnd_mod *mod, enum rsnd_mod_type type) { /* * SSIP (= SSI parent) needs to be special, otherwise, * 2nd SSI might doesn't start. see also rsnd_mod_call() * * We can't include parent SSI status on SSI, because we don't know * how many SSI requests parent SSI. Thus, it is localed on "io" now. * ex) trouble case * Playback: SSI0 * Capture : SSI1 (needs SSI0) * * 1) start Capture -> SSI0/SSI1 are started. * 2) start Playback -> SSI0 doesn't work, because it is already * marked as "started" on 1) * * OTOH, using each mod's status is good for MUX case. * It doesn't need to start in 2nd start * ex) * IO-0: SRC0 -> CTU1 -+-> MUX -> DVC -> SSIU -> SSI0 * | * IO-1: SRC1 -> CTU2 -+ * * 1) start IO-0 -> start SSI0 * 2) start IO-1 -> SSI0 doesn't need to start, because it is * already started on 1) */ if (type == RSND_MOD_SSIP) return &io->parent_ssi_status; return rsnd_mod_get_status(io, mod, type); } int rsnd_ssi_probe(struct rsnd_priv *priv) { struct device_node *node; struct device_node *np; struct device *dev = rsnd_priv_to_dev(priv); struct rsnd_mod_ops *ops; struct clk *clk; struct rsnd_ssi *ssi; char name[RSND_SSI_NAME_SIZE]; int i, nr, ret; node = rsnd_ssi_of_node(priv); if (!node) return -EINVAL; nr = of_get_child_count(node); if (!nr) { ret = -EINVAL; goto rsnd_ssi_probe_done; } ssi = devm_kzalloc(dev, sizeof(*ssi) * nr, GFP_KERNEL); if (!ssi) { ret = -ENOMEM; goto rsnd_ssi_probe_done; } priv->ssi = ssi; priv->ssi_nr = nr; i = 0; for_each_child_of_node(node, np) { ssi = rsnd_ssi_get(priv, i); snprintf(name, RSND_SSI_NAME_SIZE, "%s.%d", SSI_NAME, i); clk = devm_clk_get(dev, name); if (IS_ERR(clk)) { ret = PTR_ERR(clk); of_node_put(np); goto rsnd_ssi_probe_done; } if (of_get_property(np, "shared-pin", NULL)) rsnd_ssi_flags_set(ssi, RSND_SSI_CLK_PIN_SHARE); if (of_get_property(np, "no-busif", NULL)) rsnd_ssi_flags_set(ssi, RSND_SSI_NO_BUSIF); ssi->irq = irq_of_parse_and_map(np, 0); if (!ssi->irq) { ret = -EINVAL; of_node_put(np); goto rsnd_ssi_probe_done; } if (of_property_read_bool(np, "pio-transfer")) ops = &rsnd_ssi_pio_ops; else ops = &rsnd_ssi_dma_ops; ret = rsnd_mod_init(priv, rsnd_mod_get(ssi), ops, clk, rsnd_ssi_get_status, RSND_MOD_SSI, i); if (ret) { of_node_put(np); goto rsnd_ssi_probe_done; } i++; } ret = 0; rsnd_ssi_probe_done: of_node_put(node); return ret; } void rsnd_ssi_remove(struct rsnd_priv *priv) { struct rsnd_ssi *ssi; int i; for_each_rsnd_ssi(ssi, priv, i) { rsnd_mod_quit(rsnd_mod_get(ssi)); } }