// SPDX-License-Identifier: GPL-2.0-only /* * arch_timer.c - Tests the aarch64 timer IRQ functionality * * The test validates both the virtual and physical timer IRQs using * CVAL and TVAL registers. This consitutes the four stages in the test. * The guest's main thread configures the timer interrupt for a stage * and waits for it to fire, with a timeout equal to the timer period. * It asserts that the timeout doesn't exceed the timer period. * * On the other hand, upon receipt of an interrupt, the guest's interrupt * handler validates the interrupt by checking if the architectural state * is in compliance with the specifications. * * The test provides command-line options to configure the timer's * period (-p), number of vCPUs (-n), and iterations per stage (-i). * To stress-test the timer stack even more, an option to migrate the * vCPUs across pCPUs (-m), at a particular rate, is also provided. * * Copyright (c) 2021, Google LLC. */ #define _GNU_SOURCE #include #include #include #include #include #include #include "kvm_util.h" #include "processor.h" #include "delay.h" #include "arch_timer.h" #include "gic.h" #include "vgic.h" #define NR_VCPUS_DEF 4 #define NR_TEST_ITERS_DEF 5 #define TIMER_TEST_PERIOD_MS_DEF 10 #define TIMER_TEST_ERR_MARGIN_US 100 #define TIMER_TEST_MIGRATION_FREQ_MS 2 struct test_args { int nr_vcpus; int nr_iter; int timer_period_ms; int migration_freq_ms; struct kvm_arm_counter_offset offset; }; static struct test_args test_args = { .nr_vcpus = NR_VCPUS_DEF, .nr_iter = NR_TEST_ITERS_DEF, .timer_period_ms = TIMER_TEST_PERIOD_MS_DEF, .migration_freq_ms = TIMER_TEST_MIGRATION_FREQ_MS, .offset = { .reserved = 1 }, }; #define msecs_to_usecs(msec) ((msec) * 1000LL) #define GICD_BASE_GPA 0x8000000ULL #define GICR_BASE_GPA 0x80A0000ULL enum guest_stage { GUEST_STAGE_VTIMER_CVAL = 1, GUEST_STAGE_VTIMER_TVAL, GUEST_STAGE_PTIMER_CVAL, GUEST_STAGE_PTIMER_TVAL, GUEST_STAGE_MAX, }; /* Shared variables between host and guest */ struct test_vcpu_shared_data { int nr_iter; enum guest_stage guest_stage; uint64_t xcnt; }; static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; static pthread_t pt_vcpu_run[KVM_MAX_VCPUS]; static struct test_vcpu_shared_data vcpu_shared_data[KVM_MAX_VCPUS]; static int vtimer_irq, ptimer_irq; static unsigned long *vcpu_done_map; static pthread_mutex_t vcpu_done_map_lock; static void guest_configure_timer_action(struct test_vcpu_shared_data *shared_data) { switch (shared_data->guest_stage) { case GUEST_STAGE_VTIMER_CVAL: timer_set_next_cval_ms(VIRTUAL, test_args.timer_period_ms); shared_data->xcnt = timer_get_cntct(VIRTUAL); timer_set_ctl(VIRTUAL, CTL_ENABLE); break; case GUEST_STAGE_VTIMER_TVAL: timer_set_next_tval_ms(VIRTUAL, test_args.timer_period_ms); shared_data->xcnt = timer_get_cntct(VIRTUAL); timer_set_ctl(VIRTUAL, CTL_ENABLE); break; case GUEST_STAGE_PTIMER_CVAL: timer_set_next_cval_ms(PHYSICAL, test_args.timer_period_ms); shared_data->xcnt = timer_get_cntct(PHYSICAL); timer_set_ctl(PHYSICAL, CTL_ENABLE); break; case GUEST_STAGE_PTIMER_TVAL: timer_set_next_tval_ms(PHYSICAL, test_args.timer_period_ms); shared_data->xcnt = timer_get_cntct(PHYSICAL); timer_set_ctl(PHYSICAL, CTL_ENABLE); break; default: GUEST_ASSERT(0); } } static void guest_validate_irq(unsigned int intid, struct test_vcpu_shared_data *shared_data) { enum guest_stage stage = shared_data->guest_stage; uint64_t xcnt = 0, xcnt_diff_us, cval = 0; unsigned long xctl = 0; unsigned int timer_irq = 0; unsigned int accessor; if (intid == IAR_SPURIOUS) return; switch (stage) { case GUEST_STAGE_VTIMER_CVAL: case GUEST_STAGE_VTIMER_TVAL: accessor = VIRTUAL; timer_irq = vtimer_irq; break; case GUEST_STAGE_PTIMER_CVAL: case GUEST_STAGE_PTIMER_TVAL: accessor = PHYSICAL; timer_irq = ptimer_irq; break; default: GUEST_ASSERT(0); return; } xctl = timer_get_ctl(accessor); if ((xctl & CTL_IMASK) || !(xctl & CTL_ENABLE)) return; timer_set_ctl(accessor, CTL_IMASK); xcnt = timer_get_cntct(accessor); cval = timer_get_cval(accessor); xcnt_diff_us = cycles_to_usec(xcnt - shared_data->xcnt); /* Make sure we are dealing with the correct timer IRQ */ GUEST_ASSERT_EQ(intid, timer_irq); /* Basic 'timer condition met' check */ __GUEST_ASSERT(xcnt >= cval, "xcnt = 0x%llx, cval = 0x%llx, xcnt_diff_us = 0x%llx", xcnt, cval, xcnt_diff_us); __GUEST_ASSERT(xctl & CTL_ISTATUS, "xcnt = 0x%llx", xcnt); WRITE_ONCE(shared_data->nr_iter, shared_data->nr_iter + 1); } static void guest_irq_handler(struct ex_regs *regs) { unsigned int intid = gic_get_and_ack_irq(); uint32_t cpu = guest_get_vcpuid(); struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[cpu]; guest_validate_irq(intid, shared_data); gic_set_eoi(intid); } static void guest_run_stage(struct test_vcpu_shared_data *shared_data, enum guest_stage stage) { uint32_t irq_iter, config_iter; shared_data->guest_stage = stage; shared_data->nr_iter = 0; for (config_iter = 0; config_iter < test_args.nr_iter; config_iter++) { /* Setup the next interrupt */ guest_configure_timer_action(shared_data); /* Setup a timeout for the interrupt to arrive */ udelay(msecs_to_usecs(test_args.timer_period_ms) + TIMER_TEST_ERR_MARGIN_US); irq_iter = READ_ONCE(shared_data->nr_iter); GUEST_ASSERT_EQ(config_iter + 1, irq_iter); } } static void guest_code(void) { uint32_t cpu = guest_get_vcpuid(); struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[cpu]; local_irq_disable(); gic_init(GIC_V3, test_args.nr_vcpus, (void *)GICD_BASE_GPA, (void *)GICR_BASE_GPA); timer_set_ctl(VIRTUAL, CTL_IMASK); timer_set_ctl(PHYSICAL, CTL_IMASK); gic_irq_enable(vtimer_irq); gic_irq_enable(ptimer_irq); local_irq_enable(); guest_run_stage(shared_data, GUEST_STAGE_VTIMER_CVAL); guest_run_stage(shared_data, GUEST_STAGE_VTIMER_TVAL); guest_run_stage(shared_data, GUEST_STAGE_PTIMER_CVAL); guest_run_stage(shared_data, GUEST_STAGE_PTIMER_TVAL); GUEST_DONE(); } static void *test_vcpu_run(void *arg) { unsigned int vcpu_idx = (unsigned long)arg; struct ucall uc; struct kvm_vcpu *vcpu = vcpus[vcpu_idx]; struct kvm_vm *vm = vcpu->vm; struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[vcpu_idx]; vcpu_run(vcpu); /* Currently, any exit from guest is an indication of completion */ pthread_mutex_lock(&vcpu_done_map_lock); __set_bit(vcpu_idx, vcpu_done_map); pthread_mutex_unlock(&vcpu_done_map_lock); switch (get_ucall(vcpu, &uc)) { case UCALL_SYNC: case UCALL_DONE: break; case UCALL_ABORT: sync_global_from_guest(vm, *shared_data); fprintf(stderr, "Guest assert failed, vcpu %u; stage; %u; iter: %u\n", vcpu_idx, shared_data->guest_stage, shared_data->nr_iter); REPORT_GUEST_ASSERT(uc); break; default: TEST_FAIL("Unexpected guest exit\n"); } return NULL; } static uint32_t test_get_pcpu(void) { uint32_t pcpu; unsigned int nproc_conf; cpu_set_t online_cpuset; nproc_conf = get_nprocs_conf(); sched_getaffinity(0, sizeof(cpu_set_t), &online_cpuset); /* Randomly find an available pCPU to place a vCPU on */ do { pcpu = rand() % nproc_conf; } while (!CPU_ISSET(pcpu, &online_cpuset)); return pcpu; } static int test_migrate_vcpu(unsigned int vcpu_idx) { int ret; cpu_set_t cpuset; uint32_t new_pcpu = test_get_pcpu(); CPU_ZERO(&cpuset); CPU_SET(new_pcpu, &cpuset); pr_debug("Migrating vCPU: %u to pCPU: %u\n", vcpu_idx, new_pcpu); ret = pthread_setaffinity_np(pt_vcpu_run[vcpu_idx], sizeof(cpuset), &cpuset); /* Allow the error where the vCPU thread is already finished */ TEST_ASSERT(ret == 0 || ret == ESRCH, "Failed to migrate the vCPU:%u to pCPU: %u; ret: %d\n", vcpu_idx, new_pcpu, ret); return ret; } static void *test_vcpu_migration(void *arg) { unsigned int i, n_done; bool vcpu_done; do { usleep(msecs_to_usecs(test_args.migration_freq_ms)); for (n_done = 0, i = 0; i < test_args.nr_vcpus; i++) { pthread_mutex_lock(&vcpu_done_map_lock); vcpu_done = test_bit(i, vcpu_done_map); pthread_mutex_unlock(&vcpu_done_map_lock); if (vcpu_done) { n_done++; continue; } test_migrate_vcpu(i); } } while (test_args.nr_vcpus != n_done); return NULL; } static void test_run(struct kvm_vm *vm) { pthread_t pt_vcpu_migration; unsigned int i; int ret; pthread_mutex_init(&vcpu_done_map_lock, NULL); vcpu_done_map = bitmap_zalloc(test_args.nr_vcpus); TEST_ASSERT(vcpu_done_map, "Failed to allocate vcpu done bitmap\n"); for (i = 0; i < (unsigned long)test_args.nr_vcpus; i++) { ret = pthread_create(&pt_vcpu_run[i], NULL, test_vcpu_run, (void *)(unsigned long)i); TEST_ASSERT(!ret, "Failed to create vCPU-%d pthread\n", i); } /* Spawn a thread to control the vCPU migrations */ if (test_args.migration_freq_ms) { srand(time(NULL)); ret = pthread_create(&pt_vcpu_migration, NULL, test_vcpu_migration, NULL); TEST_ASSERT(!ret, "Failed to create the migration pthread\n"); } for (i = 0; i < test_args.nr_vcpus; i++) pthread_join(pt_vcpu_run[i], NULL); if (test_args.migration_freq_ms) pthread_join(pt_vcpu_migration, NULL); bitmap_free(vcpu_done_map); } static void test_init_timer_irq(struct kvm_vm *vm) { /* Timer initid should be same for all the vCPUs, so query only vCPU-0 */ vcpu_device_attr_get(vcpus[0], KVM_ARM_VCPU_TIMER_CTRL, KVM_ARM_VCPU_TIMER_IRQ_PTIMER, &ptimer_irq); vcpu_device_attr_get(vcpus[0], KVM_ARM_VCPU_TIMER_CTRL, KVM_ARM_VCPU_TIMER_IRQ_VTIMER, &vtimer_irq); sync_global_to_guest(vm, ptimer_irq); sync_global_to_guest(vm, vtimer_irq); pr_debug("ptimer_irq: %d; vtimer_irq: %d\n", ptimer_irq, vtimer_irq); } static int gic_fd; static struct kvm_vm *test_vm_create(void) { struct kvm_vm *vm; unsigned int i; int nr_vcpus = test_args.nr_vcpus; vm = vm_create_with_vcpus(nr_vcpus, guest_code, vcpus); vm_init_descriptor_tables(vm); vm_install_exception_handler(vm, VECTOR_IRQ_CURRENT, guest_irq_handler); if (!test_args.offset.reserved) { if (kvm_has_cap(KVM_CAP_COUNTER_OFFSET)) vm_ioctl(vm, KVM_ARM_SET_COUNTER_OFFSET, &test_args.offset); else TEST_FAIL("no support for global offset\n"); } for (i = 0; i < nr_vcpus; i++) vcpu_init_descriptor_tables(vcpus[i]); test_init_timer_irq(vm); gic_fd = vgic_v3_setup(vm, nr_vcpus, 64, GICD_BASE_GPA, GICR_BASE_GPA); __TEST_REQUIRE(gic_fd >= 0, "Failed to create vgic-v3"); /* Make all the test's cmdline args visible to the guest */ sync_global_to_guest(vm, test_args); return vm; } static void test_vm_cleanup(struct kvm_vm *vm) { close(gic_fd); kvm_vm_free(vm); } static void test_print_help(char *name) { pr_info("Usage: %s [-h] [-n nr_vcpus] [-i iterations] [-p timer_period_ms]\n", name); pr_info("\t-n: Number of vCPUs to configure (default: %u; max: %u)\n", NR_VCPUS_DEF, KVM_MAX_VCPUS); pr_info("\t-i: Number of iterations per stage (default: %u)\n", NR_TEST_ITERS_DEF); pr_info("\t-p: Periodicity (in ms) of the guest timer (default: %u)\n", TIMER_TEST_PERIOD_MS_DEF); pr_info("\t-m: Frequency (in ms) of vCPUs to migrate to different pCPU. 0 to turn off (default: %u)\n", TIMER_TEST_MIGRATION_FREQ_MS); pr_info("\t-o: Counter offset (in counter cycles, default: 0)\n"); pr_info("\t-h: print this help screen\n"); } static bool parse_args(int argc, char *argv[]) { int opt; while ((opt = getopt(argc, argv, "hn:i:p:m:o:")) != -1) { switch (opt) { case 'n': test_args.nr_vcpus = atoi_positive("Number of vCPUs", optarg); if (test_args.nr_vcpus > KVM_MAX_VCPUS) { pr_info("Max allowed vCPUs: %u\n", KVM_MAX_VCPUS); goto err; } break; case 'i': test_args.nr_iter = atoi_positive("Number of iterations", optarg); break; case 'p': test_args.timer_period_ms = atoi_positive("Periodicity", optarg); break; case 'm': test_args.migration_freq_ms = atoi_non_negative("Frequency", optarg); break; case 'o': test_args.offset.counter_offset = strtol(optarg, NULL, 0); test_args.offset.reserved = 0; break; case 'h': default: goto err; } } return true; err: test_print_help(argv[0]); return false; } int main(int argc, char *argv[]) { struct kvm_vm *vm; if (!parse_args(argc, argv)) exit(KSFT_SKIP); __TEST_REQUIRE(!test_args.migration_freq_ms || get_nprocs() >= 2, "At least two physical CPUs needed for vCPU migration"); vm = test_vm_create(); test_run(vm); test_vm_cleanup(vm); return 0; }