// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * This module enables kernel and guest-mode vCPU access to guest physical * memory with suitable invalidation mechanisms. * * Copyright © 2021 Amazon.com, Inc. or its affiliates. * * Authors: * David Woodhouse */ #include #include #include #include #include #include "kvm_mm.h" /* * MMU notifier 'invalidate_range_start' hook. */ void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm, unsigned long start, unsigned long end, bool may_block) { DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS); struct gfn_to_pfn_cache *gpc; bool evict_vcpus = false; spin_lock(&kvm->gpc_lock); list_for_each_entry(gpc, &kvm->gpc_list, list) { write_lock_irq(&gpc->lock); /* Only a single page so no need to care about length */ if (gpc->valid && !is_error_noslot_pfn(gpc->pfn) && gpc->uhva >= start && gpc->uhva < end) { gpc->valid = false; /* * If a guest vCPU could be using the physical address, * it needs to be forced out of guest mode. */ if (gpc->usage & KVM_GUEST_USES_PFN) { if (!evict_vcpus) { evict_vcpus = true; bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS); } __set_bit(gpc->vcpu->vcpu_idx, vcpu_bitmap); } } write_unlock_irq(&gpc->lock); } spin_unlock(&kvm->gpc_lock); if (evict_vcpus) { /* * KVM needs to ensure the vCPU is fully out of guest context * before allowing the invalidation to continue. */ unsigned int req = KVM_REQ_OUTSIDE_GUEST_MODE; bool called; /* * If the OOM reaper is active, then all vCPUs should have * been stopped already, so perform the request without * KVM_REQUEST_WAIT and be sad if any needed to be IPI'd. */ if (!may_block) req &= ~KVM_REQUEST_WAIT; called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap); WARN_ON_ONCE(called && !may_block); } } bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len) { struct kvm_memslots *slots = kvm_memslots(kvm); if ((gpa & ~PAGE_MASK) + len > PAGE_SIZE) return false; if (gpc->gpa != gpa || gpc->generation != slots->generation || kvm_is_error_hva(gpc->uhva)) return false; if (!gpc->valid) return false; return true; } EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_check); static void gpc_release_pfn_and_khva(struct kvm *kvm, kvm_pfn_t pfn, void *khva) { /* Unmap the old page if it was mapped before, and release it */ if (!is_error_noslot_pfn(pfn)) { if (khva) { if (pfn_valid(pfn)) kunmap(pfn_to_page(pfn)); #ifdef CONFIG_HAS_IOMEM else memunmap(khva); #endif } kvm_release_pfn(pfn, false); } } static inline bool mmu_notifier_retry_cache(struct kvm *kvm, unsigned long mmu_seq) { /* * mn_active_invalidate_count acts for all intents and purposes * like mmu_notifier_count here; but the latter cannot be used * here because the invalidation of caches in the mmu_notifier * event occurs _before_ mmu_notifier_count is elevated. * * Note, it does not matter that mn_active_invalidate_count * is not protected by gpc->lock. It is guaranteed to * be elevated before the mmu_notifier acquires gpc->lock, and * isn't dropped until after mmu_notifier_seq is updated. */ if (kvm->mn_active_invalidate_count) return true; /* * Ensure mn_active_invalidate_count is read before * mmu_notifier_seq. This pairs with the smp_wmb() in * mmu_notifier_invalidate_range_end() to guarantee either the * old (non-zero) value of mn_active_invalidate_count or the * new (incremented) value of mmu_notifier_seq is observed. */ smp_rmb(); return kvm->mmu_notifier_seq != mmu_seq; } static kvm_pfn_t hva_to_pfn_retry(struct kvm *kvm, struct gfn_to_pfn_cache *gpc) { /* Note, the new page offset may be different than the old! */ void *old_khva = gpc->khva - offset_in_page(gpc->khva); kvm_pfn_t new_pfn = KVM_PFN_ERR_FAULT; void *new_khva = NULL; unsigned long mmu_seq; lockdep_assert_held(&gpc->refresh_lock); lockdep_assert_held_write(&gpc->lock); /* * Invalidate the cache prior to dropping gpc->lock, the gpa=>uhva * assets have already been updated and so a concurrent check() from a * different task may not fail the gpa/uhva/generation checks. */ gpc->valid = false; do { mmu_seq = kvm->mmu_notifier_seq; smp_rmb(); write_unlock_irq(&gpc->lock); /* * If the previous iteration "failed" due to an mmu_notifier * event, release the pfn and unmap the kernel virtual address * from the previous attempt. Unmapping might sleep, so this * needs to be done after dropping the lock. Opportunistically * check for resched while the lock isn't held. */ if (new_pfn != KVM_PFN_ERR_FAULT) { /* * Keep the mapping if the previous iteration reused * the existing mapping and didn't create a new one. */ if (new_khva == old_khva) new_khva = NULL; gpc_release_pfn_and_khva(kvm, new_pfn, new_khva); cond_resched(); } /* We always request a writeable mapping */ new_pfn = hva_to_pfn(gpc->uhva, false, NULL, true, NULL); if (is_error_noslot_pfn(new_pfn)) goto out_error; /* * Obtain a new kernel mapping if KVM itself will access the * pfn. Note, kmap() and memremap() can both sleep, so this * too must be done outside of gpc->lock! */ if (gpc->usage & KVM_HOST_USES_PFN) { if (new_pfn == gpc->pfn) { new_khva = old_khva; } else if (pfn_valid(new_pfn)) { new_khva = kmap(pfn_to_page(new_pfn)); #ifdef CONFIG_HAS_IOMEM } else { new_khva = memremap(pfn_to_hpa(new_pfn), PAGE_SIZE, MEMREMAP_WB); #endif } if (!new_khva) { kvm_release_pfn_clean(new_pfn); goto out_error; } } write_lock_irq(&gpc->lock); /* * Other tasks must wait for _this_ refresh to complete before * attempting to refresh. */ WARN_ON_ONCE(gpc->valid); } while (mmu_notifier_retry_cache(kvm, mmu_seq)); gpc->valid = true; gpc->pfn = new_pfn; gpc->khva = new_khva + (gpc->gpa & ~PAGE_MASK); return 0; out_error: write_lock_irq(&gpc->lock); return -EFAULT; } int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len) { struct kvm_memslots *slots = kvm_memslots(kvm); unsigned long page_offset = gpa & ~PAGE_MASK; kvm_pfn_t old_pfn, new_pfn; unsigned long old_uhva; void *old_khva; int ret = 0; /* * If must fit within a single page. The 'len' argument is * only to enforce that. */ if (page_offset + len > PAGE_SIZE) return -EINVAL; /* * If another task is refreshing the cache, wait for it to complete. * There is no guarantee that concurrent refreshes will see the same * gpa, memslots generation, etc..., so they must be fully serialized. */ mutex_lock(&gpc->refresh_lock); write_lock_irq(&gpc->lock); old_pfn = gpc->pfn; old_khva = gpc->khva - offset_in_page(gpc->khva); old_uhva = gpc->uhva; /* If the userspace HVA is invalid, refresh that first */ if (gpc->gpa != gpa || gpc->generation != slots->generation || kvm_is_error_hva(gpc->uhva)) { gfn_t gfn = gpa_to_gfn(gpa); gpc->gpa = gpa; gpc->generation = slots->generation; gpc->memslot = __gfn_to_memslot(slots, gfn); gpc->uhva = gfn_to_hva_memslot(gpc->memslot, gfn); if (kvm_is_error_hva(gpc->uhva)) { ret = -EFAULT; goto out; } } /* * If the userspace HVA changed or the PFN was already invalid, * drop the lock and do the HVA to PFN lookup again. */ if (!gpc->valid || old_uhva != gpc->uhva) { ret = hva_to_pfn_retry(kvm, gpc); } else { /* If the HVA→PFN mapping was already valid, don't unmap it. */ old_pfn = KVM_PFN_ERR_FAULT; old_khva = NULL; } out: /* * Invalidate the cache and purge the pfn/khva if the refresh failed. * Some/all of the uhva, gpa, and memslot generation info may still be * valid, leave it as is. */ if (ret) { gpc->valid = false; gpc->pfn = KVM_PFN_ERR_FAULT; gpc->khva = NULL; } /* Snapshot the new pfn before dropping the lock! */ new_pfn = gpc->pfn; write_unlock_irq(&gpc->lock); mutex_unlock(&gpc->refresh_lock); if (old_pfn != new_pfn) gpc_release_pfn_and_khva(kvm, old_pfn, old_khva); return ret; } EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_refresh); void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc) { void *old_khva; kvm_pfn_t old_pfn; mutex_lock(&gpc->refresh_lock); write_lock_irq(&gpc->lock); gpc->valid = false; old_khva = gpc->khva - offset_in_page(gpc->khva); old_pfn = gpc->pfn; /* * We can leave the GPA → uHVA map cache intact but the PFN * lookup will need to be redone even for the same page. */ gpc->khva = NULL; gpc->pfn = KVM_PFN_ERR_FAULT; write_unlock_irq(&gpc->lock); mutex_unlock(&gpc->refresh_lock); gpc_release_pfn_and_khva(kvm, old_pfn, old_khva); } EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_unmap); int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, struct kvm_vcpu *vcpu, enum pfn_cache_usage usage, gpa_t gpa, unsigned long len) { WARN_ON_ONCE(!usage || (usage & KVM_GUEST_AND_HOST_USE_PFN) != usage); if (!gpc->active) { rwlock_init(&gpc->lock); mutex_init(&gpc->refresh_lock); gpc->khva = NULL; gpc->pfn = KVM_PFN_ERR_FAULT; gpc->uhva = KVM_HVA_ERR_BAD; gpc->vcpu = vcpu; gpc->usage = usage; gpc->valid = false; gpc->active = true; spin_lock(&kvm->gpc_lock); list_add(&gpc->list, &kvm->gpc_list); spin_unlock(&kvm->gpc_lock); } return kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpa, len); } EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_init); void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc) { if (gpc->active) { spin_lock(&kvm->gpc_lock); list_del(&gpc->list); spin_unlock(&kvm->gpc_lock); kvm_gfn_to_pfn_cache_unmap(kvm, gpc); gpc->active = false; } } EXPORT_SYMBOL_GPL(kvm_gfn_to_pfn_cache_destroy);