1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
|
// SPDX-License-Identifier: GPL-2.0
/*
* RISC-V performance counter support.
*
* Copyright (C) 2021 Western Digital Corporation or its affiliates.
*
* This code is based on ARM perf event code which is in turn based on
* sparc64 and x86 code.
*/
#define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
#include <linux/mod_devicetable.h>
#include <linux/perf/riscv_pmu.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/of_irq.h>
#include <linux/of.h>
#include <linux/cpu_pm.h>
#include <linux/sched/clock.h>
#include <asm/errata_list.h>
#include <asm/sbi.h>
#include <asm/hwcap.h>
PMU_FORMAT_ATTR(event, "config:0-47");
PMU_FORMAT_ATTR(firmware, "config:63");
static struct attribute *riscv_arch_formats_attr[] = {
&format_attr_event.attr,
&format_attr_firmware.attr,
NULL,
};
static struct attribute_group riscv_pmu_format_group = {
.name = "format",
.attrs = riscv_arch_formats_attr,
};
static const struct attribute_group *riscv_pmu_attr_groups[] = {
&riscv_pmu_format_group,
NULL,
};
/*
* RISC-V doesn't have hetergenous harts yet. This need to be part of
* per_cpu in case of harts with different pmu counters
*/
static union sbi_pmu_ctr_info *pmu_ctr_list;
static bool riscv_pmu_use_irq;
static unsigned int riscv_pmu_irq_num;
static unsigned int riscv_pmu_irq;
struct sbi_pmu_event_data {
union {
union {
struct hw_gen_event {
uint32_t event_code:16;
uint32_t event_type:4;
uint32_t reserved:12;
} hw_gen_event;
struct hw_cache_event {
uint32_t result_id:1;
uint32_t op_id:2;
uint32_t cache_id:13;
uint32_t event_type:4;
uint32_t reserved:12;
} hw_cache_event;
};
uint32_t event_idx;
};
};
static const struct sbi_pmu_event_data pmu_hw_event_map[] = {
[PERF_COUNT_HW_CPU_CYCLES] = {.hw_gen_event = {
SBI_PMU_HW_CPU_CYCLES,
SBI_PMU_EVENT_TYPE_HW, 0}},
[PERF_COUNT_HW_INSTRUCTIONS] = {.hw_gen_event = {
SBI_PMU_HW_INSTRUCTIONS,
SBI_PMU_EVENT_TYPE_HW, 0}},
[PERF_COUNT_HW_CACHE_REFERENCES] = {.hw_gen_event = {
SBI_PMU_HW_CACHE_REFERENCES,
SBI_PMU_EVENT_TYPE_HW, 0}},
[PERF_COUNT_HW_CACHE_MISSES] = {.hw_gen_event = {
SBI_PMU_HW_CACHE_MISSES,
SBI_PMU_EVENT_TYPE_HW, 0}},
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = {.hw_gen_event = {
SBI_PMU_HW_BRANCH_INSTRUCTIONS,
SBI_PMU_EVENT_TYPE_HW, 0}},
[PERF_COUNT_HW_BRANCH_MISSES] = {.hw_gen_event = {
SBI_PMU_HW_BRANCH_MISSES,
SBI_PMU_EVENT_TYPE_HW, 0}},
[PERF_COUNT_HW_BUS_CYCLES] = {.hw_gen_event = {
SBI_PMU_HW_BUS_CYCLES,
SBI_PMU_EVENT_TYPE_HW, 0}},
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = {.hw_gen_event = {
SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
SBI_PMU_EVENT_TYPE_HW, 0}},
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = {.hw_gen_event = {
SBI_PMU_HW_STALLED_CYCLES_BACKEND,
SBI_PMU_EVENT_TYPE_HW, 0}},
[PERF_COUNT_HW_REF_CPU_CYCLES] = {.hw_gen_event = {
SBI_PMU_HW_REF_CPU_CYCLES,
SBI_PMU_EVENT_TYPE_HW, 0}},
};
#define C(x) PERF_COUNT_HW_CACHE_##x
static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
},
[C(NODE)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
},
},
};
static int pmu_sbi_ctr_get_width(int idx)
{
return pmu_ctr_list[idx].width;
}
static bool pmu_sbi_ctr_is_fw(int cidx)
{
union sbi_pmu_ctr_info *info;
info = &pmu_ctr_list[cidx];
if (!info)
return false;
return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
}
static int pmu_sbi_ctr_get_idx(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
struct sbiret ret;
int idx;
uint64_t cbase = 0;
unsigned long cflags = 0;
if (event->attr.exclude_kernel)
cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
if (event->attr.exclude_user)
cflags |= SBI_PMU_CFG_FLAG_SET_UINH;
/* retrieve the available counter index */
#if defined(CONFIG_32BIT)
ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
rvpmu->cmask, cflags, hwc->event_base, hwc->config,
hwc->config >> 32);
#else
ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
rvpmu->cmask, cflags, hwc->event_base, hwc->config, 0);
#endif
if (ret.error) {
pr_debug("Not able to find a counter for event %lx config %llx\n",
hwc->event_base, hwc->config);
return sbi_err_map_linux_errno(ret.error);
}
idx = ret.value;
if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
return -ENOENT;
/* Additional sanity check for the counter id */
if (pmu_sbi_ctr_is_fw(idx)) {
if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
return idx;
} else {
if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
return idx;
}
return -ENOENT;
}
static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
int idx = hwc->idx;
if (pmu_sbi_ctr_is_fw(idx))
clear_bit(idx, cpuc->used_fw_ctrs);
else
clear_bit(idx, cpuc->used_hw_ctrs);
}
static int pmu_event_find_cache(u64 config)
{
unsigned int cache_type, cache_op, cache_result, ret;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return -EINVAL;
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return -EINVAL;
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
return ret;
}
static bool pmu_sbi_is_fw_event(struct perf_event *event)
{
u32 type = event->attr.type;
u64 config = event->attr.config;
if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
return true;
else
return false;
}
static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
{
u32 type = event->attr.type;
u64 config = event->attr.config;
int bSoftware;
u64 raw_config_val;
int ret;
switch (type) {
case PERF_TYPE_HARDWARE:
if (config >= PERF_COUNT_HW_MAX)
return -EINVAL;
ret = pmu_hw_event_map[event->attr.config].event_idx;
break;
case PERF_TYPE_HW_CACHE:
ret = pmu_event_find_cache(config);
break;
case PERF_TYPE_RAW:
/*
* As per SBI specification, the upper 16 bits must be unused for
* a raw event. Use the MSB (63b) to distinguish between hardware
* raw event and firmware events.
*/
bSoftware = config >> 63;
raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
if (bSoftware) {
if (raw_config_val < SBI_PMU_FW_MAX)
ret = (raw_config_val & 0xFFFF) |
(SBI_PMU_EVENT_TYPE_FW << 16);
else
return -EINVAL;
} else {
ret = RISCV_PMU_RAW_EVENT_IDX;
*econfig = raw_config_val;
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static u64 pmu_sbi_ctr_read(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
struct sbiret ret;
union sbi_pmu_ctr_info info;
u64 val = 0;
if (pmu_sbi_is_fw_event(event)) {
ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
hwc->idx, 0, 0, 0, 0, 0);
if (!ret.error)
val = ret.value;
} else {
info = pmu_ctr_list[idx];
val = riscv_pmu_ctr_read_csr(info.csr);
if (IS_ENABLED(CONFIG_32BIT))
val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val;
}
return val;
}
static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
{
struct sbiret ret;
struct hw_perf_event *hwc = &event->hw;
unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
#if defined(CONFIG_32BIT)
ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
1, flag, ival, ival >> 32, 0);
#else
ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
1, flag, ival, 0, 0);
#endif
if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
pr_err("Starting counter idx %d failed with error %d\n",
hwc->idx, sbi_err_map_linux_errno(ret.error));
}
static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
{
struct sbiret ret;
struct hw_perf_event *hwc = &event->hw;
ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
flag != SBI_PMU_STOP_FLAG_RESET)
pr_err("Stopping counter idx %d failed with error %d\n",
hwc->idx, sbi_err_map_linux_errno(ret.error));
}
static int pmu_sbi_find_num_ctrs(void)
{
struct sbiret ret;
ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
if (!ret.error)
return ret.value;
else
return sbi_err_map_linux_errno(ret.error);
}
static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
{
struct sbiret ret;
int i, num_hw_ctr = 0, num_fw_ctr = 0;
union sbi_pmu_ctr_info cinfo;
pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
if (!pmu_ctr_list)
return -ENOMEM;
for (i = 0; i < nctr; i++) {
ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
if (ret.error)
/* The logical counter ids are not expected to be contiguous */
continue;
*mask |= BIT(i);
cinfo.value = ret.value;
if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
num_fw_ctr++;
else
num_hw_ctr++;
pmu_ctr_list[i].value = cinfo.value;
}
pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
return 0;
}
static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
{
/*
* No need to check the error because we are disabling all the counters
* which may include counters that are not enabled yet.
*/
sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
0, pmu->cmask, 0, 0, 0, 0);
}
static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
{
struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
/* No need to check the error here as we can't do anything about the error */
sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0,
cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0);
}
/*
* This function starts all the used counters in two step approach.
* Any counter that did not overflow can be start in a single step
* while the overflowed counters need to be started with updated initialization
* value.
*/
static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
unsigned long ctr_ovf_mask)
{
int idx = 0;
struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
struct perf_event *event;
unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
unsigned long ctr_start_mask = 0;
uint64_t max_period;
struct hw_perf_event *hwc;
u64 init_val = 0;
ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask;
/* Start all the counters that did not overflow in a single shot */
sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask,
0, 0, 0, 0);
/* Reinitialize and start all the counter that overflowed */
while (ctr_ovf_mask) {
if (ctr_ovf_mask & 0x01) {
event = cpu_hw_evt->events[idx];
hwc = &event->hw;
max_period = riscv_pmu_ctr_get_width_mask(event);
init_val = local64_read(&hwc->prev_count) & max_period;
#if defined(CONFIG_32BIT)
sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
flag, init_val, init_val >> 32, 0);
#else
sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
flag, init_val, 0, 0);
#endif
perf_event_update_userpage(event);
}
ctr_ovf_mask = ctr_ovf_mask >> 1;
idx++;
}
}
static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
{
struct perf_sample_data data;
struct pt_regs *regs;
struct hw_perf_event *hw_evt;
union sbi_pmu_ctr_info *info;
int lidx, hidx, fidx;
struct riscv_pmu *pmu;
struct perf_event *event;
unsigned long overflow;
unsigned long overflowed_ctrs = 0;
struct cpu_hw_events *cpu_hw_evt = dev;
u64 start_clock = sched_clock();
if (WARN_ON_ONCE(!cpu_hw_evt))
return IRQ_NONE;
/* Firmware counter don't support overflow yet */
fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
event = cpu_hw_evt->events[fidx];
if (!event) {
csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
return IRQ_NONE;
}
pmu = to_riscv_pmu(event->pmu);
pmu_sbi_stop_hw_ctrs(pmu);
/* Overflow status register should only be read after counter are stopped */
ALT_SBI_PMU_OVERFLOW(overflow);
/*
* Overflow interrupt pending bit should only be cleared after stopping
* all the counters to avoid any race condition.
*/
csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
/* No overflow bit is set */
if (!overflow)
return IRQ_NONE;
regs = get_irq_regs();
for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
struct perf_event *event = cpu_hw_evt->events[lidx];
/* Skip if invalid event or user did not request a sampling */
if (!event || !is_sampling_event(event))
continue;
info = &pmu_ctr_list[lidx];
/* Do a sanity check */
if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
continue;
/* compute hardware counter index */
hidx = info->csr - CSR_CYCLE;
/* check if the corresponding bit is set in sscountovf */
if (!(overflow & (1 << hidx)))
continue;
/*
* Keep a track of overflowed counters so that they can be started
* with updated initial value.
*/
overflowed_ctrs |= 1 << lidx;
hw_evt = &event->hw;
riscv_pmu_event_update(event);
perf_sample_data_init(&data, 0, hw_evt->last_period);
if (riscv_pmu_event_set_period(event)) {
/*
* Unlike other ISAs, RISC-V don't have to disable interrupts
* to avoid throttling here. As per the specification, the
* interrupt remains disabled until the OF bit is set.
* Interrupts are enabled again only during the start.
* TODO: We will need to stop the guest counters once
* virtualization support is added.
*/
perf_event_overflow(event, &data, regs);
}
}
pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
perf_sample_event_took(sched_clock() - start_clock);
return IRQ_HANDLED;
}
static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
{
struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
/*
* Enable the access for CYCLE, TIME, and INSTRET CSRs from userspace,
* as is necessary to maintain uABI compatibility.
*/
csr_write(CSR_SCOUNTEREN, 0x7);
/* Stop all the counters so that they can be enabled from perf */
pmu_sbi_stop_all(pmu);
if (riscv_pmu_use_irq) {
cpu_hw_evt->irq = riscv_pmu_irq;
csr_clear(CSR_IP, BIT(riscv_pmu_irq_num));
csr_set(CSR_IE, BIT(riscv_pmu_irq_num));
enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
}
return 0;
}
static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
{
if (riscv_pmu_use_irq) {
disable_percpu_irq(riscv_pmu_irq);
csr_clear(CSR_IE, BIT(riscv_pmu_irq_num));
}
/* Disable all counters access for user mode now */
csr_write(CSR_SCOUNTEREN, 0x0);
return 0;
}
static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
{
int ret;
struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
struct device_node *cpu, *child;
struct irq_domain *domain = NULL;
if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
riscv_pmu_irq_num = RV_IRQ_PMU;
riscv_pmu_use_irq = true;
} else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
riscv_cached_marchid(0) == 0 &&
riscv_cached_mimpid(0) == 0) {
riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
riscv_pmu_use_irq = true;
}
if (!riscv_pmu_use_irq)
return -EOPNOTSUPP;
for_each_of_cpu_node(cpu) {
child = of_get_compatible_child(cpu, "riscv,cpu-intc");
if (!child) {
pr_err("Failed to find INTC node\n");
of_node_put(cpu);
return -ENODEV;
}
domain = irq_find_host(child);
of_node_put(child);
if (domain) {
of_node_put(cpu);
break;
}
}
if (!domain) {
pr_err("Failed to find INTC IRQ root domain\n");
return -ENODEV;
}
riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
if (!riscv_pmu_irq) {
pr_err("Failed to map PMU interrupt for node\n");
return -ENODEV;
}
ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
if (ret) {
pr_err("registering percpu irq failed [%d]\n", ret);
return ret;
}
return 0;
}
#ifdef CONFIG_CPU_PM
static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
void *v)
{
struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
struct perf_event *event;
int idx;
if (!enabled)
return NOTIFY_OK;
for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
event = cpuc->events[idx];
if (!event)
continue;
switch (cmd) {
case CPU_PM_ENTER:
/*
* Stop and update the counter
*/
riscv_pmu_stop(event, PERF_EF_UPDATE);
break;
case CPU_PM_EXIT:
case CPU_PM_ENTER_FAILED:
/*
* Restore and enable the counter.
*
* Requires RCU read locking to be functional,
* wrap the call within RCU_NONIDLE to make the
* RCU subsystem aware this cpu is not idle from
* an RCU perspective for the riscv_pmu_start() call
* duration.
*/
RCU_NONIDLE(riscv_pmu_start(event, PERF_EF_RELOAD));
break;
default:
break;
}
}
return NOTIFY_OK;
}
static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
{
pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
}
static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
{
cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
}
#else
static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
#endif
static void riscv_pmu_destroy(struct riscv_pmu *pmu)
{
riscv_pm_pmu_unregister(pmu);
cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
}
static int pmu_sbi_device_probe(struct platform_device *pdev)
{
struct riscv_pmu *pmu = NULL;
unsigned long cmask = 0;
int ret = -ENODEV;
int num_counters;
pr_info("SBI PMU extension is available\n");
pmu = riscv_pmu_alloc();
if (!pmu)
return -ENOMEM;
num_counters = pmu_sbi_find_num_ctrs();
if (num_counters < 0) {
pr_err("SBI PMU extension doesn't provide any counters\n");
goto out_free;
}
/* cache all the information about counters now */
if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
goto out_free;
ret = pmu_sbi_setup_irqs(pmu, pdev);
if (ret < 0) {
pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
}
pmu->pmu.attr_groups = riscv_pmu_attr_groups;
pmu->cmask = cmask;
pmu->ctr_start = pmu_sbi_ctr_start;
pmu->ctr_stop = pmu_sbi_ctr_stop;
pmu->event_map = pmu_sbi_event_map;
pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
pmu->ctr_get_width = pmu_sbi_ctr_get_width;
pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
pmu->ctr_read = pmu_sbi_ctr_read;
ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
if (ret)
return ret;
ret = riscv_pm_pmu_register(pmu);
if (ret)
goto out_unregister;
ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
if (ret)
goto out_unregister;
return 0;
out_unregister:
riscv_pmu_destroy(pmu);
out_free:
kfree(pmu);
return ret;
}
static struct platform_driver pmu_sbi_driver = {
.probe = pmu_sbi_device_probe,
.driver = {
.name = RISCV_PMU_PDEV_NAME,
},
};
static int __init pmu_sbi_devinit(void)
{
int ret;
struct platform_device *pdev;
if (sbi_spec_version < sbi_mk_version(0, 3) ||
sbi_probe_extension(SBI_EXT_PMU) <= 0) {
return 0;
}
ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
"perf/riscv/pmu:starting",
pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
if (ret) {
pr_err("CPU hotplug notifier could not be registered: %d\n",
ret);
return ret;
}
ret = platform_driver_register(&pmu_sbi_driver);
if (ret)
return ret;
pdev = platform_device_register_simple(RISCV_PMU_PDEV_NAME, -1, NULL, 0);
if (IS_ERR(pdev)) {
platform_driver_unregister(&pmu_sbi_driver);
return PTR_ERR(pdev);
}
/* Notify legacy implementation that SBI pmu is available*/
riscv_pmu_legacy_skip_init();
return ret;
}
device_initcall(pmu_sbi_devinit)
|