summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDaniel Borkmann <dborkman@redhat.com>2013-12-20 22:40:29 +0100
committerPablo Neira Ayuso <pablo@netfilter.org>2014-01-03 23:41:26 +0100
commit34ce324019e76f6d93768d68343a0e78f464d754 (patch)
treed364d3b2d0e1f7b17548ba303755de1f289b9ad4
parent9dcbe1b87c4a8e3ed62e95369c18709541a3dc8f (diff)
downloadlinux-34ce324019e76f6d93768d68343a0e78f464d754.tar.gz
linux-34ce324019e76f6d93768d68343a0e78f464d754.tar.bz2
linux-34ce324019e76f6d93768d68343a0e78f464d754.zip
netfilter: nf_nat: add full port randomization support
We currently use prandom_u32() for allocation of ports in tcp bind(0) and udp code. In case of plain SNAT we try to keep the ports as is or increment on collision. SNAT --random mode does use per-destination incrementing port allocation. As a recent paper pointed out in [1] that this mode of port allocation makes it possible to an attacker to find the randomly allocated ports through a timing side-channel in a socket overloading attack conducted through an off-path attacker. So, NF_NAT_RANGE_PROTO_RANDOM actually weakens the port randomization in regard to the attack described in this paper. As we need to keep compatibility, add another flag called NF_NAT_RANGE_PROTO_RANDOM_FULLY that would replace the NF_NAT_RANGE_PROTO_RANDOM hash-based port selection algorithm with a simple prandom_u32() in order to mitigate this attack vector. Note that the lfsr113's internal state is periodically reseeded by the kernel through a local secure entropy source. More details can be found in [1], the basic idea is to send bursts of packets to a socket to overflow its receive queue and measure the latency to detect a possible retransmit when the port is found. Because of increasing ports to given destination and port, further allocations can be predicted. This information could then be used by an attacker for e.g. for cache-poisoning, NS pinning, and degradation of service attacks against DNS servers [1]: The best defense against the poisoning attacks is to properly deploy and validate DNSSEC; DNSSEC provides security not only against off-path attacker but even against MitM attacker. We hope that our results will help motivate administrators to adopt DNSSEC. However, full DNSSEC deployment make take significant time, and until that happens, we recommend short-term, non-cryptographic defenses. We recommend to support full port randomisation, according to practices recommended in [2], and to avoid per-destination sequential port allocation, which we show may be vulnerable to derandomisation attacks. Joint work between Hannes Frederic Sowa and Daniel Borkmann. [1] https://sites.google.com/site/hayashulman/files/NIC-derandomisation.pdf [2] http://arxiv.org/pdf/1205.5190v1.pdf Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
-rw-r--r--include/uapi/linux/netfilter/nf_nat.h12
-rw-r--r--net/netfilter/nf_nat_core.c4
-rw-r--r--net/netfilter/nf_nat_proto_common.c10
3 files changed, 16 insertions, 10 deletions
diff --git a/include/uapi/linux/netfilter/nf_nat.h b/include/uapi/linux/netfilter/nf_nat.h
index bf0cc373ffb6..1ad3659102b6 100644
--- a/include/uapi/linux/netfilter/nf_nat.h
+++ b/include/uapi/linux/netfilter/nf_nat.h
@@ -4,10 +4,14 @@
#include <linux/netfilter.h>
#include <linux/netfilter/nf_conntrack_tuple_common.h>
-#define NF_NAT_RANGE_MAP_IPS 1
-#define NF_NAT_RANGE_PROTO_SPECIFIED 2
-#define NF_NAT_RANGE_PROTO_RANDOM 4
-#define NF_NAT_RANGE_PERSISTENT 8
+#define NF_NAT_RANGE_MAP_IPS (1 << 0)
+#define NF_NAT_RANGE_PROTO_SPECIFIED (1 << 1)
+#define NF_NAT_RANGE_PROTO_RANDOM (1 << 2)
+#define NF_NAT_RANGE_PERSISTENT (1 << 3)
+#define NF_NAT_RANGE_PROTO_RANDOM_FULLY (1 << 4)
+
+#define NF_NAT_RANGE_PROTO_RANDOM_ALL \
+ (NF_NAT_RANGE_PROTO_RANDOM | NF_NAT_RANGE_PROTO_RANDOM_FULLY)
struct nf_nat_ipv4_range {
unsigned int flags;
diff --git a/net/netfilter/nf_nat_core.c b/net/netfilter/nf_nat_core.c
index 63a815402211..d3f5cd6dd962 100644
--- a/net/netfilter/nf_nat_core.c
+++ b/net/netfilter/nf_nat_core.c
@@ -315,7 +315,7 @@ get_unique_tuple(struct nf_conntrack_tuple *tuple,
* manips not an issue.
*/
if (maniptype == NF_NAT_MANIP_SRC &&
- !(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
+ !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
/* try the original tuple first */
if (in_range(l3proto, l4proto, orig_tuple, range)) {
if (!nf_nat_used_tuple(orig_tuple, ct)) {
@@ -339,7 +339,7 @@ get_unique_tuple(struct nf_conntrack_tuple *tuple,
*/
/* Only bother mapping if it's not already in range and unique */
- if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
+ if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
if (l4proto->in_range(tuple, maniptype,
&range->min_proto,
diff --git a/net/netfilter/nf_nat_proto_common.c b/net/netfilter/nf_nat_proto_common.c
index 9baaf734c142..83a72a235cae 100644
--- a/net/netfilter/nf_nat_proto_common.c
+++ b/net/netfilter/nf_nat_proto_common.c
@@ -74,22 +74,24 @@ void nf_nat_l4proto_unique_tuple(const struct nf_nat_l3proto *l3proto,
range_size = ntohs(range->max_proto.all) - min + 1;
}
- if (range->flags & NF_NAT_RANGE_PROTO_RANDOM)
+ if (range->flags & NF_NAT_RANGE_PROTO_RANDOM) {
off = l3proto->secure_port(tuple, maniptype == NF_NAT_MANIP_SRC
? tuple->dst.u.all
: tuple->src.u.all);
- else
+ } else if (range->flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY) {
+ off = prandom_u32();
+ } else {
off = *rover;
+ }
for (i = 0; ; ++off) {
*portptr = htons(min + off % range_size);
if (++i != range_size && nf_nat_used_tuple(tuple, ct))
continue;
- if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM))
+ if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL))
*rover = off;
return;
}
- return;
}
EXPORT_SYMBOL_GPL(nf_nat_l4proto_unique_tuple);