summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2013-07-10 18:11:43 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2013-07-10 18:11:43 -0700
commitdb6e330490e448733e7836833e25e96034770058 (patch)
treeee23fbe6831bbd757328b3d80b4faa6651b2c314
parentae9249493049fd41fa52fc0470251ee1efaabe74 (diff)
parent98d1e64f95b177d0f14efbdf695a1b28e1428035 (diff)
downloadlinux-db6e330490e448733e7836833e25e96034770058.tar.gz
linux-db6e330490e448733e7836833e25e96034770058.tar.bz2
linux-db6e330490e448733e7836833e25e96034770058.zip
Merge branch 'akpm' (patches from Andrew Morton)
Merge more patches from Andrew Morton: "The rest of MM" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: mm: remove free_area_cache zswap: add documentation zswap: add to mm/ zbud: add to mm/
-rw-r--r--Documentation/vm/zswap.txt68
-rw-r--r--arch/arm/mm/mmap.c2
-rw-r--r--arch/arm64/mm/mmap.c2
-rw-r--r--arch/mips/mm/mmap.c2
-rw-r--r--arch/powerpc/mm/mmap.c2
-rw-r--r--arch/s390/mm/mmap.c4
-rw-r--r--arch/sparc/kernel/sys_sparc_64.c2
-rw-r--r--arch/tile/mm/mmap.c2
-rw-r--r--arch/x86/ia32/ia32_aout.c2
-rw-r--r--arch/x86/mm/mmap.c2
-rw-r--r--fs/binfmt_aout.c2
-rw-r--r--fs/binfmt_elf.c2
-rw-r--r--include/linux/mm_types.h3
-rw-r--r--include/linux/sched.h2
-rw-r--r--include/linux/zbud.h22
-rw-r--r--kernel/fork.c4
-rw-r--r--mm/Kconfig30
-rw-r--r--mm/Makefile2
-rw-r--r--mm/mmap.c28
-rw-r--r--mm/nommu.c4
-rw-r--r--mm/util.c1
-rw-r--r--mm/zbud.c527
-rw-r--r--mm/zswap.c943
23 files changed, 1592 insertions, 66 deletions
diff --git a/Documentation/vm/zswap.txt b/Documentation/vm/zswap.txt
new file mode 100644
index 000000000000..7e492d8aaeaf
--- /dev/null
+++ b/Documentation/vm/zswap.txt
@@ -0,0 +1,68 @@
+Overview:
+
+Zswap is a lightweight compressed cache for swap pages. It takes pages that are
+in the process of being swapped out and attempts to compress them into a
+dynamically allocated RAM-based memory pool. zswap basically trades CPU cycles
+for potentially reduced swap I/O.  This trade-off can also result in a
+significant performance improvement if reads from the compressed cache are
+faster than reads from a swap device.
+
+NOTE: Zswap is a new feature as of v3.11 and interacts heavily with memory
+reclaim. This interaction has not be fully explored on the large set of
+potential configurations and workloads that exist. For this reason, zswap
+is a work in progress and should be considered experimental.
+
+Some potential benefits:
+* Desktop/laptop users with limited RAM capacities can mitigate the
+    performance impact of swapping.
+* Overcommitted guests that share a common I/O resource can
+    dramatically reduce their swap I/O pressure, avoiding heavy handed I/O
+ throttling by the hypervisor. This allows more work to get done with less
+ impact to the guest workload and guests sharing the I/O subsystem
+* Users with SSDs as swap devices can extend the life of the device by
+    drastically reducing life-shortening writes.
+
+Zswap evicts pages from compressed cache on an LRU basis to the backing swap
+device when the compressed pool reaches it size limit. This requirement had
+been identified in prior community discussions.
+
+To enabled zswap, the "enabled" attribute must be set to 1 at boot time. e.g.
+zswap.enabled=1
+
+Design:
+
+Zswap receives pages for compression through the Frontswap API and is able to
+evict pages from its own compressed pool on an LRU basis and write them back to
+the backing swap device in the case that the compressed pool is full.
+
+Zswap makes use of zbud for the managing the compressed memory pool. Each
+allocation in zbud is not directly accessible by address. Rather, a handle is
+return by the allocation routine and that handle must be mapped before being
+accessed. The compressed memory pool grows on demand and shrinks as compressed
+pages are freed. The pool is not preallocated.
+
+When a swap page is passed from frontswap to zswap, zswap maintains a mapping
+of the swap entry, a combination of the swap type and swap offset, to the zbud
+handle that references that compressed swap page. This mapping is achieved
+with a red-black tree per swap type. The swap offset is the search key for the
+tree nodes.
+
+During a page fault on a PTE that is a swap entry, frontswap calls the zswap
+load function to decompress the page into the page allocated by the page fault
+handler.
+
+Once there are no PTEs referencing a swap page stored in zswap (i.e. the count
+in the swap_map goes to 0) the swap code calls the zswap invalidate function,
+via frontswap, to free the compressed entry.
+
+Zswap seeks to be simple in its policies. Sysfs attributes allow for one user
+controlled policies:
+* max_pool_percent - The maximum percentage of memory that the compressed
+ pool can occupy.
+
+Zswap allows the compressor to be selected at kernel boot time by setting the
+“compressor” attribute. The default compressor is lzo. e.g.
+zswap.compressor=deflate
+
+A debugfs interface is provided for various statistic about pool size, number
+of pages stored, and various counters for the reasons pages are rejected.
diff --git a/arch/arm/mm/mmap.c b/arch/arm/mm/mmap.c
index 10062ceadd1c..0c6356255fe3 100644
--- a/arch/arm/mm/mmap.c
+++ b/arch/arm/mm/mmap.c
@@ -181,11 +181,9 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
if (mmap_is_legacy()) {
mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
mm->get_unmapped_area = arch_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
} else {
mm->mmap_base = mmap_base(random_factor);
mm->get_unmapped_area = arch_get_unmapped_area_topdown;
- mm->unmap_area = arch_unmap_area_topdown;
}
}
diff --git a/arch/arm64/mm/mmap.c b/arch/arm64/mm/mmap.c
index 7c7be7855638..8ed6cb1a900f 100644
--- a/arch/arm64/mm/mmap.c
+++ b/arch/arm64/mm/mmap.c
@@ -90,11 +90,9 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
if (mmap_is_legacy()) {
mm->mmap_base = TASK_UNMAPPED_BASE;
mm->get_unmapped_area = arch_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
} else {
mm->mmap_base = mmap_base();
mm->get_unmapped_area = arch_get_unmapped_area_topdown;
- mm->unmap_area = arch_unmap_area_topdown;
}
}
EXPORT_SYMBOL_GPL(arch_pick_mmap_layout);
diff --git a/arch/mips/mm/mmap.c b/arch/mips/mm/mmap.c
index 7e5fe2790d8a..f1baadd56e82 100644
--- a/arch/mips/mm/mmap.c
+++ b/arch/mips/mm/mmap.c
@@ -158,11 +158,9 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
if (mmap_is_legacy()) {
mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
mm->get_unmapped_area = arch_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
} else {
mm->mmap_base = mmap_base(random_factor);
mm->get_unmapped_area = arch_get_unmapped_area_topdown;
- mm->unmap_area = arch_unmap_area_topdown;
}
}
diff --git a/arch/powerpc/mm/mmap.c b/arch/powerpc/mm/mmap.c
index 67a42ed0d2fc..cb8bdbe4972f 100644
--- a/arch/powerpc/mm/mmap.c
+++ b/arch/powerpc/mm/mmap.c
@@ -92,10 +92,8 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
if (mmap_is_legacy()) {
mm->mmap_base = TASK_UNMAPPED_BASE;
mm->get_unmapped_area = arch_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
} else {
mm->mmap_base = mmap_base();
mm->get_unmapped_area = arch_get_unmapped_area_topdown;
- mm->unmap_area = arch_unmap_area_topdown;
}
}
diff --git a/arch/s390/mm/mmap.c b/arch/s390/mm/mmap.c
index 06bafec00278..40023290ee5b 100644
--- a/arch/s390/mm/mmap.c
+++ b/arch/s390/mm/mmap.c
@@ -91,11 +91,9 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
if (mmap_is_legacy()) {
mm->mmap_base = TASK_UNMAPPED_BASE;
mm->get_unmapped_area = arch_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
} else {
mm->mmap_base = mmap_base();
mm->get_unmapped_area = arch_get_unmapped_area_topdown;
- mm->unmap_area = arch_unmap_area_topdown;
}
}
@@ -176,11 +174,9 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
if (mmap_is_legacy()) {
mm->mmap_base = TASK_UNMAPPED_BASE;
mm->get_unmapped_area = s390_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
} else {
mm->mmap_base = mmap_base();
mm->get_unmapped_area = s390_get_unmapped_area_topdown;
- mm->unmap_area = arch_unmap_area_topdown;
}
}
diff --git a/arch/sparc/kernel/sys_sparc_64.c b/arch/sparc/kernel/sys_sparc_64.c
index 2daaaa6eda23..51561b8b15ba 100644
--- a/arch/sparc/kernel/sys_sparc_64.c
+++ b/arch/sparc/kernel/sys_sparc_64.c
@@ -290,7 +290,6 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
sysctl_legacy_va_layout) {
mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
mm->get_unmapped_area = arch_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
} else {
/* We know it's 32-bit */
unsigned long task_size = STACK_TOP32;
@@ -302,7 +301,6 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
mm->mmap_base = PAGE_ALIGN(task_size - gap - random_factor);
mm->get_unmapped_area = arch_get_unmapped_area_topdown;
- mm->unmap_area = arch_unmap_area_topdown;
}
}
diff --git a/arch/tile/mm/mmap.c b/arch/tile/mm/mmap.c
index f96f4cec602a..d67d91ebf63e 100644
--- a/arch/tile/mm/mmap.c
+++ b/arch/tile/mm/mmap.c
@@ -66,10 +66,8 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
if (!is_32bit || rlimit(RLIMIT_STACK) == RLIM_INFINITY) {
mm->mmap_base = TASK_UNMAPPED_BASE;
mm->get_unmapped_area = arch_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
} else {
mm->mmap_base = mmap_base(mm);
mm->get_unmapped_area = arch_get_unmapped_area_topdown;
- mm->unmap_area = arch_unmap_area_topdown;
}
}
diff --git a/arch/x86/ia32/ia32_aout.c b/arch/x86/ia32/ia32_aout.c
index 52ff81cce008..bae3aba95b15 100644
--- a/arch/x86/ia32/ia32_aout.c
+++ b/arch/x86/ia32/ia32_aout.c
@@ -308,8 +308,6 @@ static int load_aout_binary(struct linux_binprm *bprm)
(current->mm->start_data = N_DATADDR(ex));
current->mm->brk = ex.a_bss +
(current->mm->start_brk = N_BSSADDR(ex));
- current->mm->free_area_cache = TASK_UNMAPPED_BASE;
- current->mm->cached_hole_size = 0;
retval = setup_arg_pages(bprm, IA32_STACK_TOP, EXSTACK_DEFAULT);
if (retval < 0) {
diff --git a/arch/x86/mm/mmap.c b/arch/x86/mm/mmap.c
index 845df6835f9f..62c29a5bfe26 100644
--- a/arch/x86/mm/mmap.c
+++ b/arch/x86/mm/mmap.c
@@ -115,10 +115,8 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
if (mmap_is_legacy()) {
mm->mmap_base = mmap_legacy_base();
mm->get_unmapped_area = arch_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
} else {
mm->mmap_base = mmap_base();
mm->get_unmapped_area = arch_get_unmapped_area_topdown;
- mm->unmap_area = arch_unmap_area_topdown;
}
}
diff --git a/fs/binfmt_aout.c b/fs/binfmt_aout.c
index bce87694f7b0..89dec7f789a4 100644
--- a/fs/binfmt_aout.c
+++ b/fs/binfmt_aout.c
@@ -255,8 +255,6 @@ static int load_aout_binary(struct linux_binprm * bprm)
(current->mm->start_data = N_DATADDR(ex));
current->mm->brk = ex.a_bss +
(current->mm->start_brk = N_BSSADDR(ex));
- current->mm->free_area_cache = current->mm->mmap_base;
- current->mm->cached_hole_size = 0;
retval = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
if (retval < 0) {
diff --git a/fs/binfmt_elf.c b/fs/binfmt_elf.c
index f8a0b0efda44..100edcc5e312 100644
--- a/fs/binfmt_elf.c
+++ b/fs/binfmt_elf.c
@@ -738,8 +738,6 @@ static int load_elf_binary(struct linux_binprm *bprm)
/* Do this so that we can load the interpreter, if need be. We will
change some of these later */
- current->mm->free_area_cache = current->mm->mmap_base;
- current->mm->cached_hole_size = 0;
retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
executable_stack);
if (retval < 0) {
diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h
index ace9a5f01c64..fb425aa16c01 100644
--- a/include/linux/mm_types.h
+++ b/include/linux/mm_types.h
@@ -330,12 +330,9 @@ struct mm_struct {
unsigned long (*get_unmapped_area) (struct file *filp,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags);
- void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
#endif
unsigned long mmap_base; /* base of mmap area */
unsigned long task_size; /* size of task vm space */
- unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
- unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
unsigned long highest_vm_end; /* highest vma end address */
pgd_t * pgd;
atomic_t mm_users; /* How many users with user space? */
diff --git a/include/linux/sched.h b/include/linux/sched.h
index f99d57e0ae47..50d04b92ceda 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -322,8 +322,6 @@ extern unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags);
-extern void arch_unmap_area(struct mm_struct *, unsigned long);
-extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
#else
static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
#endif
diff --git a/include/linux/zbud.h b/include/linux/zbud.h
new file mode 100644
index 000000000000..2571a5cfa5fc
--- /dev/null
+++ b/include/linux/zbud.h
@@ -0,0 +1,22 @@
+#ifndef _ZBUD_H_
+#define _ZBUD_H_
+
+#include <linux/types.h>
+
+struct zbud_pool;
+
+struct zbud_ops {
+ int (*evict)(struct zbud_pool *pool, unsigned long handle);
+};
+
+struct zbud_pool *zbud_create_pool(gfp_t gfp, struct zbud_ops *ops);
+void zbud_destroy_pool(struct zbud_pool *pool);
+int zbud_alloc(struct zbud_pool *pool, int size, gfp_t gfp,
+ unsigned long *handle);
+void zbud_free(struct zbud_pool *pool, unsigned long handle);
+int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries);
+void *zbud_map(struct zbud_pool *pool, unsigned long handle);
+void zbud_unmap(struct zbud_pool *pool, unsigned long handle);
+u64 zbud_get_pool_size(struct zbud_pool *pool);
+
+#endif /* _ZBUD_H_ */
diff --git a/kernel/fork.c b/kernel/fork.c
index 6e6a1c11b3e5..66635c80a813 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -365,8 +365,6 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
mm->locked_vm = 0;
mm->mmap = NULL;
mm->mmap_cache = NULL;
- mm->free_area_cache = oldmm->mmap_base;
- mm->cached_hole_size = ~0UL;
mm->map_count = 0;
cpumask_clear(mm_cpumask(mm));
mm->mm_rb = RB_ROOT;
@@ -540,8 +538,6 @@ static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
mm->nr_ptes = 0;
memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
spin_lock_init(&mm->page_table_lock);
- mm->free_area_cache = TASK_UNMAPPED_BASE;
- mm->cached_hole_size = ~0UL;
mm_init_aio(mm);
mm_init_owner(mm, p);
diff --git a/mm/Kconfig b/mm/Kconfig
index 7e28ecfa8aa4..8028dcc6615c 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -478,6 +478,36 @@ config FRONTSWAP
If unsure, say Y to enable frontswap.
+config ZBUD
+ tristate
+ default n
+ help
+ A special purpose allocator for storing compressed pages.
+ It is designed to store up to two compressed pages per physical
+ page. While this design limits storage density, it has simple and
+ deterministic reclaim properties that make it preferable to a higher
+ density approach when reclaim will be used.
+
+config ZSWAP
+ bool "Compressed cache for swap pages (EXPERIMENTAL)"
+ depends on FRONTSWAP && CRYPTO=y
+ select CRYPTO_LZO
+ select ZBUD
+ default n
+ help
+ A lightweight compressed cache for swap pages. It takes
+ pages that are in the process of being swapped out and attempts to
+ compress them into a dynamically allocated RAM-based memory pool.
+ This can result in a significant I/O reduction on swap device and,
+ in the case where decompressing from RAM is faster that swap device
+ reads, can also improve workload performance.
+
+ This is marked experimental because it is a new feature (as of
+ v3.11) that interacts heavily with memory reclaim. While these
+ interactions don't cause any known issues on simple memory setups,
+ they have not be fully explored on the large set of potential
+ configurations and workloads that exist.
+
config MEM_SOFT_DIRTY
bool "Track memory changes"
depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY
diff --git a/mm/Makefile b/mm/Makefile
index 72c5acb9345f..f00803386a67 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -32,6 +32,7 @@ obj-$(CONFIG_HAVE_MEMBLOCK) += memblock.o
obj-$(CONFIG_BOUNCE) += bounce.o
obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o
obj-$(CONFIG_FRONTSWAP) += frontswap.o
+obj-$(CONFIG_ZSWAP) += zswap.o
obj-$(CONFIG_HAS_DMA) += dmapool.o
obj-$(CONFIG_HUGETLBFS) += hugetlb.o
obj-$(CONFIG_NUMA) += mempolicy.o
@@ -58,3 +59,4 @@ obj-$(CONFIG_DEBUG_KMEMLEAK) += kmemleak.o
obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o
obj-$(CONFIG_CLEANCACHE) += cleancache.o
obj-$(CONFIG_MEMORY_ISOLATION) += page_isolation.o
+obj-$(CONFIG_ZBUD) += zbud.o
diff --git a/mm/mmap.c b/mm/mmap.c
index f81311173b4d..fbad7b091090 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -1878,15 +1878,6 @@ arch_get_unmapped_area(struct file *filp, unsigned long addr,
}
#endif
-void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
-{
- /*
- * Is this a new hole at the lowest possible address?
- */
- if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
- mm->free_area_cache = addr;
-}
-
/*
* This mmap-allocator allocates new areas top-down from below the
* stack's low limit (the base):
@@ -1943,19 +1934,6 @@ arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
}
#endif
-void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
-{
- /*
- * Is this a new hole at the highest possible address?
- */
- if (addr > mm->free_area_cache)
- mm->free_area_cache = addr;
-
- /* dont allow allocations above current base */
- if (mm->free_area_cache > mm->mmap_base)
- mm->free_area_cache = mm->mmap_base;
-}
-
unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
@@ -2376,7 +2354,6 @@ detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
{
struct vm_area_struct **insertion_point;
struct vm_area_struct *tail_vma = NULL;
- unsigned long addr;
insertion_point = (prev ? &prev->vm_next : &mm->mmap);
vma->vm_prev = NULL;
@@ -2393,11 +2370,6 @@ detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
} else
mm->highest_vm_end = prev ? prev->vm_end : 0;
tail_vma->vm_next = NULL;
- if (mm->unmap_area == arch_unmap_area)
- addr = prev ? prev->vm_end : mm->mmap_base;
- else
- addr = vma ? vma->vm_start : mm->mmap_base;
- mm->unmap_area(mm, addr);
mm->mmap_cache = NULL; /* Kill the cache. */
}
diff --git a/mm/nommu.c b/mm/nommu.c
index e44e6e0a125c..ecd1f158548e 100644
--- a/mm/nommu.c
+++ b/mm/nommu.c
@@ -1871,10 +1871,6 @@ unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
return -ENOMEM;
}
-void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
-{
-}
-
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen,
int even_cows)
diff --git a/mm/util.c b/mm/util.c
index ab1424dbe2e6..7441c41d00f6 100644
--- a/mm/util.c
+++ b/mm/util.c
@@ -295,7 +295,6 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
{
mm->mmap_base = TASK_UNMAPPED_BASE;
mm->get_unmapped_area = arch_get_unmapped_area;
- mm->unmap_area = arch_unmap_area;
}
#endif
diff --git a/mm/zbud.c b/mm/zbud.c
new file mode 100644
index 000000000000..9bb4710e3589
--- /dev/null
+++ b/mm/zbud.c
@@ -0,0 +1,527 @@
+/*
+ * zbud.c
+ *
+ * Copyright (C) 2013, Seth Jennings, IBM
+ *
+ * Concepts based on zcache internal zbud allocator by Dan Magenheimer.
+ *
+ * zbud is an special purpose allocator for storing compressed pages. Contrary
+ * to what its name may suggest, zbud is not a buddy allocator, but rather an
+ * allocator that "buddies" two compressed pages together in a single memory
+ * page.
+ *
+ * While this design limits storage density, it has simple and deterministic
+ * reclaim properties that make it preferable to a higher density approach when
+ * reclaim will be used.
+ *
+ * zbud works by storing compressed pages, or "zpages", together in pairs in a
+ * single memory page called a "zbud page". The first buddy is "left
+ * justifed" at the beginning of the zbud page, and the last buddy is "right
+ * justified" at the end of the zbud page. The benefit is that if either
+ * buddy is freed, the freed buddy space, coalesced with whatever slack space
+ * that existed between the buddies, results in the largest possible free region
+ * within the zbud page.
+ *
+ * zbud also provides an attractive lower bound on density. The ratio of zpages
+ * to zbud pages can not be less than 1. This ensures that zbud can never "do
+ * harm" by using more pages to store zpages than the uncompressed zpages would
+ * have used on their own.
+ *
+ * zbud pages are divided into "chunks". The size of the chunks is fixed at
+ * compile time and determined by NCHUNKS_ORDER below. Dividing zbud pages
+ * into chunks allows organizing unbuddied zbud pages into a manageable number
+ * of unbuddied lists according to the number of free chunks available in the
+ * zbud page.
+ *
+ * The zbud API differs from that of conventional allocators in that the
+ * allocation function, zbud_alloc(), returns an opaque handle to the user,
+ * not a dereferenceable pointer. The user must map the handle using
+ * zbud_map() in order to get a usable pointer by which to access the
+ * allocation data and unmap the handle with zbud_unmap() when operations
+ * on the allocation data are complete.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/atomic.h>
+#include <linux/list.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/preempt.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/zbud.h>
+
+/*****************
+ * Structures
+*****************/
+/*
+ * NCHUNKS_ORDER determines the internal allocation granularity, effectively
+ * adjusting internal fragmentation. It also determines the number of
+ * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
+ * allocation granularity will be in chunks of size PAGE_SIZE/64, and there
+ * will be 64 freelists per pool.
+ */
+#define NCHUNKS_ORDER 6
+
+#define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
+#define CHUNK_SIZE (1 << CHUNK_SHIFT)
+#define NCHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
+#define ZHDR_SIZE_ALIGNED CHUNK_SIZE
+
+/**
+ * struct zbud_pool - stores metadata for each zbud pool
+ * @lock: protects all pool fields and first|last_chunk fields of any
+ * zbud page in the pool
+ * @unbuddied: array of lists tracking zbud pages that only contain one buddy;
+ * the lists each zbud page is added to depends on the size of
+ * its free region.
+ * @buddied: list tracking the zbud pages that contain two buddies;
+ * these zbud pages are full
+ * @lru: list tracking the zbud pages in LRU order by most recently
+ * added buddy.
+ * @pages_nr: number of zbud pages in the pool.
+ * @ops: pointer to a structure of user defined operations specified at
+ * pool creation time.
+ *
+ * This structure is allocated at pool creation time and maintains metadata
+ * pertaining to a particular zbud pool.
+ */
+struct zbud_pool {
+ spinlock_t lock;
+ struct list_head unbuddied[NCHUNKS];
+ struct list_head buddied;
+ struct list_head lru;
+ u64 pages_nr;
+ struct zbud_ops *ops;
+};
+
+/*
+ * struct zbud_header - zbud page metadata occupying the first chunk of each
+ * zbud page.
+ * @buddy: links the zbud page into the unbuddied/buddied lists in the pool
+ * @lru: links the zbud page into the lru list in the pool
+ * @first_chunks: the size of the first buddy in chunks, 0 if free
+ * @last_chunks: the size of the last buddy in chunks, 0 if free
+ */
+struct zbud_header {
+ struct list_head buddy;
+ struct list_head lru;
+ unsigned int first_chunks;
+ unsigned int last_chunks;
+ bool under_reclaim;
+};
+
+/*****************
+ * Helpers
+*****************/
+/* Just to make the code easier to read */
+enum buddy {
+ FIRST,
+ LAST
+};
+
+/* Converts an allocation size in bytes to size in zbud chunks */
+static int size_to_chunks(int size)
+{
+ return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
+}
+
+#define for_each_unbuddied_list(_iter, _begin) \
+ for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
+
+/* Initializes the zbud header of a newly allocated zbud page */
+static struct zbud_header *init_zbud_page(struct page *page)
+{
+ struct zbud_header *zhdr = page_address(page);
+ zhdr->first_chunks = 0;
+ zhdr->last_chunks = 0;
+ INIT_LIST_HEAD(&zhdr->buddy);
+ INIT_LIST_HEAD(&zhdr->lru);
+ zhdr->under_reclaim = 0;
+ return zhdr;
+}
+
+/* Resets the struct page fields and frees the page */
+static void free_zbud_page(struct zbud_header *zhdr)
+{
+ __free_page(virt_to_page(zhdr));
+}
+
+/*
+ * Encodes the handle of a particular buddy within a zbud page
+ * Pool lock should be held as this function accesses first|last_chunks
+ */
+static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud)
+{
+ unsigned long handle;
+
+ /*
+ * For now, the encoded handle is actually just the pointer to the data
+ * but this might not always be the case. A little information hiding.
+ * Add CHUNK_SIZE to the handle if it is the first allocation to jump
+ * over the zbud header in the first chunk.
+ */
+ handle = (unsigned long)zhdr;
+ if (bud == FIRST)
+ /* skip over zbud header */
+ handle += ZHDR_SIZE_ALIGNED;
+ else /* bud == LAST */
+ handle += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
+ return handle;
+}
+
+/* Returns the zbud page where a given handle is stored */
+static struct zbud_header *handle_to_zbud_header(unsigned long handle)
+{
+ return (struct zbud_header *)(handle & PAGE_MASK);
+}
+
+/* Returns the number of free chunks in a zbud page */
+static int num_free_chunks(struct zbud_header *zhdr)
+{
+ /*
+ * Rather than branch for different situations, just use the fact that
+ * free buddies have a length of zero to simplify everything. -1 at the
+ * end for the zbud header.
+ */
+ return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks - 1;
+}
+
+/*****************
+ * API Functions
+*****************/
+/**
+ * zbud_create_pool() - create a new zbud pool
+ * @gfp: gfp flags when allocating the zbud pool structure
+ * @ops: user-defined operations for the zbud pool
+ *
+ * Return: pointer to the new zbud pool or NULL if the metadata allocation
+ * failed.
+ */
+struct zbud_pool *zbud_create_pool(gfp_t gfp, struct zbud_ops *ops)
+{
+ struct zbud_pool *pool;
+ int i;
+
+ pool = kmalloc(sizeof(struct zbud_pool), gfp);
+ if (!pool)
+ return NULL;
+ spin_lock_init(&pool->lock);
+ for_each_unbuddied_list(i, 0)
+ INIT_LIST_HEAD(&pool->unbuddied[i]);
+ INIT_LIST_HEAD(&pool->buddied);
+ INIT_LIST_HEAD(&pool->lru);
+ pool->pages_nr = 0;
+ pool->ops = ops;
+ return pool;
+}
+
+/**
+ * zbud_destroy_pool() - destroys an existing zbud pool
+ * @pool: the zbud pool to be destroyed
+ *
+ * The pool should be emptied before this function is called.
+ */
+void zbud_destroy_pool(struct zbud_pool *pool)
+{
+ kfree(pool);
+}
+
+/**
+ * zbud_alloc() - allocates a region of a given size
+ * @pool: zbud pool from which to allocate
+ * @size: size in bytes of the desired allocation
+ * @gfp: gfp flags used if the pool needs to grow
+ * @handle: handle of the new allocation
+ *
+ * This function will attempt to find a free region in the pool large enough to
+ * satisfy the allocation request. A search of the unbuddied lists is
+ * performed first. If no suitable free region is found, then a new page is
+ * allocated and added to the pool to satisfy the request.
+ *
+ * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
+ * as zbud pool pages.
+ *
+ * Return: 0 if success and handle is set, otherwise -EINVAL is the size or
+ * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
+ * a new page.
+ */
+int zbud_alloc(struct zbud_pool *pool, int size, gfp_t gfp,
+ unsigned long *handle)
+{
+ int chunks, i, freechunks;
+ struct zbud_header *zhdr = NULL;
+ enum buddy bud;
+ struct page *page;
+
+ if (size <= 0 || gfp & __GFP_HIGHMEM)
+ return -EINVAL;
+ if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED)
+ return -ENOSPC;
+ chunks = size_to_chunks(size);
+ spin_lock(&pool->lock);
+
+ /* First, try to find an unbuddied zbud page. */
+ zhdr = NULL;
+ for_each_unbuddied_list(i, chunks) {
+ if (!list_empty(&pool->unbuddied[i])) {
+ zhdr = list_first_entry(&pool->unbuddied[i],
+ struct zbud_header, buddy);
+ list_del(&zhdr->buddy);
+ if (zhdr->first_chunks == 0)
+ bud = FIRST;
+ else
+ bud = LAST;
+ goto found;
+ }
+ }
+
+ /* Couldn't find unbuddied zbud page, create new one */
+ spin_unlock(&pool->lock);
+ page = alloc_page(gfp);
+ if (!page)
+ return -ENOMEM;
+ spin_lock(&pool->lock);
+ pool->pages_nr++;
+ zhdr = init_zbud_page(page);
+ bud = FIRST;
+
+found:
+ if (bud == FIRST)
+ zhdr->first_chunks = chunks;
+ else
+ zhdr->last_chunks = chunks;
+
+ if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) {
+ /* Add to unbuddied list */
+ freechunks = num_free_chunks(zhdr);
+ list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
+ } else {
+ /* Add to buddied list */
+ list_add(&zhdr->buddy, &pool->buddied);
+ }
+
+ /* Add/move zbud page to beginning of LRU */
+ if (!list_empty(&zhdr->lru))
+ list_del(&zhdr->lru);
+ list_add(&zhdr->lru, &pool->lru);
+
+ *handle = encode_handle(zhdr, bud);
+ spin_unlock(&pool->lock);
+
+ return 0;
+}
+
+/**
+ * zbud_free() - frees the allocation associated with the given handle
+ * @pool: pool in which the allocation resided
+ * @handle: handle associated with the allocation returned by zbud_alloc()
+ *
+ * In the case that the zbud page in which the allocation resides is under
+ * reclaim, as indicated by the PG_reclaim flag being set, this function
+ * only sets the first|last_chunks to 0. The page is actually freed
+ * once both buddies are evicted (see zbud_reclaim_page() below).
+ */
+void zbud_free(struct zbud_pool *pool, unsigned long handle)
+{
+ struct zbud_header *zhdr;
+ int freechunks;
+
+ spin_lock(&pool->lock);
+ zhdr = handle_to_zbud_header(handle);
+
+ /* If first buddy, handle will be page aligned */
+ if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK)
+ zhdr->last_chunks = 0;
+ else
+ zhdr->first_chunks = 0;
+
+ if (zhdr->under_reclaim) {
+ /* zbud page is under reclaim, reclaim will free */
+ spin_unlock(&pool->lock);
+ return;
+ }
+
+ /* Remove from existing buddy list */
+ list_del(&zhdr->buddy);
+
+ if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
+ /* zbud page is empty, free */
+ list_del(&zhdr->lru);
+ free_zbud_page(zhdr);
+ pool->pages_nr--;
+ } else {
+ /* Add to unbuddied list */
+ freechunks = num_free_chunks(zhdr);
+ list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
+ }
+
+ spin_unlock(&pool->lock);
+}
+
+#define list_tail_entry(ptr, type, member) \
+ list_entry((ptr)->prev, type, member)
+
+/**
+ * zbud_reclaim_page() - evicts allocations from a pool page and frees it
+ * @pool: pool from which a page will attempt to be evicted
+ * @retires: number of pages on the LRU list for which eviction will
+ * be attempted before failing
+ *
+ * zbud reclaim is different from normal system reclaim in that the reclaim is
+ * done from the bottom, up. This is because only the bottom layer, zbud, has
+ * information on how the allocations are organized within each zbud page. This
+ * has the potential to create interesting locking situations between zbud and
+ * the user, however.
+ *
+ * To avoid these, this is how zbud_reclaim_page() should be called:
+
+ * The user detects a page should be reclaimed and calls zbud_reclaim_page().
+ * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call
+ * the user-defined eviction handler with the pool and handle as arguments.
+ *
+ * If the handle can not be evicted, the eviction handler should return
+ * non-zero. zbud_reclaim_page() will add the zbud page back to the
+ * appropriate list and try the next zbud page on the LRU up to
+ * a user defined number of retries.
+ *
+ * If the handle is successfully evicted, the eviction handler should
+ * return 0 _and_ should have called zbud_free() on the handle. zbud_free()
+ * contains logic to delay freeing the page if the page is under reclaim,
+ * as indicated by the setting of the PG_reclaim flag on the underlying page.
+ *
+ * If all buddies in the zbud page are successfully evicted, then the
+ * zbud page can be freed.
+ *
+ * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
+ * no pages to evict or an eviction handler is not registered, -EAGAIN if
+ * the retry limit was hit.
+ */
+int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries)
+{
+ int i, ret, freechunks;
+ struct zbud_header *zhdr;
+ unsigned long first_handle = 0, last_handle = 0;
+
+ spin_lock(&pool->lock);
+ if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) ||
+ retries == 0) {
+ spin_unlock(&pool->lock);
+ return -EINVAL;
+ }
+ for (i = 0; i < retries; i++) {
+ zhdr = list_tail_entry(&pool->lru, struct zbud_header, lru);
+ list_del(&zhdr->lru);
+ list_del(&zhdr->buddy);
+ /* Protect zbud page against free */
+ zhdr->under_reclaim = true;
+ /*
+ * We need encode the handles before unlocking, since we can
+ * race with free that will set (first|last)_chunks to 0
+ */
+ first_handle = 0;
+ last_handle = 0;
+ if (zhdr->first_chunks)
+ first_handle = encode_handle(zhdr, FIRST);
+ if (zhdr->last_chunks)
+ last_handle = encode_handle(zhdr, LAST);
+ spin_unlock(&pool->lock);
+
+ /* Issue the eviction callback(s) */
+ if (first_handle) {
+ ret = pool->ops->evict(pool, first_handle);
+ if (ret)
+ goto next;
+ }
+ if (last_handle) {
+ ret = pool->ops->evict(pool, last_handle);
+ if (ret)
+ goto next;
+ }
+next:
+ spin_lock(&pool->lock);
+ zhdr->under_reclaim = false;
+ if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
+ /*
+ * Both buddies are now free, free the zbud page and
+ * return success.
+ */
+ free_zbud_page(zhdr);
+ pool->pages_nr--;
+ spin_unlock(&pool->lock);
+ return 0;
+ } else if (zhdr->first_chunks == 0 ||
+ zhdr->last_chunks == 0) {
+ /* add to unbuddied list */
+ freechunks = num_free_chunks(zhdr);
+ list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
+ } else {
+ /* add to buddied list */
+ list_add(&zhdr->buddy, &pool->buddied);
+ }
+
+ /* add to beginning of LRU */
+ list_add(&zhdr->lru, &pool->lru);
+ }
+ spin_unlock(&pool->lock);
+ return -EAGAIN;
+}
+
+/**
+ * zbud_map() - maps the allocation associated with the given handle
+ * @pool: pool in which the allocation resides
+ * @handle: handle associated with the allocation to be mapped
+ *
+ * While trivial for zbud, the mapping functions for others allocators
+ * implementing this allocation API could have more complex information encoded
+ * in the handle and could create temporary mappings to make the data
+ * accessible to the user.
+ *
+ * Returns: a pointer to the mapped allocation
+ */
+void *zbud_map(struct zbud_pool *pool, unsigned long handle)
+{
+ return (void *)(handle);
+}
+
+/**
+ * zbud_unmap() - maps the allocation associated with the given handle
+ * @pool: pool in which the allocation resides
+ * @handle: handle associated with the allocation to be unmapped
+ */
+void zbud_unmap(struct zbud_pool *pool, unsigned long handle)
+{
+}
+
+/**
+ * zbud_get_pool_size() - gets the zbud pool size in pages
+ * @pool: pool whose size is being queried
+ *
+ * Returns: size in pages of the given pool. The pool lock need not be
+ * taken to access pages_nr.
+ */
+u64 zbud_get_pool_size(struct zbud_pool *pool)
+{
+ return pool->pages_nr;
+}
+
+static int __init init_zbud(void)
+{
+ /* Make sure the zbud header will fit in one chunk */
+ BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED);
+ pr_info("loaded\n");
+ return 0;
+}
+
+static void __exit exit_zbud(void)
+{
+ pr_info("unloaded\n");
+}
+
+module_init(init_zbud);
+module_exit(exit_zbud);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
+MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages");
diff --git a/mm/zswap.c b/mm/zswap.c
new file mode 100644
index 000000000000..deda2b671e12
--- /dev/null
+++ b/mm/zswap.c
@@ -0,0 +1,943 @@
+/*
+ * zswap.c - zswap driver file
+ *
+ * zswap is a backend for frontswap that takes pages that are in the process
+ * of being swapped out and attempts to compress and store them in a
+ * RAM-based memory pool. This can result in a significant I/O reduction on
+ * the swap device and, in the case where decompressing from RAM is faster
+ * than reading from the swap device, can also improve workload performance.
+ *
+ * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+*/
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/cpu.h>
+#include <linux/highmem.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/types.h>
+#include <linux/atomic.h>
+#include <linux/frontswap.h>
+#include <linux/rbtree.h>
+#include <linux/swap.h>
+#include <linux/crypto.h>
+#include <linux/mempool.h>
+#include <linux/zbud.h>
+
+#include <linux/mm_types.h>
+#include <linux/page-flags.h>
+#include <linux/swapops.h>
+#include <linux/writeback.h>
+#include <linux/pagemap.h>
+
+/*********************************
+* statistics
+**********************************/
+/* Number of memory pages used by the compressed pool */
+static u64 zswap_pool_pages;
+/* The number of compressed pages currently stored in zswap */
+static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
+
+/*
+ * The statistics below are not protected from concurrent access for
+ * performance reasons so they may not be a 100% accurate. However,
+ * they do provide useful information on roughly how many times a
+ * certain event is occurring.
+*/
+
+/* Pool limit was hit (see zswap_max_pool_percent) */
+static u64 zswap_pool_limit_hit;
+/* Pages written back when pool limit was reached */
+static u64 zswap_written_back_pages;
+/* Store failed due to a reclaim failure after pool limit was reached */
+static u64 zswap_reject_reclaim_fail;
+/* Compressed page was too big for the allocator to (optimally) store */
+static u64 zswap_reject_compress_poor;
+/* Store failed because underlying allocator could not get memory */
+static u64 zswap_reject_alloc_fail;
+/* Store failed because the entry metadata could not be allocated (rare) */
+static u64 zswap_reject_kmemcache_fail;
+/* Duplicate store was encountered (rare) */
+static u64 zswap_duplicate_entry;
+
+/*********************************
+* tunables
+**********************************/
+/* Enable/disable zswap (disabled by default, fixed at boot for now) */
+static bool zswap_enabled __read_mostly;
+module_param_named(enabled, zswap_enabled, bool, 0);
+
+/* Compressor to be used by zswap (fixed at boot for now) */
+#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
+static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
+module_param_named(compressor, zswap_compressor, charp, 0);
+
+/* The maximum percentage of memory that the compressed pool can occupy */
+static unsigned int zswap_max_pool_percent = 20;
+module_param_named(max_pool_percent,
+ zswap_max_pool_percent, uint, 0644);
+
+/*********************************
+* compression functions
+**********************************/
+/* per-cpu compression transforms */
+static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
+
+enum comp_op {
+ ZSWAP_COMPOP_COMPRESS,
+ ZSWAP_COMPOP_DECOMPRESS
+};
+
+static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
+ u8 *dst, unsigned int *dlen)
+{
+ struct crypto_comp *tfm;
+ int ret;
+
+ tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
+ switch (op) {
+ case ZSWAP_COMPOP_COMPRESS:
+ ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
+ break;
+ case ZSWAP_COMPOP_DECOMPRESS:
+ ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ put_cpu();
+ return ret;
+}
+
+static int __init zswap_comp_init(void)
+{
+ if (!crypto_has_comp(zswap_compressor, 0, 0)) {
+ pr_info("%s compressor not available\n", zswap_compressor);
+ /* fall back to default compressor */
+ zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
+ if (!crypto_has_comp(zswap_compressor, 0, 0))
+ /* can't even load the default compressor */
+ return -ENODEV;
+ }
+ pr_info("using %s compressor\n", zswap_compressor);
+
+ /* alloc percpu transforms */
+ zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
+ if (!zswap_comp_pcpu_tfms)
+ return -ENOMEM;
+ return 0;
+}
+
+static void zswap_comp_exit(void)
+{
+ /* free percpu transforms */
+ if (zswap_comp_pcpu_tfms)
+ free_percpu(zswap_comp_pcpu_tfms);
+}
+
+/*********************************
+* data structures
+**********************************/
+/*
+ * struct zswap_entry
+ *
+ * This structure contains the metadata for tracking a single compressed
+ * page within zswap.
+ *
+ * rbnode - links the entry into red-black tree for the appropriate swap type
+ * refcount - the number of outstanding reference to the entry. This is needed
+ * to protect against premature freeing of the entry by code
+ * concurent calls to load, invalidate, and writeback. The lock
+ * for the zswap_tree structure that contains the entry must
+ * be held while changing the refcount. Since the lock must
+ * be held, there is no reason to also make refcount atomic.
+ * offset - the swap offset for the entry. Index into the red-black tree.
+ * handle - zsmalloc allocation handle that stores the compressed page data
+ * length - the length in bytes of the compressed page data. Needed during
+ * decompression
+ */
+struct zswap_entry {
+ struct rb_node rbnode;
+ pgoff_t offset;
+ int refcount;
+ unsigned int length;
+ unsigned long handle;
+};
+
+struct zswap_header {
+ swp_entry_t swpentry;
+};
+
+/*
+ * The tree lock in the zswap_tree struct protects a few things:
+ * - the rbtree
+ * - the refcount field of each entry in the tree
+ */
+struct zswap_tree {
+ struct rb_root rbroot;
+ spinlock_t lock;
+ struct zbud_pool *pool;
+};
+
+static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
+
+/*********************************
+* zswap entry functions
+**********************************/
+static struct kmem_cache *zswap_entry_cache;
+
+static int zswap_entry_cache_create(void)
+{
+ zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
+ return (zswap_entry_cache == NULL);
+}
+
+static void zswap_entry_cache_destory(void)
+{
+ kmem_cache_destroy(zswap_entry_cache);
+}
+
+static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
+{
+ struct zswap_entry *entry;
+ entry = kmem_cache_alloc(zswap_entry_cache, gfp);
+ if (!entry)
+ return NULL;
+ entry->refcount = 1;
+ return entry;
+}
+
+static void zswap_entry_cache_free(struct zswap_entry *entry)
+{
+ kmem_cache_free(zswap_entry_cache, entry);
+}
+
+/* caller must hold the tree lock */
+static void zswap_entry_get(struct zswap_entry *entry)
+{
+ entry->refcount++;
+}
+
+/* caller must hold the tree lock */
+static int zswap_entry_put(struct zswap_entry *entry)
+{
+ entry->refcount--;
+ return entry->refcount;
+}
+
+/*********************************
+* rbtree functions
+**********************************/
+static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
+{
+ struct rb_node *node = root->rb_node;
+ struct zswap_entry *entry;
+
+ while (node) {
+ entry = rb_entry(node, struct zswap_entry, rbnode);
+ if (entry->offset > offset)
+ node = node->rb_left;
+ else if (entry->offset < offset)
+ node = node->rb_right;
+ else
+ return entry;
+ }
+ return NULL;
+}
+
+/*
+ * In the case that a entry with the same offset is found, a pointer to
+ * the existing entry is stored in dupentry and the function returns -EEXIST
+ */
+static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
+ struct zswap_entry **dupentry)
+{
+ struct rb_node **link = &root->rb_node, *parent = NULL;
+ struct zswap_entry *myentry;
+
+ while (*link) {
+ parent = *link;
+ myentry = rb_entry(parent, struct zswap_entry, rbnode);
+ if (myentry->offset > entry->offset)
+ link = &(*link)->rb_left;
+ else if (myentry->offset < entry->offset)
+ link = &(*link)->rb_right;
+ else {
+ *dupentry = myentry;
+ return -EEXIST;
+ }
+ }
+ rb_link_node(&entry->rbnode, parent, link);
+ rb_insert_color(&entry->rbnode, root);
+ return 0;
+}
+
+/*********************************
+* per-cpu code
+**********************************/
+static DEFINE_PER_CPU(u8 *, zswap_dstmem);
+
+static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
+{
+ struct crypto_comp *tfm;
+ u8 *dst;
+
+ switch (action) {
+ case CPU_UP_PREPARE:
+ tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
+ if (IS_ERR(tfm)) {
+ pr_err("can't allocate compressor transform\n");
+ return NOTIFY_BAD;
+ }
+ *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
+ dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL);
+ if (!dst) {
+ pr_err("can't allocate compressor buffer\n");
+ crypto_free_comp(tfm);
+ *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
+ return NOTIFY_BAD;
+ }
+ per_cpu(zswap_dstmem, cpu) = dst;
+ break;
+ case CPU_DEAD:
+ case CPU_UP_CANCELED:
+ tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
+ if (tfm) {
+ crypto_free_comp(tfm);
+ *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
+ }
+ dst = per_cpu(zswap_dstmem, cpu);
+ kfree(dst);
+ per_cpu(zswap_dstmem, cpu) = NULL;
+ break;
+ default:
+ break;
+ }
+ return NOTIFY_OK;
+}
+
+static int zswap_cpu_notifier(struct notifier_block *nb,
+ unsigned long action, void *pcpu)
+{
+ unsigned long cpu = (unsigned long)pcpu;
+ return __zswap_cpu_notifier(action, cpu);
+}
+
+static struct notifier_block zswap_cpu_notifier_block = {
+ .notifier_call = zswap_cpu_notifier
+};
+
+static int zswap_cpu_init(void)
+{
+ unsigned long cpu;
+
+ get_online_cpus();
+ for_each_online_cpu(cpu)
+ if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
+ goto cleanup;
+ register_cpu_notifier(&zswap_cpu_notifier_block);
+ put_online_cpus();
+ return 0;
+
+cleanup:
+ for_each_online_cpu(cpu)
+ __zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
+ put_online_cpus();
+ return -ENOMEM;
+}
+
+/*********************************
+* helpers
+**********************************/
+static bool zswap_is_full(void)
+{
+ return (totalram_pages * zswap_max_pool_percent / 100 <
+ zswap_pool_pages);
+}
+
+/*
+ * Carries out the common pattern of freeing and entry's zsmalloc allocation,
+ * freeing the entry itself, and decrementing the number of stored pages.
+ */
+static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry)
+{
+ zbud_free(tree->pool, entry->handle);
+ zswap_entry_cache_free(entry);
+ atomic_dec(&zswap_stored_pages);
+ zswap_pool_pages = zbud_get_pool_size(tree->pool);
+}
+
+/*********************************
+* writeback code
+**********************************/
+/* return enum for zswap_get_swap_cache_page */
+enum zswap_get_swap_ret {
+ ZSWAP_SWAPCACHE_NEW,
+ ZSWAP_SWAPCACHE_EXIST,
+ ZSWAP_SWAPCACHE_NOMEM
+};
+
+/*
+ * zswap_get_swap_cache_page
+ *
+ * This is an adaption of read_swap_cache_async()
+ *
+ * This function tries to find a page with the given swap entry
+ * in the swapper_space address space (the swap cache). If the page
+ * is found, it is returned in retpage. Otherwise, a page is allocated,
+ * added to the swap cache, and returned in retpage.
+ *
+ * If success, the swap cache page is returned in retpage
+ * Returns 0 if page was already in the swap cache, page is not locked
+ * Returns 1 if the new page needs to be populated, page is locked
+ * Returns <0 on error
+ */
+static int zswap_get_swap_cache_page(swp_entry_t entry,
+ struct page **retpage)
+{
+ struct page *found_page, *new_page = NULL;
+ struct address_space *swapper_space = &swapper_spaces[swp_type(entry)];
+ int err;
+
+ *retpage = NULL;
+ do {
+ /*
+ * First check the swap cache. Since this is normally
+ * called after lookup_swap_cache() failed, re-calling
+ * that would confuse statistics.
+ */
+ found_page = find_get_page(swapper_space, entry.val);
+ if (found_page)
+ break;
+
+ /*
+ * Get a new page to read into from swap.
+ */
+ if (!new_page) {
+ new_page = alloc_page(GFP_KERNEL);
+ if (!new_page)
+ break; /* Out of memory */
+ }
+
+ /*
+ * call radix_tree_preload() while we can wait.
+ */
+ err = radix_tree_preload(GFP_KERNEL);
+ if (err)
+ break;
+
+ /*
+ * Swap entry may have been freed since our caller observed it.
+ */
+ err = swapcache_prepare(entry);
+ if (err == -EEXIST) { /* seems racy */
+ radix_tree_preload_end();
+ continue;
+ }
+ if (err) { /* swp entry is obsolete ? */
+ radix_tree_preload_end();
+ break;
+ }
+
+ /* May fail (-ENOMEM) if radix-tree node allocation failed. */
+ __set_page_locked(new_page);
+ SetPageSwapBacked(new_page);
+ err = __add_to_swap_cache(new_page, entry);
+ if (likely(!err)) {
+ radix_tree_preload_end();
+ lru_cache_add_anon(new_page);
+ *retpage = new_page;
+ return ZSWAP_SWAPCACHE_NEW;
+ }
+ radix_tree_preload_end();
+ ClearPageSwapBacked(new_page);
+ __clear_page_locked(new_page);
+ /*
+ * add_to_swap_cache() doesn't return -EEXIST, so we can safely
+ * clear SWAP_HAS_CACHE flag.
+ */
+ swapcache_free(entry, NULL);
+ } while (err != -ENOMEM);
+
+ if (new_page)
+ page_cache_release(new_page);
+ if (!found_page)
+ return ZSWAP_SWAPCACHE_NOMEM;
+ *retpage = found_page;
+ return ZSWAP_SWAPCACHE_EXIST;
+}
+
+/*
+ * Attempts to free an entry by adding a page to the swap cache,
+ * decompressing the entry data into the page, and issuing a
+ * bio write to write the page back to the swap device.
+ *
+ * This can be thought of as a "resumed writeback" of the page
+ * to the swap device. We are basically resuming the same swap
+ * writeback path that was intercepted with the frontswap_store()
+ * in the first place. After the page has been decompressed into
+ * the swap cache, the compressed version stored by zswap can be
+ * freed.
+ */
+static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
+{
+ struct zswap_header *zhdr;
+ swp_entry_t swpentry;
+ struct zswap_tree *tree;
+ pgoff_t offset;
+ struct zswap_entry *entry;
+ struct page *page;
+ u8 *src, *dst;
+ unsigned int dlen;
+ int ret, refcount;
+ struct writeback_control wbc = {
+ .sync_mode = WB_SYNC_NONE,
+ };
+
+ /* extract swpentry from data */
+ zhdr = zbud_map(pool, handle);
+ swpentry = zhdr->swpentry; /* here */
+ zbud_unmap(pool, handle);
+ tree = zswap_trees[swp_type(swpentry)];
+ offset = swp_offset(swpentry);
+ BUG_ON(pool != tree->pool);
+
+ /* find and ref zswap entry */
+ spin_lock(&tree->lock);
+ entry = zswap_rb_search(&tree->rbroot, offset);
+ if (!entry) {
+ /* entry was invalidated */
+ spin_unlock(&tree->lock);
+ return 0;
+ }
+ zswap_entry_get(entry);
+ spin_unlock(&tree->lock);
+ BUG_ON(offset != entry->offset);
+
+ /* try to allocate swap cache page */
+ switch (zswap_get_swap_cache_page(swpentry, &page)) {
+ case ZSWAP_SWAPCACHE_NOMEM: /* no memory */
+ ret = -ENOMEM;
+ goto fail;
+
+ case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */
+ /* page is already in the swap cache, ignore for now */
+ page_cache_release(page);
+ ret = -EEXIST;
+ goto fail;
+
+ case ZSWAP_SWAPCACHE_NEW: /* page is locked */
+ /* decompress */
+ dlen = PAGE_SIZE;
+ src = (u8 *)zbud_map(tree->pool, entry->handle) +
+ sizeof(struct zswap_header);
+ dst = kmap_atomic(page);
+ ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
+ entry->length, dst, &dlen);
+ kunmap_atomic(dst);
+ zbud_unmap(tree->pool, entry->handle);
+ BUG_ON(ret);
+ BUG_ON(dlen != PAGE_SIZE);
+
+ /* page is up to date */
+ SetPageUptodate(page);
+ }
+
+ /* start writeback */
+ __swap_writepage(page, &wbc, end_swap_bio_write);
+ page_cache_release(page);
+ zswap_written_back_pages++;
+
+ spin_lock(&tree->lock);
+
+ /* drop local reference */
+ zswap_entry_put(entry);
+ /* drop the initial reference from entry creation */
+ refcount = zswap_entry_put(entry);
+
+ /*
+ * There are three possible values for refcount here:
+ * (1) refcount is 1, load is in progress, unlink from rbtree,
+ * load will free
+ * (2) refcount is 0, (normal case) entry is valid,
+ * remove from rbtree and free entry
+ * (3) refcount is -1, invalidate happened during writeback,
+ * free entry
+ */
+ if (refcount >= 0) {
+ /* no invalidate yet, remove from rbtree */
+ rb_erase(&entry->rbnode, &tree->rbroot);
+ }
+ spin_unlock(&tree->lock);
+ if (refcount <= 0) {
+ /* free the entry */
+ zswap_free_entry(tree, entry);
+ return 0;
+ }
+ return -EAGAIN;
+
+fail:
+ spin_lock(&tree->lock);
+ zswap_entry_put(entry);
+ spin_unlock(&tree->lock);
+ return ret;
+}
+
+/*********************************
+* frontswap hooks
+**********************************/
+/* attempts to compress and store an single page */
+static int zswap_frontswap_store(unsigned type, pgoff_t offset,
+ struct page *page)
+{
+ struct zswap_tree *tree = zswap_trees[type];
+ struct zswap_entry *entry, *dupentry;
+ int ret;
+ unsigned int dlen = PAGE_SIZE, len;
+ unsigned long handle;
+ char *buf;
+ u8 *src, *dst;
+ struct zswap_header *zhdr;
+
+ if (!tree) {
+ ret = -ENODEV;
+ goto reject;
+ }
+
+ /* reclaim space if needed */
+ if (zswap_is_full()) {
+ zswap_pool_limit_hit++;
+ if (zbud_reclaim_page(tree->pool, 8)) {
+ zswap_reject_reclaim_fail++;
+ ret = -ENOMEM;
+ goto reject;
+ }
+ }
+
+ /* allocate entry */
+ entry = zswap_entry_cache_alloc(GFP_KERNEL);
+ if (!entry) {
+ zswap_reject_kmemcache_fail++;
+ ret = -ENOMEM;
+ goto reject;
+ }
+
+ /* compress */
+ dst = get_cpu_var(zswap_dstmem);
+ src = kmap_atomic(page);
+ ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
+ kunmap_atomic(src);
+ if (ret) {
+ ret = -EINVAL;
+ goto freepage;
+ }
+
+ /* store */
+ len = dlen + sizeof(struct zswap_header);
+ ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN,
+ &handle);
+ if (ret == -ENOSPC) {
+ zswap_reject_compress_poor++;
+ goto freepage;
+ }
+ if (ret) {
+ zswap_reject_alloc_fail++;
+ goto freepage;
+ }
+ zhdr = zbud_map(tree->pool, handle);
+ zhdr->swpentry = swp_entry(type, offset);
+ buf = (u8 *)(zhdr + 1);
+ memcpy(buf, dst, dlen);
+ zbud_unmap(tree->pool, handle);
+ put_cpu_var(zswap_dstmem);
+
+ /* populate entry */
+ entry->offset = offset;
+ entry->handle = handle;
+ entry->length = dlen;
+
+ /* map */
+ spin_lock(&tree->lock);
+ do {
+ ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
+ if (ret == -EEXIST) {
+ zswap_duplicate_entry++;
+ /* remove from rbtree */
+ rb_erase(&dupentry->rbnode, &tree->rbroot);
+ if (!zswap_entry_put(dupentry)) {
+ /* free */
+ zswap_free_entry(tree, dupentry);
+ }
+ }
+ } while (ret == -EEXIST);
+ spin_unlock(&tree->lock);
+
+ /* update stats */
+ atomic_inc(&zswap_stored_pages);
+ zswap_pool_pages = zbud_get_pool_size(tree->pool);
+
+ return 0;
+
+freepage:
+ put_cpu_var(zswap_dstmem);
+ zswap_entry_cache_free(entry);
+reject:
+ return ret;
+}
+
+/*
+ * returns 0 if the page was successfully decompressed
+ * return -1 on entry not found or error
+*/
+static int zswap_frontswap_load(unsigned type, pgoff_t offset,
+ struct page *page)
+{
+ struct zswap_tree *tree = zswap_trees[type];
+ struct zswap_entry *entry;
+ u8 *src, *dst;
+ unsigned int dlen;
+ int refcount, ret;
+
+ /* find */
+ spin_lock(&tree->lock);
+ entry = zswap_rb_search(&tree->rbroot, offset);
+ if (!entry) {
+ /* entry was written back */
+ spin_unlock(&tree->lock);
+ return -1;
+ }
+ zswap_entry_get(entry);
+ spin_unlock(&tree->lock);
+
+ /* decompress */
+ dlen = PAGE_SIZE;
+ src = (u8 *)zbud_map(tree->pool, entry->handle) +
+ sizeof(struct zswap_header);
+ dst = kmap_atomic(page);
+ ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
+ dst, &dlen);
+ kunmap_atomic(dst);
+ zbud_unmap(tree->pool, entry->handle);
+ BUG_ON(ret);
+
+ spin_lock(&tree->lock);
+ refcount = zswap_entry_put(entry);
+ if (likely(refcount)) {
+ spin_unlock(&tree->lock);
+ return 0;
+ }
+ spin_unlock(&tree->lock);
+
+ /*
+ * We don't have to unlink from the rbtree because
+ * zswap_writeback_entry() or zswap_frontswap_invalidate page()
+ * has already done this for us if we are the last reference.
+ */
+ /* free */
+
+ zswap_free_entry(tree, entry);
+
+ return 0;
+}
+
+/* frees an entry in zswap */
+static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
+{
+ struct zswap_tree *tree = zswap_trees[type];
+ struct zswap_entry *entry;
+ int refcount;
+
+ /* find */
+ spin_lock(&tree->lock);
+ entry = zswap_rb_search(&tree->rbroot, offset);
+ if (!entry) {
+ /* entry was written back */
+ spin_unlock(&tree->lock);
+ return;
+ }
+
+ /* remove from rbtree */
+ rb_erase(&entry->rbnode, &tree->rbroot);
+
+ /* drop the initial reference from entry creation */
+ refcount = zswap_entry_put(entry);
+
+ spin_unlock(&tree->lock);
+
+ if (refcount) {
+ /* writeback in progress, writeback will free */
+ return;
+ }
+
+ /* free */
+ zswap_free_entry(tree, entry);
+}
+
+/* frees all zswap entries for the given swap type */
+static void zswap_frontswap_invalidate_area(unsigned type)
+{
+ struct zswap_tree *tree = zswap_trees[type];
+ struct rb_node *node;
+ struct zswap_entry *entry;
+
+ if (!tree)
+ return;
+
+ /* walk the tree and free everything */
+ spin_lock(&tree->lock);
+ /*
+ * TODO: Even though this code should not be executed because
+ * the try_to_unuse() in swapoff should have emptied the tree,
+ * it is very wasteful to rebalance the tree after every
+ * removal when we are freeing the whole tree.
+ *
+ * If post-order traversal code is ever added to the rbtree
+ * implementation, it should be used here.
+ */
+ while ((node = rb_first(&tree->rbroot))) {
+ entry = rb_entry(node, struct zswap_entry, rbnode);
+ rb_erase(&entry->rbnode, &tree->rbroot);
+ zbud_free(tree->pool, entry->handle);
+ zswap_entry_cache_free(entry);
+ atomic_dec(&zswap_stored_pages);
+ }
+ tree->rbroot = RB_ROOT;
+ spin_unlock(&tree->lock);
+}
+
+static struct zbud_ops zswap_zbud_ops = {
+ .evict = zswap_writeback_entry
+};
+
+static void zswap_frontswap_init(unsigned type)
+{
+ struct zswap_tree *tree;
+
+ tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
+ if (!tree)
+ goto err;
+ tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops);
+ if (!tree->pool)
+ goto freetree;
+ tree->rbroot = RB_ROOT;
+ spin_lock_init(&tree->lock);
+ zswap_trees[type] = tree;
+ return;
+
+freetree:
+ kfree(tree);
+err:
+ pr_err("alloc failed, zswap disabled for swap type %d\n", type);
+}
+
+static struct frontswap_ops zswap_frontswap_ops = {
+ .store = zswap_frontswap_store,
+ .load = zswap_frontswap_load,
+ .invalidate_page = zswap_frontswap_invalidate_page,
+ .invalidate_area = zswap_frontswap_invalidate_area,
+ .init = zswap_frontswap_init
+};
+
+/*********************************
+* debugfs functions
+**********************************/
+#ifdef CONFIG_DEBUG_FS
+#include <linux/debugfs.h>
+
+static struct dentry *zswap_debugfs_root;
+
+static int __init zswap_debugfs_init(void)
+{
+ if (!debugfs_initialized())
+ return -ENODEV;
+
+ zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
+ if (!zswap_debugfs_root)
+ return -ENOMEM;
+
+ debugfs_create_u64("pool_limit_hit", S_IRUGO,
+ zswap_debugfs_root, &zswap_pool_limit_hit);
+ debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
+ zswap_debugfs_root, &zswap_reject_reclaim_fail);
+ debugfs_create_u64("reject_alloc_fail", S_IRUGO,
+ zswap_debugfs_root, &zswap_reject_alloc_fail);
+ debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
+ zswap_debugfs_root, &zswap_reject_kmemcache_fail);
+ debugfs_create_u64("reject_compress_poor", S_IRUGO,
+ zswap_debugfs_root, &zswap_reject_compress_poor);
+ debugfs_create_u64("written_back_pages", S_IRUGO,
+ zswap_debugfs_root, &zswap_written_back_pages);
+ debugfs_create_u64("duplicate_entry", S_IRUGO,
+ zswap_debugfs_root, &zswap_duplicate_entry);
+ debugfs_create_u64("pool_pages", S_IRUGO,
+ zswap_debugfs_root, &zswap_pool_pages);
+ debugfs_create_atomic_t("stored_pages", S_IRUGO,
+ zswap_debugfs_root, &zswap_stored_pages);
+
+ return 0;
+}
+
+static void __exit zswap_debugfs_exit(void)
+{
+ debugfs_remove_recursive(zswap_debugfs_root);
+}
+#else
+static int __init zswap_debugfs_init(void)
+{
+ return 0;
+}
+
+static void __exit zswap_debugfs_exit(void) { }
+#endif
+
+/*********************************
+* module init and exit
+**********************************/
+static int __init init_zswap(void)
+{
+ if (!zswap_enabled)
+ return 0;
+
+ pr_info("loading zswap\n");
+ if (zswap_entry_cache_create()) {
+ pr_err("entry cache creation failed\n");
+ goto error;
+ }
+ if (zswap_comp_init()) {
+ pr_err("compressor initialization failed\n");
+ goto compfail;
+ }
+ if (zswap_cpu_init()) {
+ pr_err("per-cpu initialization failed\n");
+ goto pcpufail;
+ }
+ frontswap_register_ops(&zswap_frontswap_ops);
+ if (zswap_debugfs_init())
+ pr_warn("debugfs initialization failed\n");
+ return 0;
+pcpufail:
+ zswap_comp_exit();
+compfail:
+ zswap_entry_cache_destory();
+error:
+ return -ENOMEM;
+}
+/* must be late so crypto has time to come up */
+late_initcall(init_zswap);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
+MODULE_DESCRIPTION("Compressed cache for swap pages");