summaryrefslogtreecommitdiffstats
path: root/Documentation/core-api/protection-keys.rst
diff options
context:
space:
mode:
authorMauro Carvalho Chehab <mchehab+samsung@kernel.org>2019-06-07 15:54:31 -0300
committerJonathan Corbet <corbet@lwn.net>2019-06-08 13:42:12 -0600
commit1eecbcdca2bd8d96881cace19ad105dc0f0263f5 (patch)
tree140b9ff6a7904de5a645e9269a0c4127fcd74367 /Documentation/core-api/protection-keys.rst
parent14b767430a58046bfef8ff9b9f12854e20343092 (diff)
downloadlinux-1eecbcdca2bd8d96881cace19ad105dc0f0263f5.tar.gz
linux-1eecbcdca2bd8d96881cace19ad105dc0f0263f5.tar.bz2
linux-1eecbcdca2bd8d96881cace19ad105dc0f0263f5.zip
docs: move protection-keys.rst to the core-api book
This document is used by multiple architectures: $ echo $(git grep -l pkey_mprotect arch|cut -d'/' -f 2|sort|uniq) alpha arm arm64 ia64 m68k microblaze mips parisc powerpc s390 sh sparc x86 xtensa So, let's move it to the core book and adjust the links to it accordingly. Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/core-api/protection-keys.rst')
-rw-r--r--Documentation/core-api/protection-keys.rst99
1 files changed, 99 insertions, 0 deletions
diff --git a/Documentation/core-api/protection-keys.rst b/Documentation/core-api/protection-keys.rst
new file mode 100644
index 000000000000..49d9833af871
--- /dev/null
+++ b/Documentation/core-api/protection-keys.rst
@@ -0,0 +1,99 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======================
+Memory Protection Keys
+======================
+
+Memory Protection Keys for Userspace (PKU aka PKEYs) is a feature
+which is found on Intel's Skylake "Scalable Processor" Server CPUs.
+It will be avalable in future non-server parts.
+
+For anyone wishing to test or use this feature, it is available in
+Amazon's EC2 C5 instances and is known to work there using an Ubuntu
+17.04 image.
+
+Memory Protection Keys provides a mechanism for enforcing page-based
+protections, but without requiring modification of the page tables
+when an application changes protection domains. It works by
+dedicating 4 previously ignored bits in each page table entry to a
+"protection key", giving 16 possible keys.
+
+There is also a new user-accessible register (PKRU) with two separate
+bits (Access Disable and Write Disable) for each key. Being a CPU
+register, PKRU is inherently thread-local, potentially giving each
+thread a different set of protections from every other thread.
+
+There are two new instructions (RDPKRU/WRPKRU) for reading and writing
+to the new register. The feature is only available in 64-bit mode,
+even though there is theoretically space in the PAE PTEs. These
+permissions are enforced on data access only and have no effect on
+instruction fetches.
+
+Syscalls
+========
+
+There are 3 system calls which directly interact with pkeys::
+
+ int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
+ int pkey_free(int pkey);
+ int pkey_mprotect(unsigned long start, size_t len,
+ unsigned long prot, int pkey);
+
+Before a pkey can be used, it must first be allocated with
+pkey_alloc(). An application calls the WRPKRU instruction
+directly in order to change access permissions to memory covered
+with a key. In this example WRPKRU is wrapped by a C function
+called pkey_set().
+::
+
+ int real_prot = PROT_READ|PROT_WRITE;
+ pkey = pkey_alloc(0, PKEY_DISABLE_WRITE);
+ ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
+ ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
+ ... application runs here
+
+Now, if the application needs to update the data at 'ptr', it can
+gain access, do the update, then remove its write access::
+
+ pkey_set(pkey, 0); // clear PKEY_DISABLE_WRITE
+ *ptr = foo; // assign something
+ pkey_set(pkey, PKEY_DISABLE_WRITE); // set PKEY_DISABLE_WRITE again
+
+Now when it frees the memory, it will also free the pkey since it
+is no longer in use::
+
+ munmap(ptr, PAGE_SIZE);
+ pkey_free(pkey);
+
+.. note:: pkey_set() is a wrapper for the RDPKRU and WRPKRU instructions.
+ An example implementation can be found in
+ tools/testing/selftests/x86/protection_keys.c.
+
+Behavior
+========
+
+The kernel attempts to make protection keys consistent with the
+behavior of a plain mprotect(). For instance if you do this::
+
+ mprotect(ptr, size, PROT_NONE);
+ something(ptr);
+
+you can expect the same effects with protection keys when doing this::
+
+ pkey = pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ);
+ pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE, pkey);
+ something(ptr);
+
+That should be true whether something() is a direct access to 'ptr'
+like::
+
+ *ptr = foo;
+
+or when the kernel does the access on the application's behalf like
+with a read()::
+
+ read(fd, ptr, 1);
+
+The kernel will send a SIGSEGV in both cases, but si_code will be set
+to SEGV_PKERR when violating protection keys versus SEGV_ACCERR when
+the plain mprotect() permissions are violated.