diff options
author | Matthew Wilcox <willy@infradead.org> | 2017-11-23 22:57:20 -0500 |
---|---|---|
committer | Matthew Wilcox <willy@infradead.org> | 2018-10-21 10:45:57 -0400 |
commit | 992a8e60e3fea77c55589fc1c5af2304e78a5baa (patch) | |
tree | 9dfef3070a8cec018c95c86abeb2e4c91d7c5935 /Documentation/core-api | |
parent | 01959dfe771c6893365482ec78dc1d9cbbbe6de8 (diff) | |
download | linux-992a8e60e3fea77c55589fc1c5af2304e78a5baa.tar.gz linux-992a8e60e3fea77c55589fc1c5af2304e78a5baa.tar.bz2 linux-992a8e60e3fea77c55589fc1c5af2304e78a5baa.zip |
xarray: Add documentation
This is documentation on how to use the XArray, not details about its
internal implementation.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Josef Bacik <jbacik@fb.com>
Diffstat (limited to 'Documentation/core-api')
-rw-r--r-- | Documentation/core-api/index.rst | 1 | ||||
-rw-r--r-- | Documentation/core-api/xarray.rst | 404 |
2 files changed, 405 insertions, 0 deletions
diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst index 26b735cefb93..df3105aa75f4 100644 --- a/Documentation/core-api/index.rst +++ b/Documentation/core-api/index.rst @@ -21,6 +21,7 @@ Core utilities local_ops workqueue genericirq + xarray flexible-arrays librs genalloc diff --git a/Documentation/core-api/xarray.rst b/Documentation/core-api/xarray.rst new file mode 100644 index 000000000000..4b101b4f3aa1 --- /dev/null +++ b/Documentation/core-api/xarray.rst @@ -0,0 +1,404 @@ +.. SPDX-License-Identifier: GPL-2.0+ + +====== +XArray +====== + +:Author: Matthew Wilcox + +Overview +======== + +The XArray is an abstract data type which behaves like a very large array +of pointers. It meets many of the same needs as a hash or a conventional +resizable array. Unlike a hash, it allows you to sensibly go to the +next or previous entry in a cache-efficient manner. In contrast to a +resizable array, there is no need to copy data or change MMU mappings in +order to grow the array. It is more memory-efficient, parallelisable +and cache friendly than a doubly-linked list. It takes advantage of +RCU to perform lookups without locking. + +The XArray implementation is efficient when the indices used are densely +clustered; hashing the object and using the hash as the index will not +perform well. The XArray is optimised for small indices, but still has +good performance with large indices. If your index can be larger than +``ULONG_MAX`` then the XArray is not the data type for you. The most +important user of the XArray is the page cache. + +Each non-``NULL`` entry in the array has three bits associated with +it called marks. Each mark may be set or cleared independently of +the others. You can iterate over entries which are marked. + +Normal pointers may be stored in the XArray directly. They must be 4-byte +aligned, which is true for any pointer returned from :c:func:`kmalloc` and +:c:func:`alloc_page`. It isn't true for arbitrary user-space pointers, +nor for function pointers. You can store pointers to statically allocated +objects, as long as those objects have an alignment of at least 4. + +You can also store integers between 0 and ``LONG_MAX`` in the XArray. +You must first convert it into an entry using :c:func:`xa_mk_value`. +When you retrieve an entry from the XArray, you can check whether it is +a value entry by calling :c:func:`xa_is_value`, and convert it back to +an integer by calling :c:func:`xa_to_value`. + +Some users want to store tagged pointers instead of using the marks +described above. They can call :c:func:`xa_tag_pointer` to create an +entry with a tag, :c:func:`xa_untag_pointer` to turn a tagged entry +back into an untagged pointer and :c:func:`xa_pointer_tag` to retrieve +the tag of an entry. Tagged pointers use the same bits that are used +to distinguish value entries from normal pointers, so each user must +decide whether they want to store value entries or tagged pointers in +any particular XArray. + +The XArray does not support storing :c:func:`IS_ERR` pointers as some +conflict with value entries or internal entries. + +An unusual feature of the XArray is the ability to create entries which +occupy a range of indices. Once stored to, looking up any index in +the range will return the same entry as looking up any other index in +the range. Setting a mark on one index will set it on all of them. +Storing to any index will store to all of them. Multi-index entries can +be explicitly split into smaller entries, or storing ``NULL`` into any +entry will cause the XArray to forget about the range. + +Normal API +========== + +Start by initialising an XArray, either with :c:func:`DEFINE_XARRAY` +for statically allocated XArrays or :c:func:`xa_init` for dynamically +allocated ones. A freshly-initialised XArray contains a ``NULL`` +pointer at every index. + +You can then set entries using :c:func:`xa_store` and get entries +using :c:func:`xa_load`. xa_store will overwrite any entry with the +new entry and return the previous entry stored at that index. You can +use :c:func:`xa_erase` instead of calling :c:func:`xa_store` with a +``NULL`` entry. There is no difference between an entry that has never +been stored to and one that has most recently had ``NULL`` stored to it. + +You can conditionally replace an entry at an index by using +:c:func:`xa_cmpxchg`. Like :c:func:`cmpxchg`, it will only succeed if +the entry at that index has the 'old' value. It also returns the entry +which was at that index; if it returns the same entry which was passed as +'old', then :c:func:`xa_cmpxchg` succeeded. + +If you want to only store a new entry to an index if the current entry +at that index is ``NULL``, you can use :c:func:`xa_insert` which +returns ``-EEXIST`` if the entry is not empty. + +You can enquire whether a mark is set on an entry by using +:c:func:`xa_get_mark`. If the entry is not ``NULL``, you can set a mark +on it by using :c:func:`xa_set_mark` and remove the mark from an entry by +calling :c:func:`xa_clear_mark`. You can ask whether any entry in the +XArray has a particular mark set by calling :c:func:`xa_marked`. + +You can copy entries out of the XArray into a plain array by calling +:c:func:`xa_extract`. Or you can iterate over the present entries in +the XArray by calling :c:func:`xa_for_each`. You may prefer to use +:c:func:`xa_find` or :c:func:`xa_find_after` to move to the next present +entry in the XArray. + +Finally, you can remove all entries from an XArray by calling +:c:func:`xa_destroy`. If the XArray entries are pointers, you may wish +to free the entries first. You can do this by iterating over all present +entries in the XArray using the :c:func:`xa_for_each` iterator. + +Memory allocation +----------------- + +The :c:func:`xa_store`, :c:func:`xa_cmpxchg`, :c:func:`xa_reserve` +and :c:func:`xa_insert` functions take a gfp_t parameter in case +the XArray needs to allocate memory to store this entry. +If the entry is being deleted, no memory allocation needs to be performed, +and the GFP flags specified will be ignored. + +It is possible for no memory to be allocatable, particularly if you pass +a restrictive set of GFP flags. In that case, the functions return a +special value which can be turned into an errno using :c:func:`xa_err`. +If you don't need to know exactly which error occurred, using +:c:func:`xa_is_err` is slightly more efficient. + +Locking +------- + +When using the Normal API, you do not have to worry about locking. +The XArray uses RCU and an internal spinlock to synchronise access: + +No lock needed: + * :c:func:`xa_empty` + * :c:func:`xa_marked` + +Takes RCU read lock: + * :c:func:`xa_load` + * :c:func:`xa_for_each` + * :c:func:`xa_find` + * :c:func:`xa_find_after` + * :c:func:`xa_extract` + * :c:func:`xa_get_mark` + +Takes xa_lock internally: + * :c:func:`xa_store` + * :c:func:`xa_insert` + * :c:func:`xa_erase` + * :c:func:`xa_erase_bh` + * :c:func:`xa_erase_irq` + * :c:func:`xa_cmpxchg` + * :c:func:`xa_destroy` + * :c:func:`xa_set_mark` + * :c:func:`xa_clear_mark` + +Assumes xa_lock held on entry: + * :c:func:`__xa_store` + * :c:func:`__xa_insert` + * :c:func:`__xa_erase` + * :c:func:`__xa_cmpxchg` + * :c:func:`__xa_set_mark` + * :c:func:`__xa_clear_mark` + +If you want to take advantage of the lock to protect the data structures +that you are storing in the XArray, you can call :c:func:`xa_lock` +before calling :c:func:`xa_load`, then take a reference count on the +object you have found before calling :c:func:`xa_unlock`. This will +prevent stores from removing the object from the array between looking +up the object and incrementing the refcount. You can also use RCU to +avoid dereferencing freed memory, but an explanation of that is beyond +the scope of this document. + +The XArray does not disable interrupts or softirqs while modifying +the array. It is safe to read the XArray from interrupt or softirq +context as the RCU lock provides enough protection. + +If, for example, you want to store entries in the XArray in process +context and then erase them in softirq context, you can do that this way:: + + void foo_init(struct foo *foo) + { + xa_init_flags(&foo->array, XA_FLAGS_LOCK_BH); + } + + int foo_store(struct foo *foo, unsigned long index, void *entry) + { + int err; + + xa_lock_bh(&foo->array); + err = xa_err(__xa_store(&foo->array, index, entry, GFP_KERNEL)); + if (!err) + foo->count++; + xa_unlock_bh(&foo->array); + return err; + } + + /* foo_erase() is only called from softirq context */ + void foo_erase(struct foo *foo, unsigned long index) + { + xa_lock(&foo->array); + __xa_erase(&foo->array, index); + foo->count--; + xa_unlock(&foo->array); + } + +If you are going to modify the XArray from interrupt or softirq context, +you need to initialise the array using :c:func:`xa_init_flags`, passing +``XA_FLAGS_LOCK_IRQ`` or ``XA_FLAGS_LOCK_BH``. + +The above example also shows a common pattern of wanting to extend the +coverage of the xa_lock on the store side to protect some statistics +associated with the array. + +Sharing the XArray with interrupt context is also possible, either +using :c:func:`xa_lock_irqsave` in both the interrupt handler and process +context, or :c:func:`xa_lock_irq` in process context and :c:func:`xa_lock` +in the interrupt handler. Some of the more common patterns have helper +functions such as :c:func:`xa_erase_bh` and :c:func:`xa_erase_irq`. + +Sometimes you need to protect access to the XArray with a mutex because +that lock sits above another mutex in the locking hierarchy. That does +not entitle you to use functions like :c:func:`__xa_erase` without taking +the xa_lock; the xa_lock is used for lockdep validation and will be used +for other purposes in the future. + +The :c:func:`__xa_set_mark` and :c:func:`__xa_clear_mark` functions are also +available for situations where you look up an entry and want to atomically +set or clear a mark. It may be more efficient to use the advanced API +in this case, as it will save you from walking the tree twice. + +Advanced API +============ + +The advanced API offers more flexibility and better performance at the +cost of an interface which can be harder to use and has fewer safeguards. +No locking is done for you by the advanced API, and you are required +to use the xa_lock while modifying the array. You can choose whether +to use the xa_lock or the RCU lock while doing read-only operations on +the array. You can mix advanced and normal operations on the same array; +indeed the normal API is implemented in terms of the advanced API. The +advanced API is only available to modules with a GPL-compatible license. + +The advanced API is based around the xa_state. This is an opaque data +structure which you declare on the stack using the :c:func:`XA_STATE` +macro. This macro initialises the xa_state ready to start walking +around the XArray. It is used as a cursor to maintain the position +in the XArray and let you compose various operations together without +having to restart from the top every time. + +The xa_state is also used to store errors. You can call +:c:func:`xas_error` to retrieve the error. All operations check whether +the xa_state is in an error state before proceeding, so there's no need +for you to check for an error after each call; you can make multiple +calls in succession and only check at a convenient point. The only +errors currently generated by the XArray code itself are ``ENOMEM`` and +``EINVAL``, but it supports arbitrary errors in case you want to call +:c:func:`xas_set_err` yourself. + +If the xa_state is holding an ``ENOMEM`` error, calling :c:func:`xas_nomem` +will attempt to allocate more memory using the specified gfp flags and +cache it in the xa_state for the next attempt. The idea is that you take +the xa_lock, attempt the operation and drop the lock. The operation +attempts to allocate memory while holding the lock, but it is more +likely to fail. Once you have dropped the lock, :c:func:`xas_nomem` +can try harder to allocate more memory. It will return ``true`` if it +is worth retrying the operation (i.e. that there was a memory error *and* +more memory was allocated). If it has previously allocated memory, and +that memory wasn't used, and there is no error (or some error that isn't +``ENOMEM``), then it will free the memory previously allocated. + +Internal Entries +---------------- + +The XArray reserves some entries for its own purposes. These are never +exposed through the normal API, but when using the advanced API, it's +possible to see them. Usually the best way to handle them is to pass them +to :c:func:`xas_retry`, and retry the operation if it returns ``true``. + +.. flat-table:: + :widths: 1 1 6 + + * - Name + - Test + - Usage + + * - Node + - :c:func:`xa_is_node` + - An XArray node. May be visible when using a multi-index xa_state. + + * - Sibling + - :c:func:`xa_is_sibling` + - A non-canonical entry for a multi-index entry. The value indicates + which slot in this node has the canonical entry. + + * - Retry + - :c:func:`xa_is_retry` + - This entry is currently being modified by a thread which has the + xa_lock. The node containing this entry may be freed at the end + of this RCU period. You should restart the lookup from the head + of the array. + +Other internal entries may be added in the future. As far as possible, they +will be handled by :c:func:`xas_retry`. + +Additional functionality +------------------------ + +The :c:func:`xas_create_range` function allocates all the necessary memory +to store every entry in a range. It will set ENOMEM in the xa_state if +it cannot allocate memory. + +You can use :c:func:`xas_init_marks` to reset the marks on an entry +to their default state. This is usually all marks clear, unless the +XArray is marked with ``XA_FLAGS_TRACK_FREE``, in which case mark 0 is set +and all other marks are clear. Replacing one entry with another using +:c:func:`xas_store` will not reset the marks on that entry; if you want +the marks reset, you should do that explicitly. + +The :c:func:`xas_load` will walk the xa_state as close to the entry +as it can. If you know the xa_state has already been walked to the +entry and need to check that the entry hasn't changed, you can use +:c:func:`xas_reload` to save a function call. + +If you need to move to a different index in the XArray, call +:c:func:`xas_set`. This resets the cursor to the top of the tree, which +will generally make the next operation walk the cursor to the desired +spot in the tree. If you want to move to the next or previous index, +call :c:func:`xas_next` or :c:func:`xas_prev`. Setting the index does +not walk the cursor around the array so does not require a lock to be +held, while moving to the next or previous index does. + +You can search for the next present entry using :c:func:`xas_find`. This +is the equivalent of both :c:func:`xa_find` and :c:func:`xa_find_after`; +if the cursor has been walked to an entry, then it will find the next +entry after the one currently referenced. If not, it will return the +entry at the index of the xa_state. Using :c:func:`xas_next_entry` to +move to the next present entry instead of :c:func:`xas_find` will save +a function call in the majority of cases at the expense of emitting more +inline code. + +The :c:func:`xas_find_marked` function is similar. If the xa_state has +not been walked, it will return the entry at the index of the xa_state, +if it is marked. Otherwise, it will return the first marked entry after +the entry referenced by the xa_state. The :c:func:`xas_next_marked` +function is the equivalent of :c:func:`xas_next_entry`. + +When iterating over a range of the XArray using :c:func:`xas_for_each` +or :c:func:`xas_for_each_marked`, it may be necessary to temporarily stop +the iteration. The :c:func:`xas_pause` function exists for this purpose. +After you have done the necessary work and wish to resume, the xa_state +is in an appropriate state to continue the iteration after the entry +you last processed. If you have interrupts disabled while iterating, +then it is good manners to pause the iteration and reenable interrupts +every ``XA_CHECK_SCHED`` entries. + +The :c:func:`xas_get_mark`, :c:func:`xas_set_mark` and +:c:func:`xas_clear_mark` functions require the xa_state cursor to have +been moved to the appropriate location in the xarray; they will do +nothing if you have called :c:func:`xas_pause` or :c:func:`xas_set` +immediately before. + +You can call :c:func:`xas_set_update` to have a callback function +called each time the XArray updates a node. This is used by the page +cache workingset code to maintain its list of nodes which contain only +shadow entries. + +Multi-Index Entries +------------------- + +The XArray has the ability to tie multiple indices together so that +operations on one index affect all indices. For example, storing into +any index will change the value of the entry retrieved from any index. +Setting or clearing a mark on any index will set or clear the mark +on every index that is tied together. The current implementation +only allows tying ranges which are aligned powers of two together; +eg indices 64-127 may be tied together, but 2-6 may not be. This may +save substantial quantities of memory; for example tying 512 entries +together will save over 4kB. + +You can create a multi-index entry by using :c:func:`XA_STATE_ORDER` +or :c:func:`xas_set_order` followed by a call to :c:func:`xas_store`. +Calling :c:func:`xas_load` with a multi-index xa_state will walk the +xa_state to the right location in the tree, but the return value is not +meaningful, potentially being an internal entry or ``NULL`` even when there +is an entry stored within the range. Calling :c:func:`xas_find_conflict` +will return the first entry within the range or ``NULL`` if there are no +entries in the range. The :c:func:`xas_for_each_conflict` iterator will +iterate over every entry which overlaps the specified range. + +If :c:func:`xas_load` encounters a multi-index entry, the xa_index +in the xa_state will not be changed. When iterating over an XArray +or calling :c:func:`xas_find`, if the initial index is in the middle +of a multi-index entry, it will not be altered. Subsequent calls +or iterations will move the index to the first index in the range. +Each entry will only be returned once, no matter how many indices it +occupies. + +Using :c:func:`xas_next` or :c:func:`xas_prev` with a multi-index xa_state +is not supported. Using either of these functions on a multi-index entry +will reveal sibling entries; these should be skipped over by the caller. + +Storing ``NULL`` into any index of a multi-index entry will set the entry +at every index to ``NULL`` and dissolve the tie. Splitting a multi-index +entry into entries occupying smaller ranges is not yet supported. + +Functions and structures +======================== + +.. kernel-doc:: include/linux/xarray.h +.. kernel-doc:: lib/xarray.c |