diff options
author | J. Bruce Fields <bfields@citi.umich.edu> | 2009-10-27 14:41:35 -0400 |
---|---|---|
committer | J. Bruce Fields <bfields@citi.umich.edu> | 2009-10-27 19:34:04 -0400 |
commit | dc7a08166f3a5f23e79e839a8a88849bd3397c32 (patch) | |
tree | 2feb8aed7b6142467e6b8833fbfd9838bda69c39 /Documentation/filesystems/nfs/nfsroot.txt | |
parent | e343eb0d60f74547e0aeb5bd151105c2e6cfe588 (diff) | |
download | linux-dc7a08166f3a5f23e79e839a8a88849bd3397c32.tar.gz linux-dc7a08166f3a5f23e79e839a8a88849bd3397c32.tar.bz2 linux-dc7a08166f3a5f23e79e839a8a88849bd3397c32.zip |
nfs: new subdir Documentation/filesystems/nfs
We're adding enough nfs documentation that it may as well have its own
subdirectory.
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Diffstat (limited to 'Documentation/filesystems/nfs/nfsroot.txt')
-rw-r--r-- | Documentation/filesystems/nfs/nfsroot.txt | 270 |
1 files changed, 270 insertions, 0 deletions
diff --git a/Documentation/filesystems/nfs/nfsroot.txt b/Documentation/filesystems/nfs/nfsroot.txt new file mode 100644 index 000000000000..3ba0b945aaf8 --- /dev/null +++ b/Documentation/filesystems/nfs/nfsroot.txt @@ -0,0 +1,270 @@ +Mounting the root filesystem via NFS (nfsroot) +=============================================== + +Written 1996 by Gero Kuhlmann <gero@gkminix.han.de> +Updated 1997 by Martin Mares <mj@atrey.karlin.mff.cuni.cz> +Updated 2006 by Nico Schottelius <nico-kernel-nfsroot@schottelius.org> +Updated 2006 by Horms <horms@verge.net.au> + + + +In order to use a diskless system, such as an X-terminal or printer server +for example, it is necessary for the root filesystem to be present on a +non-disk device. This may be an initramfs (see Documentation/filesystems/ +ramfs-rootfs-initramfs.txt), a ramdisk (see Documentation/initrd.txt) or a +filesystem mounted via NFS. The following text describes on how to use NFS +for the root filesystem. For the rest of this text 'client' means the +diskless system, and 'server' means the NFS server. + + + + +1.) Enabling nfsroot capabilities + ----------------------------- + +In order to use nfsroot, NFS client support needs to be selected as +built-in during configuration. Once this has been selected, the nfsroot +option will become available, which should also be selected. + +In the networking options, kernel level autoconfiguration can be selected, +along with the types of autoconfiguration to support. Selecting all of +DHCP, BOOTP and RARP is safe. + + + + +2.) Kernel command line + ------------------- + +When the kernel has been loaded by a boot loader (see below) it needs to be +told what root fs device to use. And in the case of nfsroot, where to find +both the server and the name of the directory on the server to mount as root. +This can be established using the following kernel command line parameters: + + +root=/dev/nfs + + This is necessary to enable the pseudo-NFS-device. Note that it's not a + real device but just a synonym to tell the kernel to use NFS instead of + a real device. + + +nfsroot=[<server-ip>:]<root-dir>[,<nfs-options>] + + If the `nfsroot' parameter is NOT given on the command line, + the default "/tftpboot/%s" will be used. + + <server-ip> Specifies the IP address of the NFS server. + The default address is determined by the `ip' parameter + (see below). This parameter allows the use of different + servers for IP autoconfiguration and NFS. + + <root-dir> Name of the directory on the server to mount as root. + If there is a "%s" token in the string, it will be + replaced by the ASCII-representation of the client's + IP address. + + <nfs-options> Standard NFS options. All options are separated by commas. + The following defaults are used: + port = as given by server portmap daemon + rsize = 4096 + wsize = 4096 + timeo = 7 + retrans = 3 + acregmin = 3 + acregmax = 60 + acdirmin = 30 + acdirmax = 60 + flags = hard, nointr, noposix, cto, ac + + +ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf> + + This parameter tells the kernel how to configure IP addresses of devices + and also how to set up the IP routing table. It was originally called + `nfsaddrs', but now the boot-time IP configuration works independently of + NFS, so it was renamed to `ip' and the old name remained as an alias for + compatibility reasons. + + If this parameter is missing from the kernel command line, all fields are + assumed to be empty, and the defaults mentioned below apply. In general + this means that the kernel tries to configure everything using + autoconfiguration. + + The <autoconf> parameter can appear alone as the value to the `ip' + parameter (without all the ':' characters before). If the value is + "ip=off" or "ip=none", no autoconfiguration will take place, otherwise + autoconfiguration will take place. The most common way to use this + is "ip=dhcp". + + <client-ip> IP address of the client. + + Default: Determined using autoconfiguration. + + <server-ip> IP address of the NFS server. If RARP is used to determine + the client address and this parameter is NOT empty only + replies from the specified server are accepted. + + Only required for NFS root. That is autoconfiguration + will not be triggered if it is missing and NFS root is not + in operation. + + Default: Determined using autoconfiguration. + The address of the autoconfiguration server is used. + + <gw-ip> IP address of a gateway if the server is on a different subnet. + + Default: Determined using autoconfiguration. + + <netmask> Netmask for local network interface. If unspecified + the netmask is derived from the client IP address assuming + classful addressing. + + Default: Determined using autoconfiguration. + + <hostname> Name of the client. May be supplied by autoconfiguration, + but its absence will not trigger autoconfiguration. + + Default: Client IP address is used in ASCII notation. + + <device> Name of network device to use. + + Default: If the host only has one device, it is used. + Otherwise the device is determined using + autoconfiguration. This is done by sending + autoconfiguration requests out of all devices, + and using the device that received the first reply. + + <autoconf> Method to use for autoconfiguration. In the case of options + which specify multiple autoconfiguration protocols, + requests are sent using all protocols, and the first one + to reply is used. + + Only autoconfiguration protocols that have been compiled + into the kernel will be used, regardless of the value of + this option. + + off or none: don't use autoconfiguration + (do static IP assignment instead) + on or any: use any protocol available in the kernel + (default) + dhcp: use DHCP + bootp: use BOOTP + rarp: use RARP + both: use both BOOTP and RARP but not DHCP + (old option kept for backwards compatibility) + + Default: any + + + + +3.) Boot Loader + ---------- + +To get the kernel into memory different approaches can be used. +They depend on various facilities being available: + + +3.1) Booting from a floppy using syslinux + + When building kernels, an easy way to create a boot floppy that uses + syslinux is to use the zdisk or bzdisk make targets which use zimage + and bzimage images respectively. Both targets accept the + FDARGS parameter which can be used to set the kernel command line. + + e.g. + make bzdisk FDARGS="root=/dev/nfs" + + Note that the user running this command will need to have + access to the floppy drive device, /dev/fd0 + + For more information on syslinux, including how to create bootdisks + for prebuilt kernels, see http://syslinux.zytor.com/ + + N.B: Previously it was possible to write a kernel directly to + a floppy using dd, configure the boot device using rdev, and + boot using the resulting floppy. Linux no longer supports this + method of booting. + +3.2) Booting from a cdrom using isolinux + + When building kernels, an easy way to create a bootable cdrom that + uses isolinux is to use the isoimage target which uses a bzimage + image. Like zdisk and bzdisk, this target accepts the FDARGS + parameter which can be used to set the kernel command line. + + e.g. + make isoimage FDARGS="root=/dev/nfs" + + The resulting iso image will be arch/<ARCH>/boot/image.iso + This can be written to a cdrom using a variety of tools including + cdrecord. + + e.g. + cdrecord dev=ATAPI:1,0,0 arch/i386/boot/image.iso + + For more information on isolinux, including how to create bootdisks + for prebuilt kernels, see http://syslinux.zytor.com/ + +3.2) Using LILO + When using LILO all the necessary command line parameters may be + specified using the 'append=' directive in the LILO configuration + file. + + However, to use the 'root=' directive you also need to create + a dummy root device, which may be removed after LILO is run. + + mknod /dev/boot255 c 0 255 + + For information on configuring LILO, please refer to its documentation. + +3.3) Using GRUB + When using GRUB, kernel parameter are simply appended after the kernel + specification: kernel <kernel> <parameters> + +3.4) Using loadlin + loadlin may be used to boot Linux from a DOS command prompt without + requiring a local hard disk to mount as root. This has not been + thoroughly tested by the authors of this document, but in general + it should be possible configure the kernel command line similarly + to the configuration of LILO. + + Please refer to the loadlin documentation for further information. + +3.5) Using a boot ROM + This is probably the most elegant way of booting a diskless client. + With a boot ROM the kernel is loaded using the TFTP protocol. The + authors of this document are not aware of any no commercial boot + ROMs that support booting Linux over the network. However, there + are two free implementations of a boot ROM, netboot-nfs and + etherboot, both of which are available on sunsite.unc.edu, and both + of which contain everything you need to boot a diskless Linux client. + +3.6) Using pxelinux + Pxelinux may be used to boot linux using the PXE boot loader + which is present on many modern network cards. + + When using pxelinux, the kernel image is specified using + "kernel <relative-path-below /tftpboot>". The nfsroot parameters + are passed to the kernel by adding them to the "append" line. + It is common to use serial console in conjunction with pxeliunx, + see Documentation/serial-console.txt for more information. + + For more information on isolinux, including how to create bootdisks + for prebuilt kernels, see http://syslinux.zytor.com/ + + + + +4.) Credits + ------- + + The nfsroot code in the kernel and the RARP support have been written + by Gero Kuhlmann <gero@gkminix.han.de>. + + The rest of the IP layer autoconfiguration code has been written + by Martin Mares <mj@atrey.karlin.mff.cuni.cz>. + + In order to write the initial version of nfsroot I would like to thank + Jens-Uwe Mager <jum@anubis.han.de> for his help. |