summaryrefslogtreecommitdiffstats
path: root/Documentation/media
diff options
context:
space:
mode:
authorHans Verkuil <hverkuil-cisco@xs4all.nl>2019-04-10 07:02:49 -0400
committerMauro Carvalho Chehab <mchehab+samsung@kernel.org>2019-04-22 13:37:06 -0400
commit8dce4b265a5357731058f69645840dabc718c687 (patch)
treec1b2ae04e943068cc8aad59398139aad1ab19585 /Documentation/media
parenta4dfc8a24796ff312d1d307e11f26f8ca466e938 (diff)
downloadlinux-8dce4b265a5357731058f69645840dabc718c687.tar.gz
linux-8dce4b265a5357731058f69645840dabc718c687.tar.bz2
linux-8dce4b265a5357731058f69645840dabc718c687.zip
media: zoran: remove deprecated driver
The zoran driver has been marked deprecated for a year now without any interest to update this driver to the vb2 framework. Time to remove it altogether. Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Diffstat (limited to 'Documentation/media')
-rw-r--r--Documentation/media/v4l-drivers/index.rst1
-rw-r--r--Documentation/media/v4l-drivers/zoran.rst583
2 files changed, 0 insertions, 584 deletions
diff --git a/Documentation/media/v4l-drivers/index.rst b/Documentation/media/v4l-drivers/index.rst
index dfd4b205937c..33a055907258 100644
--- a/Documentation/media/v4l-drivers/index.rst
+++ b/Documentation/media/v4l-drivers/index.rst
@@ -65,5 +65,4 @@ For more details see the file COPYING in the source distribution of Linux.
soc-camera
uvcvideo
vivid
- zoran
zr364xx
diff --git a/Documentation/media/v4l-drivers/zoran.rst b/Documentation/media/v4l-drivers/zoran.rst
deleted file mode 100644
index d2724a863d1d..000000000000
--- a/Documentation/media/v4l-drivers/zoran.rst
+++ /dev/null
@@ -1,583 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-The Zoran driver
-================
-
-unified zoran driver (zr360x7, zoran, buz, dc10(+), dc30(+), lml33)
-
-website: http://mjpeg.sourceforge.net/driver-zoran/
-
-
-Frequently Asked Questions
---------------------------
-
-What cards are supported
-------------------------
-
-Iomega Buz, Linux Media Labs LML33/LML33R10, Pinnacle/Miro
-DC10/DC10+/DC30/DC30+ and related boards (available under various names).
-
-Iomega Buz
-~~~~~~~~~~
-
-* Zoran zr36067 PCI controller
-* Zoran zr36060 MJPEG codec
-* Philips saa7111 TV decoder
-* Philips saa7185 TV encoder
-
-Drivers to use: videodev, i2c-core, i2c-algo-bit,
-videocodec, saa7111, saa7185, zr36060, zr36067
-
-Inputs/outputs: Composite and S-video
-
-Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
-
-Card number: 7
-
-AverMedia 6 Eyes AVS6EYES
-~~~~~~~~~~~~~~~~~~~~~~~~~
-
-* Zoran zr36067 PCI controller
-* Zoran zr36060 MJPEG codec
-* Samsung ks0127 TV decoder
-* Conexant bt866 TV encoder
-
-Drivers to use: videodev, i2c-core, i2c-algo-bit,
-videocodec, ks0127, bt866, zr36060, zr36067
-
-Inputs/outputs:
- Six physical inputs. 1-6 are composite,
- 1-2, 3-4, 5-6 doubles as S-video,
- 1-3 triples as component.
- One composite output.
-
-Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
-
-Card number: 8
-
-.. note::
-
- Not autodetected, card=8 is necessary.
-
-Linux Media Labs LML33
-~~~~~~~~~~~~~~~~~~~~~~
-
-* Zoran zr36067 PCI controller
-* Zoran zr36060 MJPEG codec
-* Brooktree bt819 TV decoder
-* Brooktree bt856 TV encoder
-
-Drivers to use: videodev, i2c-core, i2c-algo-bit,
-videocodec, bt819, bt856, zr36060, zr36067
-
-Inputs/outputs: Composite and S-video
-
-Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
-
-Card number: 5
-
-Linux Media Labs LML33R10
-~~~~~~~~~~~~~~~~~~~~~~~~~
-
-* Zoran zr36067 PCI controller
-* Zoran zr36060 MJPEG codec
-* Philips saa7114 TV decoder
-* Analog Devices adv7170 TV encoder
-
-Drivers to use: videodev, i2c-core, i2c-algo-bit,
-videocodec, saa7114, adv7170, zr36060, zr36067
-
-Inputs/outputs: Composite and S-video
-
-Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
-
-Card number: 6
-
-Pinnacle/Miro DC10(new)
-~~~~~~~~~~~~~~~~~~~~~~~
-
-* Zoran zr36057 PCI controller
-* Zoran zr36060 MJPEG codec
-* Philips saa7110a TV decoder
-* Analog Devices adv7176 TV encoder
-
-Drivers to use: videodev, i2c-core, i2c-algo-bit,
-videocodec, saa7110, adv7175, zr36060, zr36067
-
-Inputs/outputs: Composite, S-video and Internal
-
-Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
-
-Card number: 1
-
-Pinnacle/Miro DC10+
-~~~~~~~~~~~~~~~~~~~
-
-* Zoran zr36067 PCI controller
-* Zoran zr36060 MJPEG codec
-* Philips saa7110a TV decoder
-* Analog Devices adv7176 TV encoder
-
-Drivers to use: videodev, i2c-core, i2c-algo-bit,
-videocodec, sa7110, adv7175, zr36060, zr36067
-
-Inputs/outputs: Composite, S-video and Internal
-
-Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
-
-Card number: 2
-
-Pinnacle/Miro DC10(old)
-~~~~~~~~~~~~~~~~~~~~~~~
-
-* Zoran zr36057 PCI controller
-* Zoran zr36050 MJPEG codec
-* Zoran zr36016 Video Front End or Fuji md0211 Video Front End (clone?)
-* Micronas vpx3220a TV decoder
-* mse3000 TV encoder or Analog Devices adv7176 TV encoder
-
-Drivers to use: videodev, i2c-core, i2c-algo-bit,
-videocodec, vpx3220, mse3000/adv7175, zr36050, zr36016, zr36067
-
-Inputs/outputs: Composite, S-video and Internal
-
-Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
-
-Card number: 0
-
-Pinnacle/Miro DC30
-~~~~~~~~~~~~~~~~~~
-
-* Zoran zr36057 PCI controller
-* Zoran zr36050 MJPEG codec
-* Zoran zr36016 Video Front End
-* Micronas vpx3225d/vpx3220a/vpx3216b TV decoder
-* Analog Devices adv7176 TV encoder
-
-Drivers to use: videodev, i2c-core, i2c-algo-bit,
-videocodec, vpx3220/vpx3224, adv7175, zr36050, zr36016, zr36067
-
-Inputs/outputs: Composite, S-video and Internal
-
-Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
-
-Card number: 3
-
-Pinnacle/Miro DC30+
-~~~~~~~~~~~~~~~~~~~
-
-* Zoran zr36067 PCI controller
-* Zoran zr36050 MJPEG codec
-* Zoran zr36016 Video Front End
-* Micronas vpx3225d/vpx3220a/vpx3216b TV decoder
-* Analog Devices adv7176 TV encoder
-
-Drivers to use: videodev, i2c-core, i2c-algo-bit,
-videocodec, vpx3220/vpx3224, adv7175, zr36050, zr36015, zr36067
-
-Inputs/outputs: Composite, S-video and Internal
-
-Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
-
-Card number: 4
-
-.. note::
-
- #) No module for the mse3000 is available yet
- #) No module for the vpx3224 is available yet
-
-1.1 What the TV decoder can do an what not
-------------------------------------------
-
-The best know TV standards are NTSC/PAL/SECAM. but for decoding a frame that
-information is not enough. There are several formats of the TV standards.
-And not every TV decoder is able to handle every format. Also the every
-combination is supported by the driver. There are currently 11 different
-tv broadcast formats all aver the world.
-
-The CCIR defines parameters needed for broadcasting the signal.
-The CCIR has defined different standards: A,B,D,E,F,G,D,H,I,K,K1,L,M,N,...
-The CCIR says not much about the colorsystem used !!!
-And talking about a colorsystem says not to much about how it is broadcast.
-
-The CCIR standards A,E,F are not used any more.
-
-When you speak about NTSC, you usually mean the standard: CCIR - M using
-the NTSC colorsystem which is used in the USA, Japan, Mexico, Canada
-and a few others.
-
-When you talk about PAL, you usually mean: CCIR - B/G using the PAL
-colorsystem which is used in many Countries.
-
-When you talk about SECAM, you mean: CCIR - L using the SECAM Colorsystem
-which is used in France, and a few others.
-
-There the other version of SECAM, CCIR - D/K is used in Bulgaria, China,
-Slovakai, Hungary, Korea (Rep.), Poland, Rumania and a others.
-
-The CCIR - H uses the PAL colorsystem (sometimes SECAM) and is used in
-Egypt, Libya, Sri Lanka, Syrain Arab. Rep.
-
-The CCIR - I uses the PAL colorsystem, and is used in Great Britain, Hong Kong,
-Ireland, Nigeria, South Africa.
-
-The CCIR - N uses the PAL colorsystem and PAL frame size but the NTSC framerate,
-and is used in Argentinia, Uruguay, an a few others
-
-We do not talk about how the audio is broadcast !
-
-A rather good sites about the TV standards are:
-http://www.sony.jp/support/
-http://info.electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/
-and http://www.cabl.com/restaurant/channel.html
-
-Other weird things around: NTSC 4.43 is a modificated NTSC, which is mainly
-used in PAL VCR's that are able to play back NTSC. PAL 60 seems to be the same
-as NTSC 4.43 . The Datasheets also talk about NTSC 44, It seems as if it would
-be the same as NTSC 4.43.
-NTSC Combs seems to be a decoder mode where the decoder uses a comb filter
-to split coma and luma instead of a Delay line.
-
-But I did not defiantly find out what NTSC Comb is.
-
-Philips saa7111 TV decoder
-~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- was introduced in 1997, is used in the BUZ and
-- can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43 and SECAM
-
-Philips saa7110a TV decoder
-~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- was introduced in 1995, is used in the Pinnacle/Miro DC10(new), DC10+ and
-- can handle: PAL B/G, NTSC M and SECAM
-
-Philips saa7114 TV decoder
-~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- was introduced in 2000, is used in the LML33R10 and
-- can handle: PAL B/G/D/H/I/N, PAL N, PAL M, NTSC M, NTSC 4.43 and SECAM
-
-Brooktree bt819 TV decoder
-~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- was introduced in 1996, and is used in the LML33 and
-- can handle: PAL B/D/G/H/I, NTSC M
-
-Micronas vpx3220a TV decoder
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- was introduced in 1996, is used in the DC30 and DC30+ and
-- can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC 44, PAL 60, SECAM,NTSC Comb
-
-Samsung ks0127 TV decoder
-~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- is used in the AVS6EYES card and
-- can handle: NTSC-M/N/44, PAL-M/N/B/G/H/I/D/K/L and SECAM
-
-
-What the TV encoder can do an what not
---------------------------------------
-
-The TV encoder are doing the "same" as the decoder, but in the oder direction.
-You feed them digital data and the generate a Composite or SVHS signal.
-For information about the colorsystems and TV norm take a look in the
-TV decoder section.
-
-Philips saa7185 TV Encoder
-~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- was introduced in 1996, is used in the BUZ
-- can generate: PAL B/G, NTSC M
-
-Brooktree bt856 TV Encoder
-~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- was introduced in 1994, is used in the LML33
-- can generate: PAL B/D/G/H/I/N, PAL M, NTSC M, PAL-N (Argentina)
-
-Analog Devices adv7170 TV Encoder
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- was introduced in 2000, is used in the LML300R10
-- can generate: PAL B/D/G/H/I/N, PAL M, NTSC M, PAL 60
-
-Analog Devices adv7175 TV Encoder
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- was introduced in 1996, is used in the DC10, DC10+, DC10 old, DC30, DC30+
-- can generate: PAL B/D/G/H/I/N, PAL M, NTSC M
-
-ITT mse3000 TV encoder
-~~~~~~~~~~~~~~~~~~~~~~
-
-- was introduced in 1991, is used in the DC10 old
-- can generate: PAL , NTSC , SECAM
-
-Conexant bt866 TV encoder
-~~~~~~~~~~~~~~~~~~~~~~~~~
-
-- is used in AVS6EYES, and
-- can generate: NTSC/PAL, PAL­M, PAL­N
-
-The adv717x, should be able to produce PAL N. But you find nothing PAL N
-specific in the registers. Seem that you have to reuse a other standard
-to generate PAL N, maybe it would work if you use the PAL M settings.
-
-How do I get this damn thing to work
-------------------------------------
-
-Load zr36067.o. If it can't autodetect your card, use the card=X insmod
-option with X being the card number as given in the previous section.
-To have more than one card, use card=X1[,X2[,X3,[X4[..]]]]
-
-To automate this, add the following to your /etc/modprobe.d/zoran.conf:
-
-options zr36067 card=X1[,X2[,X3[,X4[..]]]]
-alias char-major-81-0 zr36067
-
-One thing to keep in mind is that this doesn't load zr36067.o itself yet. It
-just automates loading. If you start using xawtv, the device won't load on
-some systems, since you're trying to load modules as a user, which is not
-allowed ("permission denied"). A quick workaround is to add 'Load "v4l"' to
-XF86Config-4 when you use X by default, or to run 'v4l-conf -c <device>' in
-one of your startup scripts (normally rc.local) if you don't use X. Both
-make sure that the modules are loaded on startup, under the root account.
-
-What mainboard should I use (or why doesn't my card work)
----------------------------------------------------------
-
-
-<insert lousy disclaimer here>. In short: good=SiS/Intel, bad=VIA.
-
-Experience tells us that people with a Buz, on average, have more problems
-than users with a DC10+/LML33. Also, it tells us that people owning a VIA-
-based mainboard (ktXXX, MVP3) have more problems than users with a mainboard
-based on a different chipset. Here's some notes from Andrew Stevens:
-
-Here's my experience of using LML33 and Buz on various motherboards:
-
-- VIA MVP3
- - Forget it. Pointless. Doesn't work.
-- Intel 430FX (Pentium 200)
- - LML33 perfect, Buz tolerable (3 or 4 frames dropped per movie)
-- Intel 440BX (early stepping)
- - LML33 tolerable. Buz starting to get annoying (6-10 frames/hour)
-- Intel 440BX (late stepping)
- - Buz tolerable, LML3 almost perfect (occasional single frame drops)
-- SiS735
- - LML33 perfect, Buz tolerable.
-- VIA KT133(*)
- - LML33 starting to get annoying, Buz poor enough that I have up.
-
-- Both 440BX boards were dual CPU versions.
-
-Bernhard Praschinger later added:
-
-- AMD 751
- - Buz perfect-tolerable
-- AMD 760
- - Buz perfect-tolerable
-
-In general, people on the user mailinglist won't give you much of a chance
-if you have a VIA-based motherboard. They may be cheap, but sometimes, you'd
-rather want to spend some more money on better boards. In general, VIA
-mainboard's IDE/PCI performance will also suck badly compared to others.
-You'll noticed the DC10+/DC30+ aren't mentioned anywhere in the overview.
-Basically, you can assume that if the Buz works, the LML33 will work too. If
-the LML33 works, the DC10+/DC30+ will work too. They're most tolerant to
-different mainboard chipsets from all of the supported cards.
-
-If you experience timeouts during capture, buy a better mainboard or lower
-the quality/buffersize during capture (see 'Concerning buffer sizes, quality,
-output size etc.'). If it hangs, there's little we can do as of now. Check
-your IRQs and make sure the card has its own interrupts.
-
-Programming interface
----------------------
-
-This driver conforms to video4linux2. Support for V4L1 and for the custom
-zoran ioctls has been removed in kernel 2.6.38.
-
-For programming example, please, look at lavrec.c and lavplay.c code in
-the MJPEG-tools (http://mjpeg.sf.net/).
-
-Additional notes for software developers:
-
- The driver returns maxwidth and maxheight parameters according to
- the current TV standard (norm). Therefore, the software which
- communicates with the driver and "asks" for these parameters should
- first set the correct norm. Well, it seems logically correct: TV
- standard is "more constant" for current country than geometry
- settings of a variety of TV capture cards which may work in ITU or
- square pixel format.
-
-Applications
-------------
-
-Applications known to work with this driver:
-
-TV viewing:
-
-* xawtv
-* kwintv
-* probably any TV application that supports video4linux or video4linux2.
-
-MJPEG capture/playback:
-
-* mjpegtools/lavtools (or Linux Video Studio)
-* gstreamer
-* mplayer
-
-General raw capture:
-
-* xawtv
-* gstreamer
-* probably any application that supports video4linux or video4linux2
-
-Video editing:
-
-* Cinelerra
-* MainActor
-* mjpegtools (or Linux Video Studio)
-
-
-Concerning buffer sizes, quality, output size etc.
---------------------------------------------------
-
-
-The zr36060 can do 1:2 JPEG compression. This is really the theoretical
-maximum that the chipset can reach. The driver can, however, limit compression
-to a maximum (size) of 1:4. The reason for this is that some cards (e.g. Buz)
-can't handle 1:2 compression without stopping capture after only a few minutes.
-With 1:4, it'll mostly work. If you have a Buz, use 'low_bitrate=1' to go into
-1:4 max. compression mode.
-
-100% JPEG quality is thus 1:2 compression in practice. So for a full PAL frame
-(size 720x576). The JPEG fields are stored in YUY2 format, so the size of the
-fields are 720x288x16/2 bits/field (2 fields/frame) = 207360 bytes/field x 2 =
-414720 bytes/frame (add some more bytes for headers and DHT (huffman)/DQT
-(quantization) tables, and you'll get to something like 512kB per frame for
-1:2 compression. For 1:4 compression, you'd have frames of half this size.
-
-Some additional explanation by Martin Samuelsson, which also explains the
-importance of buffer sizes:
---
-> Hmm, I do not think it is really that way. With the current (downloaded
-> at 18:00 Monday) driver I get that output sizes for 10 sec:
-> -q 50 -b 128 : 24.283.332 Bytes
-> -q 50 -b 256 : 48.442.368
-> -q 25 -b 128 : 24.655.992
-> -q 25 -b 256 : 25.859.820
-
-I woke up, and can't go to sleep again. I'll kill some time explaining why
-this doesn't look strange to me.
-
-Let's do some math using a width of 704 pixels. I'm not sure whether the Buz
-actually use that number or not, but that's not too important right now.
-
-704x288 pixels, one field, is 202752 pixels. Divided by 64 pixels per block;
-3168 blocks per field. Each pixel consist of two bytes; 128 bytes per block;
-1024 bits per block. 100% in the new driver mean 1:2 compression; the maximum
-output becomes 512 bits per block. Actually 510, but 512 is simpler to use
-for calculations.
-
-Let's say that we specify d1q50. We thus want 256 bits per block; times 3168
-becomes 811008 bits; 101376 bytes per field. We're talking raw bits and bytes
-here, so we don't need to do any fancy corrections for bits-per-pixel or such
-things. 101376 bytes per field.
-
-d1 video contains two fields per frame. Those sum up to 202752 bytes per
-frame, and one of those frames goes into each buffer.
-
-But wait a second! -b128 gives 128kB buffers! It's not possible to cram
-202752 bytes of JPEG data into 128kB!
-
-This is what the driver notice and automatically compensate for in your
-examples. Let's do some math using this information:
-
-128kB is 131072 bytes. In this buffer, we want to store two fields, which
-leaves 65536 bytes for each field. Using 3168 blocks per field, we get
-20.68686868... available bytes per block; 165 bits. We can't allow the
-request for 256 bits per block when there's only 165 bits available! The -q50
-option is silently overridden, and the -b128 option takes precedence, leaving
-us with the equivalence of -q32.
-
-This gives us a data rate of 165 bits per block, which, times 3168, sums up
-to 65340 bytes per field, out of the allowed 65536. The current driver has
-another level of rate limiting; it won't accept -q values that fill more than
-6/8 of the specified buffers. (I'm not sure why. "Playing it safe" seem to be
-a safe bet. Personally, I think I would have lowered requested-bits-per-block
-by one, or something like that.) We can't use 165 bits per block, but have to
-lower it again, to 6/8 of the available buffer space: We end up with 124 bits
-per block, the equivalence of -q24. With 128kB buffers, you can't use greater
-than -q24 at -d1. (And PAL, and 704 pixels width...)
-
-The third example is limited to -q24 through the same process. The second
-example, using very similar calculations, is limited to -q48. The only
-example that actually grab at the specified -q value is the last one, which
-is clearly visible, looking at the file size.
---
-
-Conclusion: the quality of the resulting movie depends on buffer size, quality,
-whether or not you use 'low_bitrate=1' as insmod option for the zr36060.c
-module to do 1:4 instead of 1:2 compression, etc.
-
-If you experience timeouts, lowering the quality/buffersize or using
-'low_bitrate=1 as insmod option for zr36060.o might actually help, as is
-proven by the Buz.
-
-It hangs/crashes/fails/whatevers! Help!
----------------------------------------
-
-Make sure that the card has its own interrupts (see /proc/interrupts), check
-the output of dmesg at high verbosity (load zr36067.o with debug=2,
-load all other modules with debug=1). Check that your mainboard is favorable
-(see question 2) and if not, test the card in another computer. Also see the
-notes given in question 3 and try lowering quality/buffersize/capturesize
-if recording fails after a period of time.
-
-If all this doesn't help, give a clear description of the problem including
-detailed hardware information (memory+brand, mainboard+chipset+brand, which
-MJPEG card, processor, other PCI cards that might be of interest), give the
-system PnP information (/proc/interrupts, /proc/dma, /proc/devices), and give
-the kernel version, driver version, glibc version, gcc version and any other
-information that might possibly be of interest. Also provide the dmesg output
-at high verbosity. See 'Contacting' on how to contact the developers.
-
-Maintainers/Contacting
-----------------------
-
-The driver is currently maintained by Laurent Pinchart and Ronald Bultje
-(<laurent.pinchart@skynet.be> and <rbultje@ronald.bitfreak.net>). For bug
-reports or questions, please contact the mailinglist instead of the developers
-individually. For user questions (i.e. bug reports or how-to questions), send
-an email to <mjpeg-users@lists.sf.net>, for developers (i.e. if you want to
-help programming), send an email to <mjpeg-developer@lists.sf.net>. See
-http://www.sf.net/projects/mjpeg/ for subscription information.
-
-For bug reports, be sure to include all the information as described in
-the section 'It hangs/crashes/fails/whatevers! Help!'. Please make sure
-you're using the latest version (http://mjpeg.sf.net/driver-zoran/).
-
-Previous maintainers/developers of this driver include Serguei Miridonov
-<mirsev@cicese.mx>, Wolfgang Scherr <scherr@net4you.net>, Dave Perks
-<dperks@ibm.net> and Rainer Johanni <Rainer@Johanni.de>.
-
-Driver's License
-----------------
-
- This driver is distributed under the terms of the General Public License.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
-See http://www.gnu.org/ for more information.