diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2014-12-11 14:27:06 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2014-12-11 14:27:06 -0800 |
commit | 70e71ca0af244f48a5dcf56dc435243792e3a495 (patch) | |
tree | f7d9c4c4d9a857a00043e9bf6aa2d6f533a34778 /Documentation/networking/ipvlan.txt | |
parent | bae41e45b7400496b9bf0c70c6004419d9987819 (diff) | |
parent | 00c83b01d58068dfeb2e1351cca6fccf2a83fa8f (diff) | |
download | linux-70e71ca0af244f48a5dcf56dc435243792e3a495.tar.gz linux-70e71ca0af244f48a5dcf56dc435243792e3a495.tar.bz2 linux-70e71ca0af244f48a5dcf56dc435243792e3a495.zip |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
1) New offloading infrastructure and example 'rocker' driver for
offloading of switching and routing to hardware.
This work was done by a large group of dedicated individuals, not
limited to: Scott Feldman, Jiri Pirko, Thomas Graf, John Fastabend,
Jamal Hadi Salim, Andy Gospodarek, Florian Fainelli, Roopa Prabhu
2) Start making the networking operate on IOV iterators instead of
modifying iov objects in-situ during transfers. Thanks to Al Viro
and Herbert Xu.
3) A set of new netlink interfaces for the TIPC stack, from Richard
Alpe.
4) Remove unnecessary looping during ipv6 routing lookups, from Martin
KaFai Lau.
5) Add PAUSE frame generation support to gianfar driver, from Matei
Pavaluca.
6) Allow for larger reordering levels in TCP, which are easily
achievable in the real world right now, from Eric Dumazet.
7) Add a variable of napi_schedule that doesn't need to disable cpu
interrupts, from Eric Dumazet.
8) Use a doubly linked list to optimize neigh_parms_release(), from
Nicolas Dichtel.
9) Various enhancements to the kernel BPF verifier, and allow eBPF
programs to actually be attached to sockets. From Alexei
Starovoitov.
10) Support TSO/LSO in sunvnet driver, from David L Stevens.
11) Allow controlling ECN usage via routing metrics, from Florian
Westphal.
12) Remote checksum offload, from Tom Herbert.
13) Add split-header receive, BQL, and xmit_more support to amd-xgbe
driver, from Thomas Lendacky.
14) Add MPLS support to openvswitch, from Simon Horman.
15) Support wildcard tunnel endpoints in ipv6 tunnels, from Steffen
Klassert.
16) Do gro flushes on a per-device basis using a timer, from Eric
Dumazet. This tries to resolve the conflicting goals between the
desired handling of bulk vs. RPC-like traffic.
17) Allow userspace to ask for the CPU upon what a packet was
received/steered, via SO_INCOMING_CPU. From Eric Dumazet.
18) Limit GSO packets to half the current congestion window, from Eric
Dumazet.
19) Add a generic helper so that all drivers set their RSS keys in a
consistent way, from Eric Dumazet.
20) Add xmit_more support to enic driver, from Govindarajulu
Varadarajan.
21) Add VLAN packet scheduler action, from Jiri Pirko.
22) Support configurable RSS hash functions via ethtool, from Eyal
Perry.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1820 commits)
Fix race condition between vxlan_sock_add and vxlan_sock_release
net/macb: fix compilation warning for print_hex_dump() called with skb->mac_header
net/mlx4: Add support for A0 steering
net/mlx4: Refactor QUERY_PORT
net/mlx4_core: Add explicit error message when rule doesn't meet configuration
net/mlx4: Add A0 hybrid steering
net/mlx4: Add mlx4_bitmap zone allocator
net/mlx4: Add a check if there are too many reserved QPs
net/mlx4: Change QP allocation scheme
net/mlx4_core: Use tasklet for user-space CQ completion events
net/mlx4_core: Mask out host side virtualization features for guests
net/mlx4_en: Set csum level for encapsulated packets
be2net: Export tunnel offloads only when a VxLAN tunnel is created
gianfar: Fix dma check map error when DMA_API_DEBUG is enabled
cxgb4/csiostor: Don't use MASTER_MUST for fw_hello call
net: fec: only enable mdio interrupt before phy device link up
net: fec: clear all interrupt events to support i.MX6SX
net: fec: reset fep link status in suspend function
net: sock: fix access via invalid file descriptor
net: introduce helper macro for_each_cmsghdr
...
Diffstat (limited to 'Documentation/networking/ipvlan.txt')
-rw-r--r-- | Documentation/networking/ipvlan.txt | 107 |
1 files changed, 107 insertions, 0 deletions
diff --git a/Documentation/networking/ipvlan.txt b/Documentation/networking/ipvlan.txt new file mode 100644 index 000000000000..cf996394e466 --- /dev/null +++ b/Documentation/networking/ipvlan.txt @@ -0,0 +1,107 @@ + + IPVLAN Driver HOWTO + +Initial Release: + Mahesh Bandewar <maheshb AT google.com> + +1. Introduction: + This is conceptually very similar to the macvlan driver with one major +exception of using L3 for mux-ing /demux-ing among slaves. This property makes +the master device share the L2 with it's slave devices. I have developed this +driver in conjuntion with network namespaces and not sure if there is use case +outside of it. + + +2. Building and Installation: + In order to build the driver, please select the config item CONFIG_IPVLAN. +The driver can be built into the kernel (CONFIG_IPVLAN=y) or as a module +(CONFIG_IPVLAN=m). + + +3. Configuration: + There are no module parameters for this driver and it can be configured +using IProute2/ip utility. + + ip link add link <master-dev> <slave-dev> type ipvlan mode { l2 | L3 } + + e.g. ip link add link ipvl0 eth0 type ipvlan mode l2 + + +4. Operating modes: + IPvlan has two modes of operation - L2 and L3. For a given master device, +you can select one of these two modes and all slaves on that master will +operate in the same (selected) mode. The RX mode is almost identical except +that in L3 mode the slaves wont receive any multicast / broadcast traffic. +L3 mode is more restrictive since routing is controlled from the other (mostly) +default namespace. + +4.1 L2 mode: + In this mode TX processing happens on the stack instance attached to the +slave device and packets are switched and queued to the master device to send +out. In this mode the slaves will RX/TX multicast and broadcast (if applicable) +as well. + +4.2 L3 mode: + In this mode TX processing upto L3 happens on the stack instance attached +to the slave device and packets are switched to the stack instance of the +master device for the L2 processing and routing from that instance will be +used before packets are queued on the outbound device. In this mode the slaves +will not receive nor can send multicast / broadcast traffic. + + +5. What to choose (macvlan vs. ipvlan)? + These two devices are very similar in many regards and the specific use +case could very well define which device to choose. if one of the following +situations defines your use case then you can choose to use ipvlan - + (a) The Linux host that is connected to the external switch / router has +policy configured that allows only one mac per port. + (b) No of virtual devices created on a master exceed the mac capacity and +puts the NIC in promiscous mode and degraded performance is a concern. + (c) If the slave device is to be put into the hostile / untrusted network +namespace where L2 on the slave could be changed / misused. + + +6. Example configuration: + + +=============================================================+ + | Host: host1 | + | | + | +----------------------+ +----------------------+ | + | | NS:ns0 | | NS:ns1 | | + | | | | | | + | | | | | | + | | ipvl0 | | ipvl1 | | + | +----------#-----------+ +-----------#----------+ | + | # # | + | ################################ | + | # eth0 | + +==============================#==============================+ + + + (a) Create two network namespaces - ns0, ns1 + ip netns add ns0 + ip netns add ns1 + + (b) Create two ipvlan slaves on eth0 (master device) + ip link add link eth0 ipvl0 type ipvlan mode l2 + ip link add link eth0 ipvl1 type ipvlan mode l2 + + (c) Assign slaves to the respective network namespaces + ip link set dev ipvl0 netns ns0 + ip link set dev ipvl1 netns ns1 + + (d) Now switch to the namespace (ns0 or ns1) to configure the slave devices + - For ns0 + (1) ip netns exec ns0 bash + (2) ip link set dev ipvl0 up + (3) ip link set dev lo up + (4) ip -4 addr add 127.0.0.1 dev lo + (5) ip -4 addr add $IPADDR dev ipvl0 + (6) ip -4 route add default via $ROUTER dev ipvl0 + - For ns1 + (1) ip netns exec ns1 bash + (2) ip link set dev ipvl1 up + (3) ip link set dev lo up + (4) ip -4 addr add 127.0.0.1 dev lo + (5) ip -4 addr add $IPADDR dev ipvl1 + (6) ip -4 route add default via $ROUTER dev ipvl1 |