summaryrefslogtreecommitdiffstats
path: root/Documentation/process/1.Intro.rst
diff options
context:
space:
mode:
authorMauro Carvalho Chehab <mchehab@s-opensource.com>2016-10-18 09:05:32 -0200
committerMauro Carvalho Chehab <mchehab@s-opensource.com>2016-10-24 08:12:35 -0200
commit0e4f07a65f53e7b3afab71925e56fe6aaa07d696 (patch)
treefee3c943b48df0b70f4b28605a6eaecb57f518f0 /Documentation/process/1.Intro.rst
parent44b10006a97ec50874634ba5325a6499ead7db66 (diff)
downloadlinux-0e4f07a65f53e7b3afab71925e56fe6aaa07d696.tar.gz
linux-0e4f07a65f53e7b3afab71925e56fe6aaa07d696.tar.bz2
linux-0e4f07a65f53e7b3afab71925e56fe6aaa07d696.zip
docs: rename development-process/ to process/
As we'll type this a lot, after adding CodingStyle & friends, let's rename the directory name to a shorter one. Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Diffstat (limited to 'Documentation/process/1.Intro.rst')
-rw-r--r--Documentation/process/1.Intro.rst266
1 files changed, 266 insertions, 0 deletions
diff --git a/Documentation/process/1.Intro.rst b/Documentation/process/1.Intro.rst
new file mode 100644
index 000000000000..22642b3fe903
--- /dev/null
+++ b/Documentation/process/1.Intro.rst
@@ -0,0 +1,266 @@
+Introdution
+===========
+
+Executive summary
+-----------------
+
+The rest of this section covers the scope of the kernel development process
+and the kinds of frustrations that developers and their employers can
+encounter there. There are a great many reasons why kernel code should be
+merged into the official ("mainline") kernel, including automatic
+availability to users, community support in many forms, and the ability to
+influence the direction of kernel development. Code contributed to the
+Linux kernel must be made available under a GPL-compatible license.
+
+:ref:`development_process` introduces the development process, the kernel
+release cycle, and the mechanics of the merge window. The various phases in
+the patch development, review, and merging cycle are covered. There is some
+discussion of tools and mailing lists. Developers wanting to get started
+with kernel development are encouraged to track down and fix bugs as an
+initial exercise.
+
+:ref:`development_early_stage` covers early-stage project planning, with an
+emphasis on involving the development community as soon as possible.
+
+:ref:`development_coding` is about the coding process; several pitfalls which
+have been encountered by other developers are discussed. Some requirements for
+patches are covered, and there is an introduction to some of the tools
+which can help to ensure that kernel patches are correct.
+
+:ref:`development_posting` talks about the process of posting patches for
+review. To be taken seriously by the development community, patches must be
+properly formatted and described, and they must be sent to the right place.
+Following the advice in this section should help to ensure the best
+possible reception for your work.
+
+:ref:`development_followthrough` covers what happens after posting patches; the
+job is far from done at that point. Working with reviewers is a crucial part
+of the development process; this section offers a number of tips on how to
+avoid problems at this important stage. Developers are cautioned against
+assuming that the job is done when a patch is merged into the mainline.
+
+:ref:`development_advancedtopics` introduces a couple of "advanced" topics:
+managing patches with git and reviewing patches posted by others.
+
+:ref:`development_conclusion` concludes the document with pointers to sources
+for more information on kernel development.
+
+What this document is about
+---------------------------
+
+The Linux kernel, at over 8 million lines of code and well over 1000
+contributors to each release, is one of the largest and most active free
+software projects in existence. Since its humble beginning in 1991, this
+kernel has evolved into a best-of-breed operating system component which
+runs on pocket-sized digital music players, desktop PCs, the largest
+supercomputers in existence, and all types of systems in between. It is a
+robust, efficient, and scalable solution for almost any situation.
+
+With the growth of Linux has come an increase in the number of developers
+(and companies) wishing to participate in its development. Hardware
+vendors want to ensure that Linux supports their products well, making
+those products attractive to Linux users. Embedded systems vendors, who
+use Linux as a component in an integrated product, want Linux to be as
+capable and well-suited to the task at hand as possible. Distributors and
+other software vendors who base their products on Linux have a clear
+interest in the capabilities, performance, and reliability of the Linux
+kernel. And end users, too, will often wish to change Linux to make it
+better suit their needs.
+
+One of the most compelling features of Linux is that it is accessible to
+these developers; anybody with the requisite skills can improve Linux and
+influence the direction of its development. Proprietary products cannot
+offer this kind of openness, which is a characteristic of the free software
+process. But, if anything, the kernel is even more open than most other
+free software projects. A typical three-month kernel development cycle can
+involve over 1000 developers working for more than 100 different companies
+(or for no company at all).
+
+Working with the kernel development community is not especially hard. But,
+that notwithstanding, many potential contributors have experienced
+difficulties when trying to do kernel work. The kernel community has
+evolved its own distinct ways of operating which allow it to function
+smoothly (and produce a high-quality product) in an environment where
+thousands of lines of code are being changed every day. So it is not
+surprising that Linux kernel development process differs greatly from
+proprietary development methods.
+
+The kernel's development process may come across as strange and
+intimidating to new developers, but there are good reasons and solid
+experience behind it. A developer who does not understand the kernel
+community's ways (or, worse, who tries to flout or circumvent them) will
+have a frustrating experience in store. The development community, while
+being helpful to those who are trying to learn, has little time for those
+who will not listen or who do not care about the development process.
+
+It is hoped that those who read this document will be able to avoid that
+frustrating experience. There is a lot of material here, but the effort
+involved in reading it will be repaid in short order. The development
+community is always in need of developers who will help to make the kernel
+better; the following text should help you - or those who work for you -
+join our community.
+
+Credits
+-------
+
+This document was written by Jonathan Corbet, corbet@lwn.net. It has been
+improved by comments from Johannes Berg, James Berry, Alex Chiang, Roland
+Dreier, Randy Dunlap, Jake Edge, Jiri Kosina, Matt Mackall, Arthur Marsh,
+Amanda McPherson, Andrew Morton, Andrew Price, Tsugikazu Shibata, and
+Jochen Voß.
+
+This work was supported by the Linux Foundation; thanks especially to
+Amanda McPherson, who saw the value of this effort and made it all happen.
+
+The importance of getting code into the mainline
+------------------------------------------------
+
+Some companies and developers occasionally wonder why they should bother
+learning how to work with the kernel community and get their code into the
+mainline kernel (the "mainline" being the kernel maintained by Linus
+Torvalds and used as a base by Linux distributors). In the short term,
+contributing code can look like an avoidable expense; it seems easier to
+just keep the code separate and support users directly. The truth of the
+matter is that keeping code separate ("out of tree") is a false economy.
+
+As a way of illustrating the costs of out-of-tree code, here are a few
+relevant aspects of the kernel development process; most of these will be
+discussed in greater detail later in this document. Consider:
+
+- Code which has been merged into the mainline kernel is available to all
+ Linux users. It will automatically be present on all distributions which
+ enable it. There is no need for driver disks, downloads, or the hassles
+ of supporting multiple versions of multiple distributions; it all just
+ works, for the developer and for the user. Incorporation into the
+ mainline solves a large number of distribution and support problems.
+
+- While kernel developers strive to maintain a stable interface to user
+ space, the internal kernel API is in constant flux. The lack of a stable
+ internal interface is a deliberate design decision; it allows fundamental
+ improvements to be made at any time and results in higher-quality code.
+ But one result of that policy is that any out-of-tree code requires
+ constant upkeep if it is to work with new kernels. Maintaining
+ out-of-tree code requires significant amounts of work just to keep that
+ code working.
+
+ Code which is in the mainline, instead, does not require this work as the
+ result of a simple rule requiring any developer who makes an API change
+ to also fix any code that breaks as the result of that change. So code
+ which has been merged into the mainline has significantly lower
+ maintenance costs.
+
+- Beyond that, code which is in the kernel will often be improved by other
+ developers. Surprising results can come from empowering your user
+ community and customers to improve your product.
+
+- Kernel code is subjected to review, both before and after merging into
+ the mainline. No matter how strong the original developer's skills are,
+ this review process invariably finds ways in which the code can be
+ improved. Often review finds severe bugs and security problems. This is
+ especially true for code which has been developed in a closed
+ environment; such code benefits strongly from review by outside
+ developers. Out-of-tree code is lower-quality code.
+
+- Participation in the development process is your way to influence the
+ direction of kernel development. Users who complain from the sidelines
+ are heard, but active developers have a stronger voice - and the ability
+ to implement changes which make the kernel work better for their needs.
+
+- When code is maintained separately, the possibility that a third party
+ will contribute a different implementation of a similar feature always
+ exists. Should that happen, getting your code merged will become much
+ harder - to the point of impossibility. Then you will be faced with the
+ unpleasant alternatives of either (1) maintaining a nonstandard feature
+ out of tree indefinitely, or (2) abandoning your code and migrating your
+ users over to the in-tree version.
+
+- Contribution of code is the fundamental action which makes the whole
+ process work. By contributing your code you can add new functionality to
+ the kernel and provide capabilities and examples which are of use to
+ other kernel developers. If you have developed code for Linux (or are
+ thinking about doing so), you clearly have an interest in the continued
+ success of this platform; contributing code is one of the best ways to
+ help ensure that success.
+
+All of the reasoning above applies to any out-of-tree kernel code,
+including code which is distributed in proprietary, binary-only form.
+There are, however, additional factors which should be taken into account
+before considering any sort of binary-only kernel code distribution. These
+include:
+
+- The legal issues around the distribution of proprietary kernel modules
+ are cloudy at best; quite a few kernel copyright holders believe that
+ most binary-only modules are derived products of the kernel and that, as
+ a result, their distribution is a violation of the GNU General Public
+ license (about which more will be said below). Your author is not a
+ lawyer, and nothing in this document can possibly be considered to be
+ legal advice. The true legal status of closed-source modules can only be
+ determined by the courts. But the uncertainty which haunts those modules
+ is there regardless.
+
+- Binary modules greatly increase the difficulty of debugging kernel
+ problems, to the point that most kernel developers will not even try. So
+ the distribution of binary-only modules will make it harder for your
+ users to get support from the community.
+
+- Support is also harder for distributors of binary-only modules, who must
+ provide a version of the module for every distribution and every kernel
+ version they wish to support. Dozens of builds of a single module can
+ be required to provide reasonably comprehensive coverage, and your users
+ will have to upgrade your module separately every time they upgrade their
+ kernel.
+
+- Everything that was said above about code review applies doubly to
+ closed-source code. Since this code is not available at all, it cannot
+ have been reviewed by the community and will, beyond doubt, have serious
+ problems.
+
+Makers of embedded systems, in particular, may be tempted to disregard much
+of what has been said in this section in the belief that they are shipping
+a self-contained product which uses a frozen kernel version and requires no
+more development after its release. This argument misses the value of
+widespread code review and the value of allowing your users to add
+capabilities to your product. But these products, too, have a limited
+commercial life, after which a new version must be released. At that
+point, vendors whose code is in the mainline and well maintained will be
+much better positioned to get the new product ready for market quickly.
+
+Licensing
+---------
+
+Code is contributed to the Linux kernel under a number of licenses, but all
+code must be compatible with version 2 of the GNU General Public License
+(GPLv2), which is the license covering the kernel distribution as a whole.
+In practice, that means that all code contributions are covered either by
+GPLv2 (with, optionally, language allowing distribution under later
+versions of the GPL) or the three-clause BSD license. Any contributions
+which are not covered by a compatible license will not be accepted into the
+kernel.
+
+Copyright assignments are not required (or requested) for code contributed
+to the kernel. All code merged into the mainline kernel retains its
+original ownership; as a result, the kernel now has thousands of owners.
+
+One implication of this ownership structure is that any attempt to change
+the licensing of the kernel is doomed to almost certain failure. There are
+few practical scenarios where the agreement of all copyright holders could
+be obtained (or their code removed from the kernel). So, in particular,
+there is no prospect of a migration to version 3 of the GPL in the
+foreseeable future.
+
+It is imperative that all code contributed to the kernel be legitimately
+free software. For that reason, code from anonymous (or pseudonymous)
+contributors will not be accepted. All contributors are required to "sign
+off" on their code, stating that the code can be distributed with the
+kernel under the GPL. Code which has not been licensed as free software by
+its owner, or which risks creating copyright-related problems for the
+kernel (such as code which derives from reverse-engineering efforts lacking
+proper safeguards) cannot be contributed.
+
+Questions about copyright-related issues are common on Linux development
+mailing lists. Such questions will normally receive no shortage of
+answers, but one should bear in mind that the people answering those
+questions are not lawyers and cannot provide legal advice. If you have
+legal questions relating to Linux source code, there is no substitute for
+talking with a lawyer who understands this field. Relying on answers
+obtained on technical mailing lists is a risky affair.