diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2011-07-22 17:05:15 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2011-07-22 17:05:15 -0700 |
commit | 8e204874db000928e37199c2db82b7eb8966cc3c (patch) | |
tree | eae66035cb761c3c5a79e98b92280b5156bc01ef /Documentation/x86 | |
parent | 3e0b8df79ddb8955d2cce5e858972a9cfe763384 (diff) | |
parent | aafade242ff24fac3aabf61c7861dfa44a3c2445 (diff) | |
download | linux-8e204874db000928e37199c2db82b7eb8966cc3c.tar.gz linux-8e204874db000928e37199c2db82b7eb8966cc3c.tar.bz2 linux-8e204874db000928e37199c2db82b7eb8966cc3c.zip |
Merge branch 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86-64, vdso: Do not allocate memory for the vDSO
clocksource: Change __ARCH_HAS_CLOCKSOURCE_DATA to a CONFIG option
x86, vdso: Drop now wrong comment
Document the vDSO and add a reference parser
ia64: Replace clocksource.fsys_mmio with generic arch data
x86-64: Move vread_tsc and vread_hpet into the vDSO
clocksource: Replace vread with generic arch data
x86-64: Add --no-undefined to vDSO build
x86-64: Allow alternative patching in the vDSO
x86: Make alternative instruction pointers relative
x86-64: Improve vsyscall emulation CS and RIP handling
x86-64: Emulate legacy vsyscalls
x86-64: Fill unused parts of the vsyscall page with 0xcc
x86-64: Remove vsyscall number 3 (venosys)
x86-64: Map the HPET NX
x86-64: Remove kernel.vsyscall64 sysctl
x86-64: Give vvars their own page
x86-64: Document some of entry_64.S
x86-64: Fix alignment of jiffies variable
Diffstat (limited to 'Documentation/x86')
-rw-r--r-- | Documentation/x86/entry_64.txt | 98 |
1 files changed, 98 insertions, 0 deletions
diff --git a/Documentation/x86/entry_64.txt b/Documentation/x86/entry_64.txt new file mode 100644 index 000000000000..7869f14d055c --- /dev/null +++ b/Documentation/x86/entry_64.txt @@ -0,0 +1,98 @@ +This file documents some of the kernel entries in +arch/x86/kernel/entry_64.S. A lot of this explanation is adapted from +an email from Ingo Molnar: + +http://lkml.kernel.org/r/<20110529191055.GC9835%40elte.hu> + +The x86 architecture has quite a few different ways to jump into +kernel code. Most of these entry points are registered in +arch/x86/kernel/traps.c and implemented in arch/x86/kernel/entry_64.S +and arch/x86/ia32/ia32entry.S. + +The IDT vector assignments are listed in arch/x86/include/irq_vectors.h. + +Some of these entries are: + + - system_call: syscall instruction from 64-bit code. + + - ia32_syscall: int 0x80 from 32-bit or 64-bit code; compat syscall + either way. + + - ia32_syscall, ia32_sysenter: syscall and sysenter from 32-bit + code + + - interrupt: An array of entries. Every IDT vector that doesn't + explicitly point somewhere else gets set to the corresponding + value in interrupts. These point to a whole array of + magically-generated functions that make their way to do_IRQ with + the interrupt number as a parameter. + + - emulate_vsyscall: int 0xcc, a special non-ABI entry used by + vsyscall emulation. + + - APIC interrupts: Various special-purpose interrupts for things + like TLB shootdown. + + - Architecturally-defined exceptions like divide_error. + +There are a few complexities here. The different x86-64 entries +have different calling conventions. The syscall and sysenter +instructions have their own peculiar calling conventions. Some of +the IDT entries push an error code onto the stack; others don't. +IDT entries using the IST alternative stack mechanism need their own +magic to get the stack frames right. (You can find some +documentation in the AMD APM, Volume 2, Chapter 8 and the Intel SDM, +Volume 3, Chapter 6.) + +Dealing with the swapgs instruction is especially tricky. Swapgs +toggles whether gs is the kernel gs or the user gs. The swapgs +instruction is rather fragile: it must nest perfectly and only in +single depth, it should only be used if entering from user mode to +kernel mode and then when returning to user-space, and precisely +so. If we mess that up even slightly, we crash. + +So when we have a secondary entry, already in kernel mode, we *must +not* use SWAPGS blindly - nor must we forget doing a SWAPGS when it's +not switched/swapped yet. + +Now, there's a secondary complication: there's a cheap way to test +which mode the CPU is in and an expensive way. + +The cheap way is to pick this info off the entry frame on the kernel +stack, from the CS of the ptregs area of the kernel stack: + + xorl %ebx,%ebx + testl $3,CS+8(%rsp) + je error_kernelspace + SWAPGS + +The expensive (paranoid) way is to read back the MSR_GS_BASE value +(which is what SWAPGS modifies): + + movl $1,%ebx + movl $MSR_GS_BASE,%ecx + rdmsr + testl %edx,%edx + js 1f /* negative -> in kernel */ + SWAPGS + xorl %ebx,%ebx +1: ret + +and the whole paranoid non-paranoid macro complexity is about whether +to suffer that RDMSR cost. + +If we are at an interrupt or user-trap/gate-alike boundary then we can +use the faster check: the stack will be a reliable indicator of +whether SWAPGS was already done: if we see that we are a secondary +entry interrupting kernel mode execution, then we know that the GS +base has already been switched. If it says that we interrupted +user-space execution then we must do the SWAPGS. + +But if we are in an NMI/MCE/DEBUG/whatever super-atomic entry context, +which might have triggered right after a normal entry wrote CS to the +stack but before we executed SWAPGS, then the only safe way to check +for GS is the slower method: the RDMSR. + +So we try only to mark those entry methods 'paranoid' that absolutely +need the more expensive check for the GS base - and we generate all +'normal' entry points with the regular (faster) entry macros. |