summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorRavikiran G Thirumalai <kiran@scalex86.org>2006-12-06 20:32:14 -0800
committerLinus Torvalds <torvalds@woody.osdl.org>2006-12-07 08:39:21 -0800
commit8f5be20bf87da7c7c59c5cc84f630a1eca5cc99c (patch)
tree0fc18e33fa1b43543837e99a0f09c77f686f327b /Documentation
parenta44b56d354b49f9abb184e5a14f71889856283bb (diff)
downloadlinux-8f5be20bf87da7c7c59c5cc84f630a1eca5cc99c.tar.gz
linux-8f5be20bf87da7c7c59c5cc84f630a1eca5cc99c.tar.bz2
linux-8f5be20bf87da7c7c59c5cc84f630a1eca5cc99c.zip
[PATCH] mm: slab: eliminate lock_cpu_hotplug from slab
Here's an attempt towards doing away with lock_cpu_hotplug in the slab subsystem. This approach also fixes a bug which shows up when cpus are being offlined/onlined and slab caches are being tuned simultaneously. http://marc.theaimsgroup.com/?l=linux-kernel&m=116098888100481&w=2 The patch has been stress tested overnight on a 2 socket 4 core AMD box with repeated cpu online and offline, while dbench and kernbench process are running, and slab caches being tuned at the same time. There were no lockdep warnings either. (This test on 2,6.18 as 2.6.19-rc crashes at __drain_pages http://marc.theaimsgroup.com/?l=linux-kernel&m=116172164217678&w=2 ) The approach here is to hold cache_chain_mutex from CPU_UP_PREPARE until CPU_ONLINE (similar in approach as worqueue_mutex) . Slab code sensitive to cpu_online_map (kmem_cache_create, kmem_cache_destroy, slabinfo_write, __cache_shrink) is already serialized with cache_chain_mutex. (This patch lengthens cache_chain_mutex hold time at kmem_cache_destroy to cover this). This patch also takes the cache_chain_sem at kmem_cache_shrink to protect sanity of cpu_online_map at __cache_shrink, as viewed by slab. (kmem_cache_shrink->__cache_shrink->drain_cpu_caches). But, really, kmem_cache_shrink is used at just one place in the acpi subsystem! Do we really need to keep kmem_cache_shrink at all? Another note. Looks like a cpu hotplug event can send CPU_UP_CANCELED to a registered subsystem even if the subsystem did not receive CPU_UP_PREPARE. This could be due to a subsystem registered for notification earlier than the current subsystem crapping out with NOTIFY_BAD. Badness can occur with in the CPU_UP_CANCELED code path at slab if this happens (The same would apply for workqueue.c as well). To overcome this, we might have to use either a) a per subsystem flag and avoid handling of CPU_UP_CANCELED, or b) Use a special notifier events like LOCK_ACQUIRE/RELEASE as Gautham was using in his experiments, or c) Do not send CPU_UP_CANCELED to a subsystem which did not receive CPU_UP_PREPARE. I would prefer c). Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org> Signed-off-by: Shai Fultheim <shai@scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'Documentation')
0 files changed, 0 insertions, 0 deletions