diff options
author | Haavard Skinnemoen <hskinnemoen@atmel.com> | 2006-09-25 23:32:13 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-09-26 08:48:54 -0700 |
commit | 5f97f7f9400de47ae837170bb274e90ad3934386 (patch) | |
tree | 514451e6dc6b46253293a00035d375e77b1c65ed /arch/avr32/mach-at32ap/at32ap.c | |
parent | 53e62d3aaa60590d4a69b4e07c29f448b5151047 (diff) | |
download | linux-5f97f7f9400de47ae837170bb274e90ad3934386.tar.gz linux-5f97f7f9400de47ae837170bb274e90ad3934386.tar.bz2 linux-5f97f7f9400de47ae837170bb274e90ad3934386.zip |
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'arch/avr32/mach-at32ap/at32ap.c')
-rw-r--r-- | arch/avr32/mach-at32ap/at32ap.c | 90 |
1 files changed, 90 insertions, 0 deletions
diff --git a/arch/avr32/mach-at32ap/at32ap.c b/arch/avr32/mach-at32ap/at32ap.c new file mode 100644 index 000000000000..f7cedf5aabea --- /dev/null +++ b/arch/avr32/mach-at32ap/at32ap.c @@ -0,0 +1,90 @@ +/* + * Copyright (C) 2006 Atmel Corporation + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/init.h> +#include <linux/platform_device.h> + +#include <asm/io.h> + +#include <asm/arch/init.h> +#include <asm/arch/sm.h> + +struct at32_sm system_manager; + +static int __init at32_sm_init(void) +{ + struct resource *regs; + struct at32_sm *sm = &system_manager; + int ret = -ENXIO; + + regs = platform_get_resource(&at32_sm_device, IORESOURCE_MEM, 0); + if (!regs) + goto fail; + + spin_lock_init(&sm->lock); + sm->pdev = &at32_sm_device; + + ret = -ENOMEM; + sm->regs = ioremap(regs->start, regs->end - regs->start + 1); + if (!sm->regs) + goto fail; + + return 0; + +fail: + printk(KERN_ERR "Failed to initialize System Manager: %d\n", ret); + return ret; +} + +void __init setup_platform(void) +{ + at32_sm_init(); + at32_clock_init(); + at32_portmux_init(); + + /* FIXME: This doesn't belong here */ + at32_setup_serial_console(1); +} + +static int __init pdc_probe(struct platform_device *pdev) +{ + struct clk *pclk, *hclk; + + pclk = clk_get(&pdev->dev, "pclk"); + if (IS_ERR(pclk)) { + dev_err(&pdev->dev, "no pclk defined\n"); + return PTR_ERR(pclk); + } + hclk = clk_get(&pdev->dev, "hclk"); + if (IS_ERR(hclk)) { + dev_err(&pdev->dev, "no hclk defined\n"); + clk_put(pclk); + return PTR_ERR(hclk); + } + + clk_enable(pclk); + clk_enable(hclk); + + dev_info(&pdev->dev, "Atmel Peripheral DMA Controller enabled\n"); + return 0; +} + +static struct platform_driver pdc_driver = { + .probe = pdc_probe, + .driver = { + .name = "pdc", + }, +}; + +static int __init pdc_init(void) +{ + return platform_driver_register(&pdc_driver); +} +arch_initcall(pdc_init); |