summaryrefslogtreecommitdiffstats
path: root/arch/avr32
diff options
context:
space:
mode:
authorChristoph Hellwig <hch@lst.de>2016-01-20 15:01:29 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2016-01-20 17:09:18 -0800
commita34a517ac96c6910a3a0aab9513035bfbed0020c (patch)
tree2543525a6dbddc45bdd5ffad0cd60ad1e5e8239a /arch/avr32
parent052c96dbe33b032b949510ca724ed54d02e1255c (diff)
downloadlinux-a34a517ac96c6910a3a0aab9513035bfbed0020c.tar.gz
linux-a34a517ac96c6910a3a0aab9513035bfbed0020c.tar.bz2
linux-a34a517ac96c6910a3a0aab9513035bfbed0020c.zip
avr32: convert to dma_map_ops
Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'arch/avr32')
-rw-r--r--arch/avr32/Kconfig1
-rw-r--r--arch/avr32/include/asm/dma-mapping.h342
-rw-r--r--arch/avr32/mm/dma-coherent.c115
3 files changed, 85 insertions, 373 deletions
diff --git a/arch/avr32/Kconfig b/arch/avr32/Kconfig
index b6878eb64884..aac3d6972c30 100644
--- a/arch/avr32/Kconfig
+++ b/arch/avr32/Kconfig
@@ -7,6 +7,7 @@ config AVR32
select HAVE_OPROFILE
select HAVE_KPROBES
select VIRT_TO_BUS
+ select HAVE_DMA_ATTRS
select GENERIC_IRQ_PROBE
select GENERIC_ATOMIC64
select HARDIRQS_SW_RESEND
diff --git a/arch/avr32/include/asm/dma-mapping.h b/arch/avr32/include/asm/dma-mapping.h
index ae7ac9205d20..0239ca84eb41 100644
--- a/arch/avr32/include/asm/dma-mapping.h
+++ b/arch/avr32/include/asm/dma-mapping.h
@@ -1,350 +1,16 @@
#ifndef __ASM_AVR32_DMA_MAPPING_H
#define __ASM_AVR32_DMA_MAPPING_H
-#include <linux/mm.h>
-#include <linux/device.h>
-#include <linux/scatterlist.h>
-#include <asm/processor.h>
-#include <asm/cacheflush.h>
-#include <asm/io.h>
-
extern void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
int direction);
-/*
- * Return whether the given device DMA address mask can be supported
- * properly. For example, if your device can only drive the low 24-bits
- * during bus mastering, then you would pass 0x00ffffff as the mask
- * to this function.
- */
-static inline int dma_supported(struct device *dev, u64 mask)
-{
- /* Fix when needed. I really don't know of any limitations */
- return 1;
-}
-
-static inline int dma_set_mask(struct device *dev, u64 dma_mask)
-{
- if (!dev->dma_mask || !dma_supported(dev, dma_mask))
- return -EIO;
-
- *dev->dma_mask = dma_mask;
- return 0;
-}
-
-/*
- * dma_map_single can't fail as it is implemented now.
- */
-static inline int dma_mapping_error(struct device *dev, dma_addr_t addr)
-{
- return 0;
-}
-
-/**
- * dma_alloc_coherent - allocate consistent memory for DMA
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @size: required memory size
- * @handle: bus-specific DMA address
- *
- * Allocate some uncached, unbuffered memory for a device for
- * performing DMA. This function allocates pages, and will
- * return the CPU-viewed address, and sets @handle to be the
- * device-viewed address.
- */
-extern void *dma_alloc_coherent(struct device *dev, size_t size,
- dma_addr_t *handle, gfp_t gfp);
-
-/**
- * dma_free_coherent - free memory allocated by dma_alloc_coherent
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @size: size of memory originally requested in dma_alloc_coherent
- * @cpu_addr: CPU-view address returned from dma_alloc_coherent
- * @handle: device-view address returned from dma_alloc_coherent
- *
- * Free (and unmap) a DMA buffer previously allocated by
- * dma_alloc_coherent().
- *
- * References to memory and mappings associated with cpu_addr/handle
- * during and after this call executing are illegal.
- */
-extern void dma_free_coherent(struct device *dev, size_t size,
- void *cpu_addr, dma_addr_t handle);
-
-/**
- * dma_alloc_writecombine - allocate write-combining memory for DMA
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @size: required memory size
- * @handle: bus-specific DMA address
- *
- * Allocate some uncached, buffered memory for a device for
- * performing DMA. This function allocates pages, and will
- * return the CPU-viewed address, and sets @handle to be the
- * device-viewed address.
- */
-extern void *dma_alloc_writecombine(struct device *dev, size_t size,
- dma_addr_t *handle, gfp_t gfp);
-
-/**
- * dma_free_coherent - free memory allocated by dma_alloc_writecombine
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @size: size of memory originally requested in dma_alloc_writecombine
- * @cpu_addr: CPU-view address returned from dma_alloc_writecombine
- * @handle: device-view address returned from dma_alloc_writecombine
- *
- * Free (and unmap) a DMA buffer previously allocated by
- * dma_alloc_writecombine().
- *
- * References to memory and mappings associated with cpu_addr/handle
- * during and after this call executing are illegal.
- */
-extern void dma_free_writecombine(struct device *dev, size_t size,
- void *cpu_addr, dma_addr_t handle);
-
-/**
- * dma_map_single - map a single buffer for streaming DMA
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @cpu_addr: CPU direct mapped address of buffer
- * @size: size of buffer to map
- * @dir: DMA transfer direction
- *
- * Ensure that any data held in the cache is appropriately discarded
- * or written back.
- *
- * The device owns this memory once this call has completed. The CPU
- * can regain ownership by calling dma_unmap_single() or dma_sync_single().
- */
-static inline dma_addr_t
-dma_map_single(struct device *dev, void *cpu_addr, size_t size,
- enum dma_data_direction direction)
-{
- dma_cache_sync(dev, cpu_addr, size, direction);
- return virt_to_bus(cpu_addr);
-}
-
-/**
- * dma_unmap_single - unmap a single buffer previously mapped
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @handle: DMA address of buffer
- * @size: size of buffer to map
- * @dir: DMA transfer direction
- *
- * Unmap a single streaming mode DMA translation. The handle and size
- * must match what was provided in the previous dma_map_single() call.
- * All other usages are undefined.
- *
- * After this call, reads by the CPU to the buffer are guaranteed to see
- * whatever the device wrote there.
- */
-static inline void
-dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
- enum dma_data_direction direction)
-{
-
-}
-
-/**
- * dma_map_page - map a portion of a page for streaming DMA
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @page: page that buffer resides in
- * @offset: offset into page for start of buffer
- * @size: size of buffer to map
- * @dir: DMA transfer direction
- *
- * Ensure that any data held in the cache is appropriately discarded
- * or written back.
- *
- * The device owns this memory once this call has completed. The CPU
- * can regain ownership by calling dma_unmap_page() or dma_sync_single().
- */
-static inline dma_addr_t
-dma_map_page(struct device *dev, struct page *page,
- unsigned long offset, size_t size,
- enum dma_data_direction direction)
-{
- return dma_map_single(dev, page_address(page) + offset,
- size, direction);
-}
-
-/**
- * dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @handle: DMA address of buffer
- * @size: size of buffer to map
- * @dir: DMA transfer direction
- *
- * Unmap a single streaming mode DMA translation. The handle and size
- * must match what was provided in the previous dma_map_single() call.
- * All other usages are undefined.
- *
- * After this call, reads by the CPU to the buffer are guaranteed to see
- * whatever the device wrote there.
- */
-static inline void
-dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
- enum dma_data_direction direction)
-{
- dma_unmap_single(dev, dma_address, size, direction);
-}
-
-/**
- * dma_map_sg - map a set of SG buffers for streaming mode DMA
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @sg: list of buffers
- * @nents: number of buffers to map
- * @dir: DMA transfer direction
- *
- * Map a set of buffers described by scatterlist in streaming
- * mode for DMA. This is the scatter-gather version of the
- * above pci_map_single interface. Here the scatter gather list
- * elements are each tagged with the appropriate dma address
- * and length. They are obtained via sg_dma_{address,length}(SG).
- *
- * NOTE: An implementation may be able to use a smaller number of
- * DMA address/length pairs than there are SG table elements.
- * (for example via virtual mapping capabilities)
- * The routine returns the number of addr/length pairs actually
- * used, at most nents.
- *
- * Device ownership issues as mentioned above for pci_map_single are
- * the same here.
- */
-static inline int
-dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
- enum dma_data_direction direction)
-{
- int i;
- struct scatterlist *sg;
-
- for_each_sg(sglist, sg, nents, i) {
- char *virt;
-
- sg->dma_address = page_to_bus(sg_page(sg)) + sg->offset;
- virt = sg_virt(sg);
- dma_cache_sync(dev, virt, sg->length, direction);
- }
-
- return nents;
-}
-
-/**
- * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @sg: list of buffers
- * @nents: number of buffers to map
- * @dir: DMA transfer direction
- *
- * Unmap a set of streaming mode DMA translations.
- * Again, CPU read rules concerning calls here are the same as for
- * pci_unmap_single() above.
- */
-static inline void
-dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
- enum dma_data_direction direction)
-{
-
-}
-
-/**
- * dma_sync_single_for_cpu
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @handle: DMA address of buffer
- * @size: size of buffer to map
- * @dir: DMA transfer direction
- *
- * Make physical memory consistent for a single streaming mode DMA
- * translation after a transfer.
- *
- * If you perform a dma_map_single() but wish to interrogate the
- * buffer using the cpu, yet do not wish to teardown the DMA mapping,
- * you must call this function before doing so. At the next point you
- * give the DMA address back to the card, you must first perform a
- * dma_sync_single_for_device, and then the device again owns the
- * buffer.
- */
-static inline void
-dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
- size_t size, enum dma_data_direction direction)
-{
- /*
- * No need to do anything since the CPU isn't supposed to
- * touch this memory after we flushed it at mapping- or
- * sync-for-device time.
- */
-}
-
-static inline void
-dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
- size_t size, enum dma_data_direction direction)
-{
- dma_cache_sync(dev, bus_to_virt(dma_handle), size, direction);
-}
-
-static inline void
-dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
- unsigned long offset, size_t size,
- enum dma_data_direction direction)
-{
- /* just sync everything, that's all the pci API can do */
- dma_sync_single_for_cpu(dev, dma_handle, offset+size, direction);
-}
-
-static inline void
-dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
- unsigned long offset, size_t size,
- enum dma_data_direction direction)
-{
- /* just sync everything, that's all the pci API can do */
- dma_sync_single_for_device(dev, dma_handle, offset+size, direction);
-}
+extern struct dma_map_ops avr32_dma_ops;
-/**
- * dma_sync_sg_for_cpu
- * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
- * @sg: list of buffers
- * @nents: number of buffers to map
- * @dir: DMA transfer direction
- *
- * Make physical memory consistent for a set of streaming
- * mode DMA translations after a transfer.
- *
- * The same as dma_sync_single_for_* but for a scatter-gather list,
- * same rules and usage.
- */
-static inline void
-dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
- int nents, enum dma_data_direction direction)
+static inline struct dma_map_ops *get_dma_ops(struct device *dev)
{
- /*
- * No need to do anything since the CPU isn't supposed to
- * touch this memory after we flushed it at mapping- or
- * sync-for-device time.
- */
+ return &avr32_dma_ops;
}
-static inline void
-dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
- int nents, enum dma_data_direction direction)
-{
- int i;
- struct scatterlist *sg;
-
- for_each_sg(sglist, sg, nents, i)
- dma_cache_sync(dev, sg_virt(sg), sg->length, direction);
-}
-
-/* Now for the API extensions over the pci_ one */
-
-#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
-#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
-
-/* drivers/base/dma-mapping.c */
-extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
- void *cpu_addr, dma_addr_t dma_addr, size_t size);
-extern int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
- void *cpu_addr, dma_addr_t dma_addr,
- size_t size);
-
-#define dma_mmap_coherent(d, v, c, h, s) dma_common_mmap(d, v, c, h, s)
-#define dma_get_sgtable(d, t, v, h, s) dma_common_get_sgtable(d, t, v, h, s)
+#include <asm-generic/dma-mapping-common.h>
#endif /* __ASM_AVR32_DMA_MAPPING_H */
diff --git a/arch/avr32/mm/dma-coherent.c b/arch/avr32/mm/dma-coherent.c
index 50cdb5b10f0f..92cf1fb2b3e6 100644
--- a/arch/avr32/mm/dma-coherent.c
+++ b/arch/avr32/mm/dma-coherent.c
@@ -9,9 +9,14 @@
#include <linux/dma-mapping.h>
#include <linux/gfp.h>
#include <linux/export.h>
+#include <linux/mm.h>
+#include <linux/device.h>
+#include <linux/scatterlist.h>
-#include <asm/addrspace.h>
+#include <asm/processor.h>
#include <asm/cacheflush.h>
+#include <asm/io.h>
+#include <asm/addrspace.h>
void dma_cache_sync(struct device *dev, void *vaddr, size_t size, int direction)
{
@@ -93,60 +98,100 @@ static void __dma_free(struct device *dev, size_t size,
__free_page(page++);
}
-void *dma_alloc_coherent(struct device *dev, size_t size,
- dma_addr_t *handle, gfp_t gfp)
+static void *avr32_dma_alloc(struct device *dev, size_t size,
+ dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
struct page *page;
- void *ret = NULL;
+ dma_addr_t phys;
page = __dma_alloc(dev, size, handle, gfp);
- if (page)
- ret = phys_to_uncached(page_to_phys(page));
+ if (!page)
+ return NULL;
+ phys = page_to_phys(page);
- return ret;
+ if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs)) {
+ /* Now, map the page into P3 with write-combining turned on */
+ *handle = phys;
+ return __ioremap(phys, size, _PAGE_BUFFER);
+ } else {
+ return phys_to_uncached(phys);
+ }
}
-EXPORT_SYMBOL(dma_alloc_coherent);
-void dma_free_coherent(struct device *dev, size_t size,
- void *cpu_addr, dma_addr_t handle)
+static void avr32_dma_free(struct device *dev, size_t size,
+ void *cpu_addr, dma_addr_t handle, struct dma_attrs *attrs)
{
- void *addr = phys_to_cached(uncached_to_phys(cpu_addr));
struct page *page;
- pr_debug("dma_free_coherent addr %p (phys %08lx) size %u\n",
- cpu_addr, (unsigned long)handle, (unsigned)size);
- BUG_ON(!virt_addr_valid(addr));
- page = virt_to_page(addr);
+ if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs)) {
+ iounmap(cpu_addr);
+
+ page = phys_to_page(handle);
+ } else {
+ void *addr = phys_to_cached(uncached_to_phys(cpu_addr));
+
+ pr_debug("avr32_dma_free addr %p (phys %08lx) size %u\n",
+ cpu_addr, (unsigned long)handle, (unsigned)size);
+
+ BUG_ON(!virt_addr_valid(addr));
+ page = virt_to_page(addr);
+ }
+
__dma_free(dev, size, page, handle);
}
-EXPORT_SYMBOL(dma_free_coherent);
-void *dma_alloc_writecombine(struct device *dev, size_t size,
- dma_addr_t *handle, gfp_t gfp)
+static dma_addr_t avr32_dma_map_page(struct device *dev, struct page *page,
+ unsigned long offset, size_t size,
+ enum dma_data_direction direction, struct dma_attrs *attrs)
{
- struct page *page;
- dma_addr_t phys;
+ void *cpu_addr = page_address(page) + offset;
- page = __dma_alloc(dev, size, handle, gfp);
- if (!page)
- return NULL;
+ dma_cache_sync(dev, cpu_addr, size, direction);
+ return virt_to_bus(cpu_addr);
+}
- phys = page_to_phys(page);
- *handle = phys;
+static int avr32_dma_map_sg(struct device *dev, struct scatterlist *sglist,
+ int nents, enum dma_data_direction direction,
+ struct dma_attrs *attrs)
+{
+ int i;
+ struct scatterlist *sg;
+
+ for_each_sg(sglist, sg, nents, i) {
+ char *virt;
- /* Now, map the page into P3 with write-combining turned on */
- return __ioremap(phys, size, _PAGE_BUFFER);
+ sg->dma_address = page_to_bus(sg_page(sg)) + sg->offset;
+ virt = sg_virt(sg);
+ dma_cache_sync(dev, virt, sg->length, direction);
+ }
+
+ return nents;
}
-EXPORT_SYMBOL(dma_alloc_writecombine);
-void dma_free_writecombine(struct device *dev, size_t size,
- void *cpu_addr, dma_addr_t handle)
+static void avr32_dma_sync_single_for_device(struct device *dev,
+ dma_addr_t dma_handle, size_t size,
+ enum dma_data_direction direction)
{
- struct page *page;
+ dma_cache_sync(dev, bus_to_virt(dma_handle), size, direction);
+}
- iounmap(cpu_addr);
+static void avr32_dma_sync_sg_for_device(struct device *dev,
+ struct scatterlist *sglist, int nents,
+ enum dma_data_direction direction)
+{
+ int i;
+ struct scatterlist *sg;
- page = phys_to_page(handle);
- __dma_free(dev, size, page, handle);
+ for_each_sg(sglist, sg, nents, i)
+ dma_cache_sync(dev, sg_virt(sg), sg->length, direction);
}
-EXPORT_SYMBOL(dma_free_writecombine);
+
+struct dma_map_ops avr32_dma_ops = {
+ .alloc = avr32_dma_alloc,
+ .free = avr32_dma_free,
+ .map_page = avr32_dma_map_page,
+ .map_sg = avr32_dma_map_sg,
+ .sync_single_for_device = avr32_dma_sync_single_for_device,
+ .sync_sg_for_device = avr32_dma_sync_sg_for_device,
+};
+EXPORT_SYMBOL(avr32_dma_ops);