summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/efi_32.c
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2007-10-11 11:17:01 +0200
committerThomas Gleixner <tglx@linutronix.de>2007-10-11 11:17:01 +0200
commit9a163ed8e0552fdcffe405d2ea7134819a81456e (patch)
treeb322fd2afbb812ba7ddfd22f3734aaab007c2aa5 /arch/x86/kernel/efi_32.c
parentf7627e2513987bb5d4e8cb13c4e0a478352141ac (diff)
downloadlinux-9a163ed8e0552fdcffe405d2ea7134819a81456e.tar.gz
linux-9a163ed8e0552fdcffe405d2ea7134819a81456e.tar.bz2
linux-9a163ed8e0552fdcffe405d2ea7134819a81456e.zip
i386: move kernel
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/kernel/efi_32.c')
-rw-r--r--arch/x86/kernel/efi_32.c712
1 files changed, 712 insertions, 0 deletions
diff --git a/arch/x86/kernel/efi_32.c b/arch/x86/kernel/efi_32.c
new file mode 100644
index 000000000000..2452c6fbe992
--- /dev/null
+++ b/arch/x86/kernel/efi_32.c
@@ -0,0 +1,712 @@
+/*
+ * Extensible Firmware Interface
+ *
+ * Based on Extensible Firmware Interface Specification version 1.0
+ *
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ * Copyright (C) 1999-2002 Hewlett-Packard Co.
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ * Stephane Eranian <eranian@hpl.hp.com>
+ *
+ * All EFI Runtime Services are not implemented yet as EFI only
+ * supports physical mode addressing on SoftSDV. This is to be fixed
+ * in a future version. --drummond 1999-07-20
+ *
+ * Implemented EFI runtime services and virtual mode calls. --davidm
+ *
+ * Goutham Rao: <goutham.rao@intel.com>
+ * Skip non-WB memory and ignore empty memory ranges.
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/types.h>
+#include <linux/time.h>
+#include <linux/spinlock.h>
+#include <linux/bootmem.h>
+#include <linux/ioport.h>
+#include <linux/module.h>
+#include <linux/efi.h>
+#include <linux/kexec.h>
+
+#include <asm/setup.h>
+#include <asm/io.h>
+#include <asm/page.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/desc.h>
+#include <asm/tlbflush.h>
+
+#define EFI_DEBUG 0
+#define PFX "EFI: "
+
+extern efi_status_t asmlinkage efi_call_phys(void *, ...);
+
+struct efi efi;
+EXPORT_SYMBOL(efi);
+static struct efi efi_phys;
+struct efi_memory_map memmap;
+
+/*
+ * We require an early boot_ioremap mapping mechanism initially
+ */
+extern void * boot_ioremap(unsigned long, unsigned long);
+
+/*
+ * To make EFI call EFI runtime service in physical addressing mode we need
+ * prelog/epilog before/after the invocation to disable interrupt, to
+ * claim EFI runtime service handler exclusively and to duplicate a memory in
+ * low memory space say 0 - 3G.
+ */
+
+static unsigned long efi_rt_eflags;
+static DEFINE_SPINLOCK(efi_rt_lock);
+static pgd_t efi_bak_pg_dir_pointer[2];
+
+static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
+{
+ unsigned long cr4;
+ unsigned long temp;
+ struct Xgt_desc_struct gdt_descr;
+
+ spin_lock(&efi_rt_lock);
+ local_irq_save(efi_rt_eflags);
+
+ /*
+ * If I don't have PSE, I should just duplicate two entries in page
+ * directory. If I have PSE, I just need to duplicate one entry in
+ * page directory.
+ */
+ cr4 = read_cr4();
+
+ if (cr4 & X86_CR4_PSE) {
+ efi_bak_pg_dir_pointer[0].pgd =
+ swapper_pg_dir[pgd_index(0)].pgd;
+ swapper_pg_dir[0].pgd =
+ swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
+ } else {
+ efi_bak_pg_dir_pointer[0].pgd =
+ swapper_pg_dir[pgd_index(0)].pgd;
+ efi_bak_pg_dir_pointer[1].pgd =
+ swapper_pg_dir[pgd_index(0x400000)].pgd;
+ swapper_pg_dir[pgd_index(0)].pgd =
+ swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
+ temp = PAGE_OFFSET + 0x400000;
+ swapper_pg_dir[pgd_index(0x400000)].pgd =
+ swapper_pg_dir[pgd_index(temp)].pgd;
+ }
+
+ /*
+ * After the lock is released, the original page table is restored.
+ */
+ local_flush_tlb();
+
+ gdt_descr.address = __pa(get_cpu_gdt_table(0));
+ gdt_descr.size = GDT_SIZE - 1;
+ load_gdt(&gdt_descr);
+}
+
+static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
+{
+ unsigned long cr4;
+ struct Xgt_desc_struct gdt_descr;
+
+ gdt_descr.address = (unsigned long)get_cpu_gdt_table(0);
+ gdt_descr.size = GDT_SIZE - 1;
+ load_gdt(&gdt_descr);
+
+ cr4 = read_cr4();
+
+ if (cr4 & X86_CR4_PSE) {
+ swapper_pg_dir[pgd_index(0)].pgd =
+ efi_bak_pg_dir_pointer[0].pgd;
+ } else {
+ swapper_pg_dir[pgd_index(0)].pgd =
+ efi_bak_pg_dir_pointer[0].pgd;
+ swapper_pg_dir[pgd_index(0x400000)].pgd =
+ efi_bak_pg_dir_pointer[1].pgd;
+ }
+
+ /*
+ * After the lock is released, the original page table is restored.
+ */
+ local_flush_tlb();
+
+ local_irq_restore(efi_rt_eflags);
+ spin_unlock(&efi_rt_lock);
+}
+
+static efi_status_t
+phys_efi_set_virtual_address_map(unsigned long memory_map_size,
+ unsigned long descriptor_size,
+ u32 descriptor_version,
+ efi_memory_desc_t *virtual_map)
+{
+ efi_status_t status;
+
+ efi_call_phys_prelog();
+ status = efi_call_phys(efi_phys.set_virtual_address_map,
+ memory_map_size, descriptor_size,
+ descriptor_version, virtual_map);
+ efi_call_phys_epilog();
+ return status;
+}
+
+static efi_status_t
+phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
+{
+ efi_status_t status;
+
+ efi_call_phys_prelog();
+ status = efi_call_phys(efi_phys.get_time, tm, tc);
+ efi_call_phys_epilog();
+ return status;
+}
+
+inline int efi_set_rtc_mmss(unsigned long nowtime)
+{
+ int real_seconds, real_minutes;
+ efi_status_t status;
+ efi_time_t eft;
+ efi_time_cap_t cap;
+
+ spin_lock(&efi_rt_lock);
+ status = efi.get_time(&eft, &cap);
+ spin_unlock(&efi_rt_lock);
+ if (status != EFI_SUCCESS)
+ panic("Ooops, efitime: can't read time!\n");
+ real_seconds = nowtime % 60;
+ real_minutes = nowtime / 60;
+
+ if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
+ real_minutes += 30;
+ real_minutes %= 60;
+
+ eft.minute = real_minutes;
+ eft.second = real_seconds;
+
+ if (status != EFI_SUCCESS) {
+ printk("Ooops: efitime: can't read time!\n");
+ return -1;
+ }
+ return 0;
+}
+/*
+ * This is used during kernel init before runtime
+ * services have been remapped and also during suspend, therefore,
+ * we'll need to call both in physical and virtual modes.
+ */
+inline unsigned long efi_get_time(void)
+{
+ efi_status_t status;
+ efi_time_t eft;
+ efi_time_cap_t cap;
+
+ if (efi.get_time) {
+ /* if we are in virtual mode use remapped function */
+ status = efi.get_time(&eft, &cap);
+ } else {
+ /* we are in physical mode */
+ status = phys_efi_get_time(&eft, &cap);
+ }
+
+ if (status != EFI_SUCCESS)
+ printk("Oops: efitime: can't read time status: 0x%lx\n",status);
+
+ return mktime(eft.year, eft.month, eft.day, eft.hour,
+ eft.minute, eft.second);
+}
+
+int is_available_memory(efi_memory_desc_t * md)
+{
+ if (!(md->attribute & EFI_MEMORY_WB))
+ return 0;
+
+ switch (md->type) {
+ case EFI_LOADER_CODE:
+ case EFI_LOADER_DATA:
+ case EFI_BOOT_SERVICES_CODE:
+ case EFI_BOOT_SERVICES_DATA:
+ case EFI_CONVENTIONAL_MEMORY:
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * We need to map the EFI memory map again after paging_init().
+ */
+void __init efi_map_memmap(void)
+{
+ memmap.map = NULL;
+
+ memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
+ (memmap.nr_map * memmap.desc_size));
+ if (memmap.map == NULL)
+ printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
+
+ memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
+}
+
+#if EFI_DEBUG
+static void __init print_efi_memmap(void)
+{
+ efi_memory_desc_t *md;
+ void *p;
+ int i;
+
+ for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
+ md = p;
+ printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
+ "range=[0x%016llx-0x%016llx) (%lluMB)\n",
+ i, md->type, md->attribute, md->phys_addr,
+ md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
+ (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
+ }
+}
+#endif /* EFI_DEBUG */
+
+/*
+ * Walks the EFI memory map and calls CALLBACK once for each EFI
+ * memory descriptor that has memory that is available for kernel use.
+ */
+void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
+{
+ int prev_valid = 0;
+ struct range {
+ unsigned long start;
+ unsigned long end;
+ } uninitialized_var(prev), curr;
+ efi_memory_desc_t *md;
+ unsigned long start, end;
+ void *p;
+
+ for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+ md = p;
+
+ if ((md->num_pages == 0) || (!is_available_memory(md)))
+ continue;
+
+ curr.start = md->phys_addr;
+ curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
+
+ if (!prev_valid) {
+ prev = curr;
+ prev_valid = 1;
+ } else {
+ if (curr.start < prev.start)
+ printk(KERN_INFO PFX "Unordered memory map\n");
+ if (prev.end == curr.start)
+ prev.end = curr.end;
+ else {
+ start =
+ (unsigned long) (PAGE_ALIGN(prev.start));
+ end = (unsigned long) (prev.end & PAGE_MASK);
+ if ((end > start)
+ && (*callback) (start, end, arg) < 0)
+ return;
+ prev = curr;
+ }
+ }
+ }
+ if (prev_valid) {
+ start = (unsigned long) PAGE_ALIGN(prev.start);
+ end = (unsigned long) (prev.end & PAGE_MASK);
+ if (end > start)
+ (*callback) (start, end, arg);
+ }
+}
+
+void __init efi_init(void)
+{
+ efi_config_table_t *config_tables;
+ efi_runtime_services_t *runtime;
+ efi_char16_t *c16;
+ char vendor[100] = "unknown";
+ unsigned long num_config_tables;
+ int i = 0;
+
+ memset(&efi, 0, sizeof(efi) );
+ memset(&efi_phys, 0, sizeof(efi_phys));
+
+ efi_phys.systab = EFI_SYSTAB;
+ memmap.phys_map = EFI_MEMMAP;
+ memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
+ memmap.desc_version = EFI_MEMDESC_VERSION;
+ memmap.desc_size = EFI_MEMDESC_SIZE;
+
+ efi.systab = (efi_system_table_t *)
+ boot_ioremap((unsigned long) efi_phys.systab,
+ sizeof(efi_system_table_t));
+ /*
+ * Verify the EFI Table
+ */
+ if (efi.systab == NULL)
+ printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
+ if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
+ printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
+ if ((efi.systab->hdr.revision >> 16) == 0)
+ printk(KERN_ERR PFX "Warning: EFI system table version "
+ "%d.%02d, expected 1.00 or greater\n",
+ efi.systab->hdr.revision >> 16,
+ efi.systab->hdr.revision & 0xffff);
+
+ /*
+ * Grab some details from the system table
+ */
+ num_config_tables = efi.systab->nr_tables;
+ config_tables = (efi_config_table_t *)efi.systab->tables;
+ runtime = efi.systab->runtime;
+
+ /*
+ * Show what we know for posterity
+ */
+ c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
+ if (c16) {
+ for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
+ vendor[i] = *c16++;
+ vendor[i] = '\0';
+ } else
+ printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
+
+ printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
+ efi.systab->hdr.revision >> 16,
+ efi.systab->hdr.revision & 0xffff, vendor);
+
+ /*
+ * Let's see what config tables the firmware passed to us.
+ */
+ config_tables = (efi_config_table_t *)
+ boot_ioremap((unsigned long) config_tables,
+ num_config_tables * sizeof(efi_config_table_t));
+
+ if (config_tables == NULL)
+ printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
+
+ efi.mps = EFI_INVALID_TABLE_ADDR;
+ efi.acpi = EFI_INVALID_TABLE_ADDR;
+ efi.acpi20 = EFI_INVALID_TABLE_ADDR;
+ efi.smbios = EFI_INVALID_TABLE_ADDR;
+ efi.sal_systab = EFI_INVALID_TABLE_ADDR;
+ efi.boot_info = EFI_INVALID_TABLE_ADDR;
+ efi.hcdp = EFI_INVALID_TABLE_ADDR;
+ efi.uga = EFI_INVALID_TABLE_ADDR;
+
+ for (i = 0; i < num_config_tables; i++) {
+ if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
+ efi.mps = config_tables[i].table;
+ printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
+ } else
+ if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
+ efi.acpi20 = config_tables[i].table;
+ printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
+ } else
+ if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
+ efi.acpi = config_tables[i].table;
+ printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
+ } else
+ if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
+ efi.smbios = config_tables[i].table;
+ printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
+ } else
+ if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
+ efi.hcdp = config_tables[i].table;
+ printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
+ } else
+ if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
+ efi.uga = config_tables[i].table;
+ printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
+ }
+ }
+ printk("\n");
+
+ /*
+ * Check out the runtime services table. We need to map
+ * the runtime services table so that we can grab the physical
+ * address of several of the EFI runtime functions, needed to
+ * set the firmware into virtual mode.
+ */
+
+ runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
+ runtime,
+ sizeof(efi_runtime_services_t));
+ if (runtime != NULL) {
+ /*
+ * We will only need *early* access to the following
+ * two EFI runtime services before set_virtual_address_map
+ * is invoked.
+ */
+ efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
+ efi_phys.set_virtual_address_map =
+ (efi_set_virtual_address_map_t *)
+ runtime->set_virtual_address_map;
+ } else
+ printk(KERN_ERR PFX "Could not map the runtime service table!\n");
+
+ /* Map the EFI memory map for use until paging_init() */
+ memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
+ if (memmap.map == NULL)
+ printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
+
+ memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
+
+#if EFI_DEBUG
+ print_efi_memmap();
+#endif
+}
+
+static inline void __init check_range_for_systab(efi_memory_desc_t *md)
+{
+ if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
+ ((unsigned long)efi_phys.systab < md->phys_addr +
+ ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
+ unsigned long addr;
+
+ addr = md->virt_addr - md->phys_addr +
+ (unsigned long)efi_phys.systab;
+ efi.systab = (efi_system_table_t *)addr;
+ }
+}
+
+/*
+ * Wrap all the virtual calls in a way that forces the parameters on the stack.
+ */
+
+#define efi_call_virt(f, args...) \
+ ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
+
+static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
+{
+ return efi_call_virt(get_time, tm, tc);
+}
+
+static efi_status_t virt_efi_set_time (efi_time_t *tm)
+{
+ return efi_call_virt(set_time, tm);
+}
+
+static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled,
+ efi_bool_t *pending,
+ efi_time_t *tm)
+{
+ return efi_call_virt(get_wakeup_time, enabled, pending, tm);
+}
+
+static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled,
+ efi_time_t *tm)
+{
+ return efi_call_virt(set_wakeup_time, enabled, tm);
+}
+
+static efi_status_t virt_efi_get_variable (efi_char16_t *name,
+ efi_guid_t *vendor, u32 *attr,
+ unsigned long *data_size, void *data)
+{
+ return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
+}
+
+static efi_status_t virt_efi_get_next_variable (unsigned long *name_size,
+ efi_char16_t *name,
+ efi_guid_t *vendor)
+{
+ return efi_call_virt(get_next_variable, name_size, name, vendor);
+}
+
+static efi_status_t virt_efi_set_variable (efi_char16_t *name,
+ efi_guid_t *vendor,
+ unsigned long attr,
+ unsigned long data_size, void *data)
+{
+ return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
+}
+
+static efi_status_t virt_efi_get_next_high_mono_count (u32 *count)
+{
+ return efi_call_virt(get_next_high_mono_count, count);
+}
+
+static void virt_efi_reset_system (int reset_type, efi_status_t status,
+ unsigned long data_size,
+ efi_char16_t *data)
+{
+ efi_call_virt(reset_system, reset_type, status, data_size, data);
+}
+
+/*
+ * This function will switch the EFI runtime services to virtual mode.
+ * Essentially, look through the EFI memmap and map every region that
+ * has the runtime attribute bit set in its memory descriptor and update
+ * that memory descriptor with the virtual address obtained from ioremap().
+ * This enables the runtime services to be called without having to
+ * thunk back into physical mode for every invocation.
+ */
+
+void __init efi_enter_virtual_mode(void)
+{
+ efi_memory_desc_t *md;
+ efi_status_t status;
+ void *p;
+
+ efi.systab = NULL;
+
+ for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+ md = p;
+
+ if (!(md->attribute & EFI_MEMORY_RUNTIME))
+ continue;
+
+ md->virt_addr = (unsigned long)ioremap(md->phys_addr,
+ md->num_pages << EFI_PAGE_SHIFT);
+ if (!(unsigned long)md->virt_addr) {
+ printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
+ (unsigned long)md->phys_addr);
+ }
+ /* update the virtual address of the EFI system table */
+ check_range_for_systab(md);
+ }
+
+ BUG_ON(!efi.systab);
+
+ status = phys_efi_set_virtual_address_map(
+ memmap.desc_size * memmap.nr_map,
+ memmap.desc_size,
+ memmap.desc_version,
+ memmap.phys_map);
+
+ if (status != EFI_SUCCESS) {
+ printk (KERN_ALERT "You are screwed! "
+ "Unable to switch EFI into virtual mode "
+ "(status=%lx)\n", status);
+ panic("EFI call to SetVirtualAddressMap() failed!");
+ }
+
+ /*
+ * Now that EFI is in virtual mode, update the function
+ * pointers in the runtime service table to the new virtual addresses.
+ */
+
+ efi.get_time = virt_efi_get_time;
+ efi.set_time = virt_efi_set_time;
+ efi.get_wakeup_time = virt_efi_get_wakeup_time;
+ efi.set_wakeup_time = virt_efi_set_wakeup_time;
+ efi.get_variable = virt_efi_get_variable;
+ efi.get_next_variable = virt_efi_get_next_variable;
+ efi.set_variable = virt_efi_set_variable;
+ efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
+ efi.reset_system = virt_efi_reset_system;
+}
+
+void __init
+efi_initialize_iomem_resources(struct resource *code_resource,
+ struct resource *data_resource)
+{
+ struct resource *res;
+ efi_memory_desc_t *md;
+ void *p;
+
+ for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+ md = p;
+
+ if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
+ 0x100000000ULL)
+ continue;
+ res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
+ switch (md->type) {
+ case EFI_RESERVED_TYPE:
+ res->name = "Reserved Memory";
+ break;
+ case EFI_LOADER_CODE:
+ res->name = "Loader Code";
+ break;
+ case EFI_LOADER_DATA:
+ res->name = "Loader Data";
+ break;
+ case EFI_BOOT_SERVICES_DATA:
+ res->name = "BootServices Data";
+ break;
+ case EFI_BOOT_SERVICES_CODE:
+ res->name = "BootServices Code";
+ break;
+ case EFI_RUNTIME_SERVICES_CODE:
+ res->name = "Runtime Service Code";
+ break;
+ case EFI_RUNTIME_SERVICES_DATA:
+ res->name = "Runtime Service Data";
+ break;
+ case EFI_CONVENTIONAL_MEMORY:
+ res->name = "Conventional Memory";
+ break;
+ case EFI_UNUSABLE_MEMORY:
+ res->name = "Unusable Memory";
+ break;
+ case EFI_ACPI_RECLAIM_MEMORY:
+ res->name = "ACPI Reclaim";
+ break;
+ case EFI_ACPI_MEMORY_NVS:
+ res->name = "ACPI NVS";
+ break;
+ case EFI_MEMORY_MAPPED_IO:
+ res->name = "Memory Mapped IO";
+ break;
+ case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
+ res->name = "Memory Mapped IO Port Space";
+ break;
+ default:
+ res->name = "Reserved";
+ break;
+ }
+ res->start = md->phys_addr;
+ res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
+ res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
+ if (request_resource(&iomem_resource, res) < 0)
+ printk(KERN_ERR PFX "Failed to allocate res %s : "
+ "0x%llx-0x%llx\n", res->name,
+ (unsigned long long)res->start,
+ (unsigned long long)res->end);
+ /*
+ * We don't know which region contains kernel data so we try
+ * it repeatedly and let the resource manager test it.
+ */
+ if (md->type == EFI_CONVENTIONAL_MEMORY) {
+ request_resource(res, code_resource);
+ request_resource(res, data_resource);
+#ifdef CONFIG_KEXEC
+ request_resource(res, &crashk_res);
+#endif
+ }
+ }
+}
+
+/*
+ * Convenience functions to obtain memory types and attributes
+ */
+
+u32 efi_mem_type(unsigned long phys_addr)
+{
+ efi_memory_desc_t *md;
+ void *p;
+
+ for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+ md = p;
+ if ((md->phys_addr <= phys_addr) && (phys_addr <
+ (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
+ return md->type;
+ }
+ return 0;
+}
+
+u64 efi_mem_attributes(unsigned long phys_addr)
+{
+ efi_memory_desc_t *md;
+ void *p;
+
+ for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+ md = p;
+ if ((md->phys_addr <= phys_addr) && (phys_addr <
+ (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
+ return md->attribute;
+ }
+ return 0;
+}