diff options
author | Paolo Bonzini <pbonzini@redhat.com> | 2020-10-16 10:29:37 -0400 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2020-10-21 18:16:59 -0400 |
commit | 5a9624affe7c7498fb395879d9bb613628e89e60 (patch) | |
tree | d0a58007a0457c7c0df694900c251320483b7c15 /arch/x86 | |
parent | cb3eedab453911ca177c1e2e44add0b7fe4a6f09 (diff) | |
download | linux-5a9624affe7c7498fb395879d9bb613628e89e60.tar.gz linux-5a9624affe7c7498fb395879d9bb613628e89e60.tar.bz2 linux-5a9624affe7c7498fb395879d9bb613628e89e60.zip |
KVM: mmu: extract spte.h and spte.c
The SPTE format will be common to both the shadow and the TDP MMU.
Extract code that implements the format to a separate module, as a
first step towards adding the TDP MMU and putting mmu.c on a diet.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'arch/x86')
-rw-r--r-- | arch/x86/kvm/Makefile | 3 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/mmu.c | 551 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/mmu_internal.h | 31 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/spte.c | 318 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/spte.h | 252 |
5 files changed, 607 insertions, 548 deletions
diff --git a/arch/x86/kvm/Makefile b/arch/x86/kvm/Makefile index 7f86a14aed0e..66aa24f5e2db 100644 --- a/arch/x86/kvm/Makefile +++ b/arch/x86/kvm/Makefile @@ -15,7 +15,8 @@ kvm-$(CONFIG_KVM_ASYNC_PF) += $(KVM)/async_pf.o kvm-y += x86.o emulate.o i8259.o irq.o lapic.o \ i8254.o ioapic.o irq_comm.o cpuid.o pmu.o mtrr.o \ - hyperv.o debugfs.o mmu/mmu.o mmu/page_track.o + hyperv.o debugfs.o mmu/mmu.o mmu/page_track.o \ + mmu/spte.o kvm-intel-y += vmx/vmx.o vmx/vmenter.o vmx/pmu_intel.o vmx/vmcs12.o \ vmx/evmcs.o vmx/nested.o vmx/posted_intr.o diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c index 3dec4744ab9c..02af304c168a 100644 --- a/arch/x86/kvm/mmu/mmu.c +++ b/arch/x86/kvm/mmu/mmu.c @@ -23,6 +23,7 @@ #include "kvm_cache_regs.h" #include "kvm_emulate.h" #include "cpuid.h" +#include "spte.h" #include <linux/kvm_host.h> #include <linux/types.h> @@ -45,7 +46,6 @@ #include <asm/page.h> #include <asm/memtype.h> #include <asm/cmpxchg.h> -#include <asm/e820/api.h> #include <asm/io.h> #include <asm/vmx.h> #include <asm/kvm_page_track.h> @@ -104,45 +104,13 @@ enum { AUDIT_POST_SYNC }; -#undef MMU_DEBUG - #ifdef MMU_DEBUG -static bool dbg = 0; +bool dbg = 0; module_param(dbg, bool, 0644); - -#define pgprintk(x...) do { if (dbg) printk(x); } while (0) -#define rmap_printk(x...) do { if (dbg) printk(x); } while (0) -#define MMU_WARN_ON(x) WARN_ON(x) -#else -#define pgprintk(x...) do { } while (0) -#define rmap_printk(x...) do { } while (0) -#define MMU_WARN_ON(x) do { } while (0) #endif #define PTE_PREFETCH_NUM 8 -#define PT_FIRST_AVAIL_BITS_SHIFT 10 -#define PT64_SECOND_AVAIL_BITS_SHIFT 54 - -/* - * The mask used to denote special SPTEs, which can be either MMIO SPTEs or - * Access Tracking SPTEs. - */ -#define SPTE_SPECIAL_MASK (3ULL << 52) -#define SPTE_AD_ENABLED_MASK (0ULL << 52) -#define SPTE_AD_DISABLED_MASK (1ULL << 52) -#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52) -#define SPTE_MMIO_MASK (3ULL << 52) - -#define PT64_LEVEL_BITS 9 - -#define PT64_LEVEL_SHIFT(level) \ - (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) - -#define PT64_INDEX(address, level)\ - (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) - - #define PT32_LEVEL_BITS 10 #define PT32_LEVEL_SHIFT(level) \ @@ -156,18 +124,6 @@ module_param(dbg, bool, 0644); (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) -#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK -#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) -#else -#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) -#endif -#define PT64_LVL_ADDR_MASK(level) \ - (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ - * PT64_LEVEL_BITS))) - 1)) -#define PT64_LVL_OFFSET_MASK(level) \ - (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ - * PT64_LEVEL_BITS))) - 1)) - #define PT32_BASE_ADDR_MASK PAGE_MASK #define PT32_DIR_BASE_ADDR_MASK \ (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) @@ -175,25 +131,8 @@ module_param(dbg, bool, 0644); (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ * PT32_LEVEL_BITS))) - 1)) -#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ - | shadow_x_mask | shadow_nx_mask | shadow_me_mask) - -#define ACC_EXEC_MASK 1 -#define ACC_WRITE_MASK PT_WRITABLE_MASK -#define ACC_USER_MASK PT_USER_MASK -#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) - -/* The mask for the R/X bits in EPT PTEs */ -#define PT64_EPT_READABLE_MASK 0x1ull -#define PT64_EPT_EXECUTABLE_MASK 0x4ull - #include <trace/events/kvm.h> -#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) -#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) - -#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) - /* make pte_list_desc fit well in cache line */ #define PTE_LIST_EXT 3 @@ -248,62 +187,7 @@ static struct kmem_cache *pte_list_desc_cache; static struct kmem_cache *mmu_page_header_cache; static struct percpu_counter kvm_total_used_mmu_pages; -static u64 __read_mostly shadow_nx_mask; -static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ -static u64 __read_mostly shadow_user_mask; -static u64 __read_mostly shadow_accessed_mask; -static u64 __read_mostly shadow_dirty_mask; -static u64 __read_mostly shadow_mmio_value; -static u64 __read_mostly shadow_mmio_access_mask; -static u64 __read_mostly shadow_present_mask; -static u64 __read_mostly shadow_me_mask; - -/* - * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK; - * shadow_acc_track_mask is the set of bits to be cleared in non-accessed - * pages. - */ -static u64 __read_mostly shadow_acc_track_mask; - -/* - * The mask/shift to use for saving the original R/X bits when marking the PTE - * as not-present for access tracking purposes. We do not save the W bit as the - * PTEs being access tracked also need to be dirty tracked, so the W bit will be - * restored only when a write is attempted to the page. - */ -static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | - PT64_EPT_EXECUTABLE_MASK; -static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; - -/* - * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order - * to guard against L1TF attacks. - */ -static u64 __read_mostly shadow_nonpresent_or_rsvd_mask; - -/* - * The number of high-order 1 bits to use in the mask above. - */ -static const u64 shadow_nonpresent_or_rsvd_mask_len = 5; - -/* - * In some cases, we need to preserve the GFN of a non-present or reserved - * SPTE when we usurp the upper five bits of the physical address space to - * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll - * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask - * left into the reserved bits, i.e. the GFN in the SPTE will be split into - * high and low parts. This mask covers the lower bits of the GFN. - */ -static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; - -/* - * The number of non-reserved physical address bits irrespective of features - * that repurpose legal bits, e.g. MKTME. - */ -static u8 __read_mostly shadow_phys_bits; - static void mmu_spte_set(u64 *sptep, u64 spte); -static bool is_executable_pte(u64 spte); static union kvm_mmu_page_role kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); @@ -339,134 +223,11 @@ static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, kvm_flush_remote_tlbs_with_range(kvm, &range); } -void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask) -{ - BUG_ON((u64)(unsigned)access_mask != access_mask); - WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len)); - WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); - shadow_mmio_value = mmio_value | SPTE_MMIO_MASK; - shadow_mmio_access_mask = access_mask; -} -EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); - -static bool is_mmio_spte(u64 spte) -{ - return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK; -} - -static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) -{ - return sp->role.ad_disabled; -} - -static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu) -{ - /* - * When using the EPT page-modification log, the GPAs in the log - * would come from L2 rather than L1. Therefore, we need to rely - * on write protection to record dirty pages. This also bypasses - * PML, since writes now result in a vmexit. - */ - return vcpu->arch.mmu == &vcpu->arch.guest_mmu; -} - -static inline bool spte_ad_enabled(u64 spte) -{ - MMU_WARN_ON(is_mmio_spte(spte)); - return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK; -} - -static inline bool spte_ad_need_write_protect(u64 spte) -{ - MMU_WARN_ON(is_mmio_spte(spte)); - return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK; -} - -static bool is_nx_huge_page_enabled(void) +bool is_nx_huge_page_enabled(void) { return READ_ONCE(nx_huge_pages); } -static inline u64 spte_shadow_accessed_mask(u64 spte) -{ - MMU_WARN_ON(is_mmio_spte(spte)); - return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; -} - -static inline u64 spte_shadow_dirty_mask(u64 spte) -{ - MMU_WARN_ON(is_mmio_spte(spte)); - return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; -} - -static inline bool is_access_track_spte(u64 spte) -{ - return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; -} - -/* - * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of - * the memslots generation and is derived as follows: - * - * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11 - * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61 - * - * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in - * the MMIO generation number, as doing so would require stealing a bit from - * the "real" generation number and thus effectively halve the maximum number - * of MMIO generations that can be handled before encountering a wrap (which - * requires a full MMU zap). The flag is instead explicitly queried when - * checking for MMIO spte cache hits. - */ -#define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0) - -#define MMIO_SPTE_GEN_LOW_START 3 -#define MMIO_SPTE_GEN_LOW_END 11 -#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ - MMIO_SPTE_GEN_LOW_START) - -#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT -#define MMIO_SPTE_GEN_HIGH_END 62 -#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ - MMIO_SPTE_GEN_HIGH_START) - -static u64 generation_mmio_spte_mask(u64 gen) -{ - u64 mask; - - WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); - BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK); - - mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK; - mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK; - return mask; -} - -static u64 get_mmio_spte_generation(u64 spte) -{ - u64 gen; - - gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START; - gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START; - return gen; -} - -static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) -{ - - u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; - u64 mask = generation_mmio_spte_mask(gen); - u64 gpa = gfn << PAGE_SHIFT; - - access &= shadow_mmio_access_mask; - mask |= shadow_mmio_value | access; - mask |= gpa | shadow_nonpresent_or_rsvd_mask; - mask |= (gpa & shadow_nonpresent_or_rsvd_mask) - << shadow_nonpresent_or_rsvd_mask_len; - - return mask; -} - static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, unsigned int access) { @@ -532,90 +293,6 @@ static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, return gpa; } -/* - * Sets the shadow PTE masks used by the MMU. - * - * Assumptions: - * - Setting either @accessed_mask or @dirty_mask requires setting both - * - At least one of @accessed_mask or @acc_track_mask must be set - */ -void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, - u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, - u64 acc_track_mask, u64 me_mask) -{ - BUG_ON(!dirty_mask != !accessed_mask); - BUG_ON(!accessed_mask && !acc_track_mask); - BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK); - - shadow_user_mask = user_mask; - shadow_accessed_mask = accessed_mask; - shadow_dirty_mask = dirty_mask; - shadow_nx_mask = nx_mask; - shadow_x_mask = x_mask; - shadow_present_mask = p_mask; - shadow_acc_track_mask = acc_track_mask; - shadow_me_mask = me_mask; -} -EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); - -static u8 kvm_get_shadow_phys_bits(void) -{ - /* - * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected - * in CPU detection code, but the processor treats those reduced bits as - * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at - * the physical address bits reported by CPUID. - */ - if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) - return cpuid_eax(0x80000008) & 0xff; - - /* - * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with - * custom CPUID. Proceed with whatever the kernel found since these features - * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). - */ - return boot_cpu_data.x86_phys_bits; -} - -static void kvm_mmu_reset_all_pte_masks(void) -{ - u8 low_phys_bits; - - shadow_user_mask = 0; - shadow_accessed_mask = 0; - shadow_dirty_mask = 0; - shadow_nx_mask = 0; - shadow_x_mask = 0; - shadow_present_mask = 0; - shadow_acc_track_mask = 0; - - shadow_phys_bits = kvm_get_shadow_phys_bits(); - - /* - * If the CPU has 46 or less physical address bits, then set an - * appropriate mask to guard against L1TF attacks. Otherwise, it is - * assumed that the CPU is not vulnerable to L1TF. - * - * Some Intel CPUs address the L1 cache using more PA bits than are - * reported by CPUID. Use the PA width of the L1 cache when possible - * to achieve more effective mitigation, e.g. if system RAM overlaps - * the most significant bits of legal physical address space. - */ - shadow_nonpresent_or_rsvd_mask = 0; - low_phys_bits = boot_cpu_data.x86_phys_bits; - if (boot_cpu_has_bug(X86_BUG_L1TF) && - !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= - 52 - shadow_nonpresent_or_rsvd_mask_len)) { - low_phys_bits = boot_cpu_data.x86_cache_bits - - shadow_nonpresent_or_rsvd_mask_len; - shadow_nonpresent_or_rsvd_mask = - rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); - } - - shadow_nonpresent_or_rsvd_lower_gfn_mask = - GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); -} - static int is_cpuid_PSE36(void) { return 1; @@ -626,35 +303,6 @@ static int is_nx(struct kvm_vcpu *vcpu) return vcpu->arch.efer & EFER_NX; } -static int is_shadow_present_pte(u64 pte) -{ - return (pte != 0) && !is_mmio_spte(pte); -} - -static int is_large_pte(u64 pte) -{ - return pte & PT_PAGE_SIZE_MASK; -} - -static int is_last_spte(u64 pte, int level) -{ - if (level == PG_LEVEL_4K) - return 1; - if (is_large_pte(pte)) - return 1; - return 0; -} - -static bool is_executable_pte(u64 spte) -{ - return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; -} - -static kvm_pfn_t spte_to_pfn(u64 pte) -{ - return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; -} - static gfn_t pse36_gfn_delta(u32 gpte) { int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; @@ -799,12 +447,6 @@ retry: } #endif -static bool spte_can_locklessly_be_made_writable(u64 spte) -{ - return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == - (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); -} - static bool spte_has_volatile_bits(u64 spte) { if (!is_shadow_present_pte(spte)) @@ -829,21 +471,6 @@ static bool spte_has_volatile_bits(u64 spte) return false; } -static bool is_accessed_spte(u64 spte) -{ - u64 accessed_mask = spte_shadow_accessed_mask(spte); - - return accessed_mask ? spte & accessed_mask - : !is_access_track_spte(spte); -} - -static bool is_dirty_spte(u64 spte) -{ - u64 dirty_mask = spte_shadow_dirty_mask(spte); - - return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; -} - /* Rules for using mmu_spte_set: * Set the sptep from nonpresent to present. * Note: the sptep being assigned *must* be either not present @@ -979,34 +606,6 @@ static u64 mmu_spte_get_lockless(u64 *sptep) return __get_spte_lockless(sptep); } -static u64 mark_spte_for_access_track(u64 spte) -{ - if (spte_ad_enabled(spte)) - return spte & ~shadow_accessed_mask; - - if (is_access_track_spte(spte)) - return spte; - - /* - * Making an Access Tracking PTE will result in removal of write access - * from the PTE. So, verify that we will be able to restore the write - * access in the fast page fault path later on. - */ - WARN_ONCE((spte & PT_WRITABLE_MASK) && - !spte_can_locklessly_be_made_writable(spte), - "kvm: Writable SPTE is not locklessly dirty-trackable\n"); - - WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << - shadow_acc_track_saved_bits_shift), - "kvm: Access Tracking saved bit locations are not zero\n"); - - spte |= (spte & shadow_acc_track_saved_bits_mask) << - shadow_acc_track_saved_bits_shift; - spte &= ~shadow_acc_track_mask; - - return spte; -} - /* Restore an acc-track PTE back to a regular PTE */ static u64 restore_acc_track_spte(u64 spte) { @@ -1747,21 +1346,6 @@ static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, return kvm_zap_rmapp(kvm, rmap_head); } -static u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) -{ - u64 new_spte; - - new_spte = old_spte & ~PT64_BASE_ADDR_MASK; - new_spte |= (u64)new_pfn << PAGE_SHIFT; - - new_spte &= ~PT_WRITABLE_MASK; - new_spte &= ~SPTE_HOST_WRITEABLE; - - new_spte = mark_spte_for_access_track(new_spte); - - return new_spte; -} - static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, struct kvm_memory_slot *slot, gfn_t gfn, int level, unsigned long data) @@ -2583,21 +2167,6 @@ static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) __shadow_walk_next(iterator, *iterator->sptep); } -static u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) -{ - u64 spte; - - spte = __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | - shadow_user_mask | shadow_x_mask | shadow_me_mask; - - if (ad_disabled) - spte |= SPTE_AD_DISABLED_MASK; - else - spte |= shadow_accessed_mask; - - return spte; -} - static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, struct kvm_mmu_page *sp) { @@ -2919,8 +2488,8 @@ static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) kvm_mmu_mark_parents_unsync(sp); } -static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, - bool can_unsync) +bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, + bool can_unsync) { struct kvm_mmu_page *sp; @@ -2980,116 +2549,6 @@ static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, return false; } -static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) -{ - if (pfn_valid(pfn)) - return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && - /* - * Some reserved pages, such as those from NVDIMM - * DAX devices, are not for MMIO, and can be mapped - * with cached memory type for better performance. - * However, the above check misconceives those pages - * as MMIO, and results in KVM mapping them with UC - * memory type, which would hurt the performance. - * Therefore, we check the host memory type in addition - * and only treat UC/UC-/WC pages as MMIO. - */ - (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); - - return !e820__mapped_raw_any(pfn_to_hpa(pfn), - pfn_to_hpa(pfn + 1) - 1, - E820_TYPE_RAM); -} - -/* Bits which may be returned by set_spte() */ -#define SET_SPTE_WRITE_PROTECTED_PT BIT(0) -#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) -#define SET_SPTE_SPURIOUS BIT(2) - -static int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level, - gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative, - bool can_unsync, bool host_writable, bool ad_disabled, - u64 *new_spte) -{ - u64 spte = 0; - int ret = 0; - - if (ad_disabled) - spte |= SPTE_AD_DISABLED_MASK; - else if (kvm_vcpu_ad_need_write_protect(vcpu)) - spte |= SPTE_AD_WRPROT_ONLY_MASK; - - /* - * For the EPT case, shadow_present_mask is 0 if hardware - * supports exec-only page table entries. In that case, - * ACC_USER_MASK and shadow_user_mask are used to represent - * read access. See FNAME(gpte_access) in paging_tmpl.h. - */ - spte |= shadow_present_mask; - if (!speculative) - spte |= spte_shadow_accessed_mask(spte); - - if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && - is_nx_huge_page_enabled()) { - pte_access &= ~ACC_EXEC_MASK; - } - - if (pte_access & ACC_EXEC_MASK) - spte |= shadow_x_mask; - else - spte |= shadow_nx_mask; - - if (pte_access & ACC_USER_MASK) - spte |= shadow_user_mask; - - if (level > PG_LEVEL_4K) - spte |= PT_PAGE_SIZE_MASK; - if (tdp_enabled) - spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn, - kvm_is_mmio_pfn(pfn)); - - if (host_writable) - spte |= SPTE_HOST_WRITEABLE; - else - pte_access &= ~ACC_WRITE_MASK; - - if (!kvm_is_mmio_pfn(pfn)) - spte |= shadow_me_mask; - - spte |= (u64)pfn << PAGE_SHIFT; - - if (pte_access & ACC_WRITE_MASK) { - spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; - - /* - * Optimization: for pte sync, if spte was writable the hash - * lookup is unnecessary (and expensive). Write protection - * is responsibility of mmu_get_page / kvm_sync_page. - * Same reasoning can be applied to dirty page accounting. - */ - if (!can_unsync && is_writable_pte(old_spte)) - goto out; - - if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { - pgprintk("%s: found shadow page for %llx, marking ro\n", - __func__, gfn); - ret |= SET_SPTE_WRITE_PROTECTED_PT; - pte_access &= ~ACC_WRITE_MASK; - spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); - } - } - - if (pte_access & ACC_WRITE_MASK) - spte |= spte_shadow_dirty_mask(spte); - - if (speculative) - spte = mark_spte_for_access_track(spte); - -out: - *new_spte = spte; - return ret; -} - static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned int pte_access, int level, gfn_t gfn, kvm_pfn_t pfn, bool speculative, diff --git a/arch/x86/kvm/mmu/mmu_internal.h b/arch/x86/kvm/mmu/mmu_internal.h index 3acf3b8eb469..fc72f199eaa6 100644 --- a/arch/x86/kvm/mmu/mmu_internal.h +++ b/arch/x86/kvm/mmu/mmu_internal.h @@ -3,9 +3,23 @@ #define __KVM_X86_MMU_INTERNAL_H #include <linux/types.h> - +#include <linux/kvm_host.h> #include <asm/kvm_host.h> +#undef MMU_DEBUG + +#ifdef MMU_DEBUG +extern bool dbg; + +#define pgprintk(x...) do { if (dbg) printk(x); } while (0) +#define rmap_printk(x...) do { if (dbg) printk(x); } while (0) +#define MMU_WARN_ON(x) WARN_ON(x) +#else +#define pgprintk(x...) do { } while (0) +#define rmap_printk(x...) do { } while (0) +#define MMU_WARN_ON(x) do { } while (0) +#endif + struct kvm_mmu_page { struct list_head link; struct hlist_node hash_link; @@ -55,6 +69,21 @@ static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep) return to_shadow_page(__pa(sptep)); } +static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu) +{ + /* + * When using the EPT page-modification log, the GPAs in the log + * would come from L2 rather than L1. Therefore, we need to rely + * on write protection to record dirty pages. This also bypasses + * PML, since writes now result in a vmexit. + */ + return vcpu->arch.mmu == &vcpu->arch.guest_mmu; +} + +bool is_nx_huge_page_enabled(void); +bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, + bool can_unsync); + void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c new file mode 100644 index 000000000000..d9c5665a55e9 --- /dev/null +++ b/arch/x86/kvm/mmu/spte.c @@ -0,0 +1,318 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Kernel-based Virtual Machine driver for Linux + * + * Macros and functions to access KVM PTEs (also known as SPTEs) + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2020 Red Hat, Inc. and/or its affiliates. + */ + + +#include <linux/kvm_host.h> +#include "mmu.h" +#include "mmu_internal.h" +#include "x86.h" +#include "spte.h" + +#include <asm/e820/api.h> + +u64 __read_mostly shadow_nx_mask; +u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ +u64 __read_mostly shadow_user_mask; +u64 __read_mostly shadow_accessed_mask; +u64 __read_mostly shadow_dirty_mask; +u64 __read_mostly shadow_mmio_value; +u64 __read_mostly shadow_mmio_access_mask; +u64 __read_mostly shadow_present_mask; +u64 __read_mostly shadow_me_mask; +u64 __read_mostly shadow_acc_track_mask; + +u64 __read_mostly shadow_nonpresent_or_rsvd_mask; +u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; + +u8 __read_mostly shadow_phys_bits; + +static u64 generation_mmio_spte_mask(u64 gen) +{ + u64 mask; + + WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); + BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK); + + mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK; + mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK; + return mask; +} + +u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) +{ + u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; + u64 mask = generation_mmio_spte_mask(gen); + u64 gpa = gfn << PAGE_SHIFT; + + access &= shadow_mmio_access_mask; + mask |= shadow_mmio_value | access; + mask |= gpa | shadow_nonpresent_or_rsvd_mask; + mask |= (gpa & shadow_nonpresent_or_rsvd_mask) + << shadow_nonpresent_or_rsvd_mask_len; + + return mask; +} + +static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) +{ + if (pfn_valid(pfn)) + return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && + /* + * Some reserved pages, such as those from NVDIMM + * DAX devices, are not for MMIO, and can be mapped + * with cached memory type for better performance. + * However, the above check misconceives those pages + * as MMIO, and results in KVM mapping them with UC + * memory type, which would hurt the performance. + * Therefore, we check the host memory type in addition + * and only treat UC/UC-/WC pages as MMIO. + */ + (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); + + return !e820__mapped_raw_any(pfn_to_hpa(pfn), + pfn_to_hpa(pfn + 1) - 1, + E820_TYPE_RAM); +} + +int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level, + gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative, + bool can_unsync, bool host_writable, bool ad_disabled, + u64 *new_spte) +{ + u64 spte = 0; + int ret = 0; + + if (ad_disabled) + spte |= SPTE_AD_DISABLED_MASK; + else if (kvm_vcpu_ad_need_write_protect(vcpu)) + spte |= SPTE_AD_WRPROT_ONLY_MASK; + + /* + * For the EPT case, shadow_present_mask is 0 if hardware + * supports exec-only page table entries. In that case, + * ACC_USER_MASK and shadow_user_mask are used to represent + * read access. See FNAME(gpte_access) in paging_tmpl.h. + */ + spte |= shadow_present_mask; + if (!speculative) + spte |= spte_shadow_accessed_mask(spte); + + if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && + is_nx_huge_page_enabled()) { + pte_access &= ~ACC_EXEC_MASK; + } + + if (pte_access & ACC_EXEC_MASK) + spte |= shadow_x_mask; + else + spte |= shadow_nx_mask; + + if (pte_access & ACC_USER_MASK) + spte |= shadow_user_mask; + + if (level > PG_LEVEL_4K) + spte |= PT_PAGE_SIZE_MASK; + if (tdp_enabled) + spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn, + kvm_is_mmio_pfn(pfn)); + + if (host_writable) + spte |= SPTE_HOST_WRITEABLE; + else + pte_access &= ~ACC_WRITE_MASK; + + if (!kvm_is_mmio_pfn(pfn)) + spte |= shadow_me_mask; + + spte |= (u64)pfn << PAGE_SHIFT; + + if (pte_access & ACC_WRITE_MASK) { + spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; + + /* + * Optimization: for pte sync, if spte was writable the hash + * lookup is unnecessary (and expensive). Write protection + * is responsibility of mmu_get_page / kvm_sync_page. + * Same reasoning can be applied to dirty page accounting. + */ + if (!can_unsync && is_writable_pte(old_spte)) + goto out; + + if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { + pgprintk("%s: found shadow page for %llx, marking ro\n", + __func__, gfn); + ret |= SET_SPTE_WRITE_PROTECTED_PT; + pte_access &= ~ACC_WRITE_MASK; + spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); + } + } + + if (pte_access & ACC_WRITE_MASK) + spte |= spte_shadow_dirty_mask(spte); + + if (speculative) + spte = mark_spte_for_access_track(spte); + +out: + *new_spte = spte; + return ret; +} + +u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) +{ + u64 spte; + + spte = __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | + shadow_user_mask | shadow_x_mask | shadow_me_mask; + + if (ad_disabled) + spte |= SPTE_AD_DISABLED_MASK; + else + spte |= shadow_accessed_mask; + + return spte; +} + +u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) +{ + u64 new_spte; + + new_spte = old_spte & ~PT64_BASE_ADDR_MASK; + new_spte |= (u64)new_pfn << PAGE_SHIFT; + + new_spte &= ~PT_WRITABLE_MASK; + new_spte &= ~SPTE_HOST_WRITEABLE; + + new_spte = mark_spte_for_access_track(new_spte); + + return new_spte; +} + +static u8 kvm_get_shadow_phys_bits(void) +{ + /* + * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected + * in CPU detection code, but the processor treats those reduced bits as + * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at + * the physical address bits reported by CPUID. + */ + if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) + return cpuid_eax(0x80000008) & 0xff; + + /* + * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with + * custom CPUID. Proceed with whatever the kernel found since these features + * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). + */ + return boot_cpu_data.x86_phys_bits; +} + +u64 mark_spte_for_access_track(u64 spte) +{ + if (spte_ad_enabled(spte)) + return spte & ~shadow_accessed_mask; + + if (is_access_track_spte(spte)) + return spte; + + /* + * Making an Access Tracking PTE will result in removal of write access + * from the PTE. So, verify that we will be able to restore the write + * access in the fast page fault path later on. + */ + WARN_ONCE((spte & PT_WRITABLE_MASK) && + !spte_can_locklessly_be_made_writable(spte), + "kvm: Writable SPTE is not locklessly dirty-trackable\n"); + + WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << + shadow_acc_track_saved_bits_shift), + "kvm: Access Tracking saved bit locations are not zero\n"); + + spte |= (spte & shadow_acc_track_saved_bits_mask) << + shadow_acc_track_saved_bits_shift; + spte &= ~shadow_acc_track_mask; + + return spte; +} + +void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask) +{ + BUG_ON((u64)(unsigned)access_mask != access_mask); + WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len)); + WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); + shadow_mmio_value = mmio_value | SPTE_MMIO_MASK; + shadow_mmio_access_mask = access_mask; +} +EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); + +/* + * Sets the shadow PTE masks used by the MMU. + * + * Assumptions: + * - Setting either @accessed_mask or @dirty_mask requires setting both + * - At least one of @accessed_mask or @acc_track_mask must be set + */ +void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, + u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, + u64 acc_track_mask, u64 me_mask) +{ + BUG_ON(!dirty_mask != !accessed_mask); + BUG_ON(!accessed_mask && !acc_track_mask); + BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK); + + shadow_user_mask = user_mask; + shadow_accessed_mask = accessed_mask; + shadow_dirty_mask = dirty_mask; + shadow_nx_mask = nx_mask; + shadow_x_mask = x_mask; + shadow_present_mask = p_mask; + shadow_acc_track_mask = acc_track_mask; + shadow_me_mask = me_mask; +} +EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); + +void kvm_mmu_reset_all_pte_masks(void) +{ + u8 low_phys_bits; + + shadow_user_mask = 0; + shadow_accessed_mask = 0; + shadow_dirty_mask = 0; + shadow_nx_mask = 0; + shadow_x_mask = 0; + shadow_present_mask = 0; + shadow_acc_track_mask = 0; + + shadow_phys_bits = kvm_get_shadow_phys_bits(); + + /* + * If the CPU has 46 or less physical address bits, then set an + * appropriate mask to guard against L1TF attacks. Otherwise, it is + * assumed that the CPU is not vulnerable to L1TF. + * + * Some Intel CPUs address the L1 cache using more PA bits than are + * reported by CPUID. Use the PA width of the L1 cache when possible + * to achieve more effective mitigation, e.g. if system RAM overlaps + * the most significant bits of legal physical address space. + */ + shadow_nonpresent_or_rsvd_mask = 0; + low_phys_bits = boot_cpu_data.x86_phys_bits; + if (boot_cpu_has_bug(X86_BUG_L1TF) && + !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= + 52 - shadow_nonpresent_or_rsvd_mask_len)) { + low_phys_bits = boot_cpu_data.x86_cache_bits + - shadow_nonpresent_or_rsvd_mask_len; + shadow_nonpresent_or_rsvd_mask = + rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); + } + + shadow_nonpresent_or_rsvd_lower_gfn_mask = + GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); +} diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h new file mode 100644 index 000000000000..4ecf40e0b8fe --- /dev/null +++ b/arch/x86/kvm/mmu/spte.h @@ -0,0 +1,252 @@ +// SPDX-License-Identifier: GPL-2.0-only + +#ifndef KVM_X86_MMU_SPTE_H +#define KVM_X86_MMU_SPTE_H + +#include "mmu_internal.h" + +#define PT_FIRST_AVAIL_BITS_SHIFT 10 +#define PT64_SECOND_AVAIL_BITS_SHIFT 54 + +/* + * The mask used to denote special SPTEs, which can be either MMIO SPTEs or + * Access Tracking SPTEs. + */ +#define SPTE_SPECIAL_MASK (3ULL << 52) +#define SPTE_AD_ENABLED_MASK (0ULL << 52) +#define SPTE_AD_DISABLED_MASK (1ULL << 52) +#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52) +#define SPTE_MMIO_MASK (3ULL << 52) + +#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK +#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) +#else +#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) +#endif +#define PT64_LVL_ADDR_MASK(level) \ + (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ + * PT64_LEVEL_BITS))) - 1)) +#define PT64_LVL_OFFSET_MASK(level) \ + (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ + * PT64_LEVEL_BITS))) - 1)) + +#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ + | shadow_x_mask | shadow_nx_mask | shadow_me_mask) + +#define ACC_EXEC_MASK 1 +#define ACC_WRITE_MASK PT_WRITABLE_MASK +#define ACC_USER_MASK PT_USER_MASK +#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) + +/* The mask for the R/X bits in EPT PTEs */ +#define PT64_EPT_READABLE_MASK 0x1ull +#define PT64_EPT_EXECUTABLE_MASK 0x4ull + +#define PT64_LEVEL_BITS 9 + +#define PT64_LEVEL_SHIFT(level) \ + (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) + +#define PT64_INDEX(address, level)\ + (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) +#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) + + +#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) +#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) + +/* + * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of + * the memslots generation and is derived as follows: + * + * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11 + * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61 + * + * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in + * the MMIO generation number, as doing so would require stealing a bit from + * the "real" generation number and thus effectively halve the maximum number + * of MMIO generations that can be handled before encountering a wrap (which + * requires a full MMU zap). The flag is instead explicitly queried when + * checking for MMIO spte cache hits. + */ +#define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0) + +#define MMIO_SPTE_GEN_LOW_START 3 +#define MMIO_SPTE_GEN_LOW_END 11 +#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ + MMIO_SPTE_GEN_LOW_START) + +#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT +#define MMIO_SPTE_GEN_HIGH_END 62 +#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ + MMIO_SPTE_GEN_HIGH_START) + +extern u64 __read_mostly shadow_nx_mask; +extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ +extern u64 __read_mostly shadow_user_mask; +extern u64 __read_mostly shadow_accessed_mask; +extern u64 __read_mostly shadow_dirty_mask; +extern u64 __read_mostly shadow_mmio_value; +extern u64 __read_mostly shadow_mmio_access_mask; +extern u64 __read_mostly shadow_present_mask; +extern u64 __read_mostly shadow_me_mask; + +/* + * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK; + * shadow_acc_track_mask is the set of bits to be cleared in non-accessed + * pages. + */ +extern u64 __read_mostly shadow_acc_track_mask; + +/* + * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order + * to guard against L1TF attacks. + */ +extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask; + +/* + * The mask/shift to use for saving the original R/X bits when marking the PTE + * as not-present for access tracking purposes. We do not save the W bit as the + * PTEs being access tracked also need to be dirty tracked, so the W bit will be + * restored only when a write is attempted to the page. + */ +static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | + PT64_EPT_EXECUTABLE_MASK; +static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; + +/* + * The number of high-order 1 bits to use in the mask above. + */ +static const u64 shadow_nonpresent_or_rsvd_mask_len = 5; + +/* + * In some cases, we need to preserve the GFN of a non-present or reserved + * SPTE when we usurp the upper five bits of the physical address space to + * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll + * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask + * left into the reserved bits, i.e. the GFN in the SPTE will be split into + * high and low parts. This mask covers the lower bits of the GFN. + */ +extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; + +/* + * The number of non-reserved physical address bits irrespective of features + * that repurpose legal bits, e.g. MKTME. + */ +extern u8 __read_mostly shadow_phys_bits; + +static inline bool is_mmio_spte(u64 spte) +{ + return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK; +} + +static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) +{ + return sp->role.ad_disabled; +} + +static inline bool spte_ad_enabled(u64 spte) +{ + MMU_WARN_ON(is_mmio_spte(spte)); + return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK; +} + +static inline bool spte_ad_need_write_protect(u64 spte) +{ + MMU_WARN_ON(is_mmio_spte(spte)); + return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK; +} + +static inline u64 spte_shadow_accessed_mask(u64 spte) +{ + MMU_WARN_ON(is_mmio_spte(spte)); + return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; +} + +static inline u64 spte_shadow_dirty_mask(u64 spte) +{ + MMU_WARN_ON(is_mmio_spte(spte)); + return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; +} + +static inline bool is_access_track_spte(u64 spte) +{ + return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; +} + +static inline int is_shadow_present_pte(u64 pte) +{ + return (pte != 0) && !is_mmio_spte(pte); +} + +static inline int is_large_pte(u64 pte) +{ + return pte & PT_PAGE_SIZE_MASK; +} + +static inline int is_last_spte(u64 pte, int level) +{ + if (level == PG_LEVEL_4K) + return 1; + if (is_large_pte(pte)) + return 1; + return 0; +} + +static inline bool is_executable_pte(u64 spte) +{ + return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; +} + +static inline kvm_pfn_t spte_to_pfn(u64 pte) +{ + return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; +} + +static inline bool is_accessed_spte(u64 spte) +{ + u64 accessed_mask = spte_shadow_accessed_mask(spte); + + return accessed_mask ? spte & accessed_mask + : !is_access_track_spte(spte); +} + +static inline bool is_dirty_spte(u64 spte) +{ + u64 dirty_mask = spte_shadow_dirty_mask(spte); + + return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; +} + +static inline bool spte_can_locklessly_be_made_writable(u64 spte) +{ + return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == + (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); +} + +static inline u64 get_mmio_spte_generation(u64 spte) +{ + u64 gen; + + gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START; + gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START; + return gen; +} + +/* Bits which may be returned by set_spte() */ +#define SET_SPTE_WRITE_PROTECTED_PT BIT(0) +#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) +#define SET_SPTE_SPURIOUS BIT(2) + +int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level, + gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative, + bool can_unsync, bool host_writable, bool ad_disabled, + u64 *new_spte); +u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); +u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); +u64 mark_spte_for_access_track(u64 spte); +u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn); + +void kvm_mmu_reset_all_pte_masks(void); + +#endif |