summaryrefslogtreecommitdiffstats
path: root/drivers/dma-buf
diff options
context:
space:
mode:
authorDaniel Vetter <daniel.vetter@ffwll.ch>2016-12-09 19:53:08 +0100
committerSumit Semwal <sumit.semwal@linaro.org>2016-12-13 17:53:32 +0530
commit0959a1683d78270bab6381d498707fb8655ae11c (patch)
treefdadda6d04dc830b974624e5f890462a81b52365 /drivers/dma-buf
parent2904a8c1311f02896635fd35744262413a0b2726 (diff)
downloadlinux-0959a1683d78270bab6381d498707fb8655ae11c.tar.gz
linux-0959a1683d78270bab6381d498707fb8655ae11c.tar.bz2
linux-0959a1683d78270bab6381d498707fb8655ae11c.zip
dma-buf: Update cpu access documentation
- Again move the information relevant for driver writers next to the callbacks. - Put the overview and userspace interface documentation into a DOC: section within the code. - Remove the text that mmap needs to be coherent - since the DMA_BUF_IOCTL_SYNC landed that's no longer the case. But keep the text that for pte zapping exporters need to adjust the address space. - Add a FIXME that kmap and the new begin/end stuff used by the SYNC ioctl don't really mix correctly. That's something I just realized while doing this doc rework. - Augment function and structure docs like usual. Cc: linux-doc@vger.kernel.org Cc: Jonathan Corbet <corbet@lwn.net> Cc: Sumit Semwal <sumit.semwal@linaro.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Sumit Semwal <sumit.semwal@linaro.org> [sumits: fix cosmetic issues] Link: http://patchwork.freedesktop.org/patch/msgid/20161209185309.1682-5-daniel.vetter@ffwll.ch
Diffstat (limited to 'drivers/dma-buf')
-rw-r--r--drivers/dma-buf/dma-buf.c122
1 files changed, 122 insertions, 0 deletions
diff --git a/drivers/dma-buf/dma-buf.c b/drivers/dma-buf/dma-buf.c
index 09f948fd62ad..eae0846cbd95 100644
--- a/drivers/dma-buf/dma-buf.c
+++ b/drivers/dma-buf/dma-buf.c
@@ -640,6 +640,122 @@ void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
}
EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
+/**
+ * DOC: cpu access
+ *
+ * There are mutliple reasons for supporting CPU access to a dma buffer object:
+ *
+ * - Fallback operations in the kernel, for example when a device is connected
+ * over USB and the kernel needs to shuffle the data around first before
+ * sending it away. Cache coherency is handled by braketing any transactions
+ * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
+ * access.
+ *
+ * To support dma_buf objects residing in highmem cpu access is page-based
+ * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
+ * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
+ * returns a pointer in kernel virtual address space. Afterwards the chunk
+ * needs to be unmapped again. There is no limit on how often a given chunk
+ * can be mapped and unmapped, i.e. the importer does not need to call
+ * begin_cpu_access again before mapping the same chunk again.
+ *
+ * Interfaces::
+ * void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
+ * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
+ *
+ * There are also atomic variants of these interfaces. Like for kmap they
+ * facilitate non-blocking fast-paths. Neither the importer nor the exporter
+ * (in the callback) is allowed to block when using these.
+ *
+ * Interfaces::
+ * void \*dma_buf_kmap_atomic(struct dma_buf \*, unsigned long);
+ * void dma_buf_kunmap_atomic(struct dma_buf \*, unsigned long, void \*);
+ *
+ * For importers all the restrictions of using kmap apply, like the limited
+ * supply of kmap_atomic slots. Hence an importer shall only hold onto at
+ * max 2 atomic dma_buf kmaps at the same time (in any given process context).
+ *
+ * dma_buf kmap calls outside of the range specified in begin_cpu_access are
+ * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
+ * the partial chunks at the beginning and end but may return stale or bogus
+ * data outside of the range (in these partial chunks).
+ *
+ * Note that these calls need to always succeed. The exporter needs to
+ * complete any preparations that might fail in begin_cpu_access.
+ *
+ * For some cases the overhead of kmap can be too high, a vmap interface
+ * is introduced. This interface should be used very carefully, as vmalloc
+ * space is a limited resources on many architectures.
+ *
+ * Interfaces::
+ * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
+ * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
+ *
+ * The vmap call can fail if there is no vmap support in the exporter, or if
+ * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
+ * that the dma-buf layer keeps a reference count for all vmap access and
+ * calls down into the exporter's vmap function only when no vmapping exists,
+ * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
+ * provided by taking the dma_buf->lock mutex.
+ *
+ * - For full compatibility on the importer side with existing userspace
+ * interfaces, which might already support mmap'ing buffers. This is needed in
+ * many processing pipelines (e.g. feeding a software rendered image into a
+ * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
+ * framework already supported this and for DMA buffer file descriptors to
+ * replace ION buffers mmap support was needed.
+ *
+ * There is no special interfaces, userspace simply calls mmap on the dma-buf
+ * fd. But like for CPU access there's a need to braket the actual access,
+ * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
+ * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
+ * be restarted.
+ *
+ * Some systems might need some sort of cache coherency management e.g. when
+ * CPU and GPU domains are being accessed through dma-buf at the same time.
+ * To circumvent this problem there are begin/end coherency markers, that
+ * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
+ * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
+ * sequence would be used like following:
+ *
+ * - mmap dma-buf fd
+ * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
+ * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
+ * want (with the new data being consumed by say the GPU or the scanout
+ * device)
+ * - munmap once you don't need the buffer any more
+ *
+ * For correctness and optimal performance, it is always required to use
+ * SYNC_START and SYNC_END before and after, respectively, when accessing the
+ * mapped address. Userspace cannot rely on coherent access, even when there
+ * are systems where it just works without calling these ioctls.
+ *
+ * - And as a CPU fallback in userspace processing pipelines.
+ *
+ * Similar to the motivation for kernel cpu access it is again important that
+ * the userspace code of a given importing subsystem can use the same
+ * interfaces with a imported dma-buf buffer object as with a native buffer
+ * object. This is especially important for drm where the userspace part of
+ * contemporary OpenGL, X, and other drivers is huge, and reworking them to
+ * use a different way to mmap a buffer rather invasive.
+ *
+ * The assumption in the current dma-buf interfaces is that redirecting the
+ * initial mmap is all that's needed. A survey of some of the existing
+ * subsystems shows that no driver seems to do any nefarious thing like
+ * syncing up with outstanding asynchronous processing on the device or
+ * allocating special resources at fault time. So hopefully this is good
+ * enough, since adding interfaces to intercept pagefaults and allow pte
+ * shootdowns would increase the complexity quite a bit.
+ *
+ * Interface::
+ * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
+ * unsigned long);
+ *
+ * If the importing subsystem simply provides a special-purpose mmap call to
+ * set up a mapping in userspace, calling do_mmap with dma_buf->file will
+ * equally achieve that for a dma-buf object.
+ */
+
static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
@@ -665,6 +781,10 @@ static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
* @dmabuf: [in] buffer to prepare cpu access for.
* @direction: [in] length of range for cpu access.
*
+ * After the cpu access is complete the caller should call
+ * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
+ * it guaranteed to be coherent with other DMA access.
+ *
* Can return negative error values, returns 0 on success.
*/
int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
@@ -697,6 +817,8 @@ EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
* @dmabuf: [in] buffer to complete cpu access for.
* @direction: [in] length of range for cpu access.
*
+ * This terminates CPU access started with dma_buf_begin_cpu_access().
+ *
* Can return negative error values, returns 0 on success.
*/
int dma_buf_end_cpu_access(struct dma_buf *dmabuf,