summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h
diff options
context:
space:
mode:
authorRex Zhu <Rex.Zhu@amd.com>2016-01-06 16:38:48 +0800
committerAlex Deucher <alexander.deucher@amd.com>2016-01-08 15:39:22 -0500
commit75ac63dbc3b0f4d3af67a5857790749e954e2ba6 (patch)
tree20bd5ccb1fb294cbc3034422e517ebe708c27c82 /drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h
parent53d3de140b668d37e1ebfe01c94ec36d369edcbf (diff)
downloadlinux-75ac63dbc3b0f4d3af67a5857790749e954e2ba6.tar.gz
linux-75ac63dbc3b0f4d3af67a5857790749e954e2ba6.tar.bz2
linux-75ac63dbc3b0f4d3af67a5857790749e954e2ba6.zip
drm/amd/powerplay: fix Smatch static checker warnings with indenting (v2)
v2: AGD: rebase on upstream Signed-off-by: Rex Zhu <Rex.Zhu@amd.com> Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Reviewed-by: Ken Wang <Qingqing.Wang@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Diffstat (limited to 'drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h')
-rw-r--r--drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h555
1 files changed, 275 insertions, 280 deletions
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h
index 411cb0fcdf98..b7429a527828 100644
--- a/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h
@@ -117,379 +117,380 @@ int GetRoundedValue(fInt); /* Incomplete function - Usef
*/
fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
{
- uint32_t i;
- bool bNegated = false;
+ uint32_t i;
+ bool bNegated = false;
- fInt fPositiveOne = ConvertToFraction(1);
- fInt fZERO = ConvertToFraction(0);
+ fInt fPositiveOne = ConvertToFraction(1);
+ fInt fZERO = ConvertToFraction(0);
- fInt lower_bound = Divide(78, 10000);
- fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
- fInt error_term;
+ fInt lower_bound = Divide(78, 10000);
+ fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
+ fInt error_term;
- uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
- uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
+ uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
+ uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
- if (GreaterThan(fZERO, exponent)) {
- exponent = fNegate(exponent);
- bNegated = true;
- }
+ if (GreaterThan(fZERO, exponent)) {
+ exponent = fNegate(exponent);
+ bNegated = true;
+ }
- while (GreaterThan(exponent, lower_bound)) {
- for (i = 0; i < 11; i++) {
- if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
- exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
- solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
- }
- }
- }
+ while (GreaterThan(exponent, lower_bound)) {
+ for (i = 0; i < 11; i++) {
+ if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
+ exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
+ solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
+ }
+ }
+ }
- error_term = fAdd(fPositiveOne, exponent);
+ error_term = fAdd(fPositiveOne, exponent);
- solution = fMultiply(solution, error_term);
+ solution = fMultiply(solution, error_term);
- if (bNegated)
- solution = fDivide(fPositiveOne, solution);
+ if (bNegated)
+ solution = fDivide(fPositiveOne, solution);
- return solution;
+ return solution;
}
fInt fNaturalLog(fInt value)
{
- uint32_t i;
- fInt upper_bound = Divide(8, 1000);
- fInt fNegativeOne = ConvertToFraction(-1);
- fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
- fInt error_term;
-
- uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
- uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
-
- while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
- for (i = 0; i < 10; i++) {
- if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
- value = fDivide(value, GetScaledFraction(k_array[i], 10000));
- solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
- }
- }
- }
-
- error_term = fAdd(fNegativeOne, value);
-
- return (fAdd(solution, error_term));
+ uint32_t i;
+ fInt upper_bound = Divide(8, 1000);
+ fInt fNegativeOne = ConvertToFraction(-1);
+ fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
+ fInt error_term;
+
+ uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
+ uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
+
+ while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
+ for (i = 0; i < 10; i++) {
+ if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
+ value = fDivide(value, GetScaledFraction(k_array[i], 10000));
+ solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
+ }
+ }
+ }
+
+ error_term = fAdd(fNegativeOne, value);
+
+ return (fAdd(solution, error_term));
}
fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
{
- fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
- fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
+ fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
+ fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
- fInt f_decoded_value;
+ fInt f_decoded_value;
- f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
- f_decoded_value = fMultiply(f_decoded_value, f_range);
- f_decoded_value = fAdd(f_decoded_value, f_min);
+ f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
+ f_decoded_value = fMultiply(f_decoded_value, f_range);
+ f_decoded_value = fAdd(f_decoded_value, f_min);
- return f_decoded_value;
+ return f_decoded_value;
}
fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
{
- fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
- fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
+ fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
+ fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
- fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
- fInt f_CONSTANT1 = ConvertToFraction(1);
+ fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
+ fInt f_CONSTANT1 = ConvertToFraction(1);
- fInt f_decoded_value;
+ fInt f_decoded_value;
- f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
- f_decoded_value = fNaturalLog(f_decoded_value);
- f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
- f_decoded_value = fAdd(f_decoded_value, f_average);
+ f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
+ f_decoded_value = fNaturalLog(f_decoded_value);
+ f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
+ f_decoded_value = fAdd(f_decoded_value, f_average);
- return f_decoded_value;
+ return f_decoded_value;
}
fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
{
- fInt fLeakage;
- fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
+ fInt fLeakage;
+ fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
- fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
- fLeakage = fDivide(fLeakage, f_bit_max_value);
- fLeakage = fExponential(fLeakage);
- fLeakage = fMultiply(fLeakage, f_min);
+ fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
+ fLeakage = fDivide(fLeakage, f_bit_max_value);
+ fLeakage = fExponential(fLeakage);
+ fLeakage = fMultiply(fLeakage, f_min);
- return fLeakage;
+ return fLeakage;
}
fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
{
- fInt temp;
+ fInt temp;
- if (X <= MAX)
- temp.full = (X << SHIFT_AMOUNT);
- else
- temp.full = 0;
+ if (X <= MAX)
+ temp.full = (X << SHIFT_AMOUNT);
+ else
+ temp.full = 0;
- return temp;
+ return temp;
}
fInt fNegate(fInt X)
{
- fInt CONSTANT_NEGONE = ConvertToFraction(-1);
- return (fMultiply(X, CONSTANT_NEGONE));
+ fInt CONSTANT_NEGONE = ConvertToFraction(-1);
+ return (fMultiply(X, CONSTANT_NEGONE));
}
fInt Convert_ULONG_ToFraction(uint32_t X)
{
- fInt temp;
+ fInt temp;
- if (X <= MAX)
- temp.full = (X << SHIFT_AMOUNT);
- else
- temp.full = 0;
+ if (X <= MAX)
+ temp.full = (X << SHIFT_AMOUNT);
+ else
+ temp.full = 0;
- return temp;
+ return temp;
}
fInt GetScaledFraction(int X, int factor)
{
- int times_shifted, factor_shifted;
- bool bNEGATED;
- fInt fValue;
-
- times_shifted = 0;
- factor_shifted = 0;
- bNEGATED = false;
-
- if (X < 0) {
- X = -1*X;
- bNEGATED = true;
- }
-
- if (factor < 0) {
- factor = -1*factor;
-
- bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
- }
-
- if ((X > MAX) || factor > MAX) {
- if ((X/factor) <= MAX) {
- while (X > MAX) {
- X = X >> 1;
- times_shifted++;
- }
-
- while (factor > MAX) {
- factor = factor >> 1;
- factor_shifted++;
- }
- } else {
- fValue.full = 0;
- return fValue;
- }
- }
-
- if (factor == 1)
- return (ConvertToFraction(X));
-
- fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
-
- fValue.full = fValue.full << times_shifted;
- fValue.full = fValue.full >> factor_shifted;
-
- return fValue;
+ int times_shifted, factor_shifted;
+ bool bNEGATED;
+ fInt fValue;
+
+ times_shifted = 0;
+ factor_shifted = 0;
+ bNEGATED = false;
+
+ if (X < 0) {
+ X = -1*X;
+ bNEGATED = true;
+ }
+
+ if (factor < 0) {
+ factor = -1*factor;
+ bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
+ }
+
+ if ((X > MAX) || factor > MAX) {
+ if ((X/factor) <= MAX) {
+ while (X > MAX) {
+ X = X >> 1;
+ times_shifted++;
+ }
+
+ while (factor > MAX) {
+ factor = factor >> 1;
+ factor_shifted++;
+ }
+ } else {
+ fValue.full = 0;
+ return fValue;
+ }
+ }
+
+ if (factor == 1)
+ return (ConvertToFraction(X));
+
+ fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
+
+ fValue.full = fValue.full << times_shifted;
+ fValue.full = fValue.full >> factor_shifted;
+
+ return fValue;
}
/* Addition using two fInts */
fInt fAdd (fInt X, fInt Y)
{
- fInt Sum;
+ fInt Sum;
- Sum.full = X.full + Y.full;
+ Sum.full = X.full + Y.full;
- return Sum;
+ return Sum;
}
/* Addition using two fInts */
fInt fSubtract (fInt X, fInt Y)
{
- fInt Difference;
+ fInt Difference;
- Difference.full = X.full - Y.full;
+ Difference.full = X.full - Y.full;
- return Difference;
+ return Difference;
}
bool Equal(fInt A, fInt B)
{
- if (A.full == B.full)
- return true;
- else
- return false;
+ if (A.full == B.full)
+ return true;
+ else
+ return false;
}
bool GreaterThan(fInt A, fInt B)
{
- if (A.full > B.full)
- return true;
- else
- return false;
+ if (A.full > B.full)
+ return true;
+ else
+ return false;
}
fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
{
- fInt Product;
- int64_t tempProduct;
- bool X_LessThanOne, Y_LessThanOne;
+ fInt Product;
+ int64_t tempProduct;
+ bool X_LessThanOne, Y_LessThanOne;
- X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
- Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
+ X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
+ Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
- /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
- /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
+ /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
+ /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
- if (X_LessThanOne && Y_LessThanOne) {
- Product.full = X.full * Y.full;
- return Product
- }*/
+ if (X_LessThanOne && Y_LessThanOne) {
+ Product.full = X.full * Y.full;
+ return Product
+ }*/
- tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
- tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
- Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
+ tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
+ tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
+ Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
- return Product;
+ return Product;
}
fInt fDivide (fInt X, fInt Y)
{
- fInt fZERO, fQuotient;
- int64_t longlongX, longlongY;
+ fInt fZERO, fQuotient;
+ int64_t longlongX, longlongY;
- fZERO = ConvertToFraction(0);
+ fZERO = ConvertToFraction(0);
- if (Equal(Y, fZERO))
- return fZERO;
+ if (Equal(Y, fZERO))
+ return fZERO;
- longlongX = (int64_t)X.full;
- longlongY = (int64_t)Y.full;
+ longlongX = (int64_t)X.full;
+ longlongY = (int64_t)Y.full;
- longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
+ longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
- div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
+ div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
- fQuotient.full = (int)longlongX;
- return fQuotient;
+ fQuotient.full = (int)longlongX;
+ return fQuotient;
}
int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
{
- fInt fullNumber, scaledDecimal, scaledReal;
+ fInt fullNumber, scaledDecimal, scaledReal;
- scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
+ scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
- scaledDecimal.full = uGetScaledDecimal(A);
+ scaledDecimal.full = uGetScaledDecimal(A);
- fullNumber = fAdd(scaledDecimal,scaledReal);
+ fullNumber = fAdd(scaledDecimal,scaledReal);
- return fullNumber.full;
+ return fullNumber.full;
}
fInt fGetSquare(fInt A)
{
- return fMultiply(A,A);
+ return fMultiply(A,A);
}
/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
fInt fSqrt(fInt num)
{
- fInt F_divide_Fprime, Fprime;
- fInt test;
- fInt twoShifted;
- int seed, counter, error;
- fInt x_new, x_old, C, y;
+ fInt F_divide_Fprime, Fprime;
+ fInt test;
+ fInt twoShifted;
+ int seed, counter, error;
+ fInt x_new, x_old, C, y;
- fInt fZERO = ConvertToFraction(0);
- /* (0 > num) is the same as (num < 0), i.e., num is negative */
- if (GreaterThan(fZERO, num) || Equal(fZERO, num))
- return fZERO;
+ fInt fZERO = ConvertToFraction(0);
- C = num;
+ /* (0 > num) is the same as (num < 0), i.e., num is negative */
- if (num.partial.real > 3000)
- seed = 60;
- else if (num.partial.real > 1000)
- seed = 30;
- else if (num.partial.real > 100)
- seed = 10;
- else
- seed = 2;
+ if (GreaterThan(fZERO, num) || Equal(fZERO, num))
+ return fZERO;
- counter = 0;
+ C = num;
- if (Equal(num, fZERO)) /*Square Root of Zero is zero */
- return fZERO;
+ if (num.partial.real > 3000)
+ seed = 60;
+ else if (num.partial.real > 1000)
+ seed = 30;
+ else if (num.partial.real > 100)
+ seed = 10;
+ else
+ seed = 2;
+
+ counter = 0;
- twoShifted = ConvertToFraction(2);
- x_new = ConvertToFraction(seed);
+ if (Equal(num, fZERO)) /*Square Root of Zero is zero */
+ return fZERO;
- do {
- counter++;
+ twoShifted = ConvertToFraction(2);
+ x_new = ConvertToFraction(seed);
- x_old.full = x_new.full;
+ do {
+ counter++;
- test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
- y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
+ x_old.full = x_new.full;
- Fprime = fMultiply(twoShifted, x_old);
- F_divide_Fprime = fDivide(y, Fprime);
+ test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
+ y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
- x_new = fSubtract(x_old, F_divide_Fprime);
+ Fprime = fMultiply(twoShifted, x_old);
+ F_divide_Fprime = fDivide(y, Fprime);
- error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
+ x_new = fSubtract(x_old, F_divide_Fprime);
- if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
- return x_new;
+ error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
- } while (uAbs(error) > 0);
+ if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
+ return x_new;
- return (x_new);
+ } while (uAbs(error) > 0);
+
+ return (x_new);
}
void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
{
- fInt* pRoots = &Roots[0];
- fInt temp, root_first, root_second;
- fInt f_CONSTANT10, f_CONSTANT100;
+ fInt *pRoots = &Roots[0];
+ fInt temp, root_first, root_second;
+ fInt f_CONSTANT10, f_CONSTANT100;
- f_CONSTANT100 = ConvertToFraction(100);
- f_CONSTANT10 = ConvertToFraction(10);
+ f_CONSTANT100 = ConvertToFraction(100);
+ f_CONSTANT10 = ConvertToFraction(10);
- while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
- A = fDivide(A, f_CONSTANT10);
- B = fDivide(B, f_CONSTANT10);
- C = fDivide(C, f_CONSTANT10);
- }
+ while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
+ A = fDivide(A, f_CONSTANT10);
+ B = fDivide(B, f_CONSTANT10);
+ C = fDivide(C, f_CONSTANT10);
+ }
- temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
- temp = fMultiply(temp, C); /* root = 4*A*C */
- temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
- temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
+ temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
+ temp = fMultiply(temp, C); /* root = 4*A*C */
+ temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
+ temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
- root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
- root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
+ root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
+ root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
- root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
- root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
+ root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
+ root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
- root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
- root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
+ root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
+ root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
- *(pRoots + 0) = root_first;
- *(pRoots + 1) = root_second;
+ *(pRoots + 0) = root_first;
+ *(pRoots + 1) = root_second;
}
/* -----------------------------------------------------------------------------
@@ -500,61 +501,58 @@ void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
/* Addition using two normal ints - Temporary - Use only for testing purposes?. */
fInt Add (int X, int Y)
{
- fInt A, B, Sum;
+ fInt A, B, Sum;
- A.full = (X << SHIFT_AMOUNT);
- B.full = (Y << SHIFT_AMOUNT);
+ A.full = (X << SHIFT_AMOUNT);
+ B.full = (Y << SHIFT_AMOUNT);
- Sum.full = A.full + B.full;
+ Sum.full = A.full + B.full;
- return Sum;
+ return Sum;
}
/* Conversion Functions */
int GetReal (fInt A)
{
- return (A.full >> SHIFT_AMOUNT);
+ return (A.full >> SHIFT_AMOUNT);
}
/* Temporarily Disabled */
int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
{
- /* ROUNDING TEMPORARLY DISABLED
- int temp = A.full;
-
- int decimal_cutoff, decimal_mask = 0x000001FF;
-
- decimal_cutoff = temp & decimal_mask;
-
-
- if (decimal_cutoff > 0x147) {
- temp += 673;
- }*/
-
- return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
+ /* ROUNDING TEMPORARLY DISABLED
+ int temp = A.full;
+ int decimal_cutoff, decimal_mask = 0x000001FF;
+ decimal_cutoff = temp & decimal_mask;
+ if (decimal_cutoff > 0x147) {
+ temp += 673;
+ }*/
+
+ return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
}
fInt Multiply (int X, int Y)
{
- fInt A, B, Product;
+ fInt A, B, Product;
- A.full = X << SHIFT_AMOUNT;
- B.full = Y << SHIFT_AMOUNT;
+ A.full = X << SHIFT_AMOUNT;
+ B.full = Y << SHIFT_AMOUNT;
- Product = fMultiply(A, B);
+ Product = fMultiply(A, B);
- return Product;
+ return Product;
}
+
fInt Divide (int X, int Y)
{
- fInt A, B, Quotient;
+ fInt A, B, Quotient;
- A.full = X << SHIFT_AMOUNT;
- B.full = Y << SHIFT_AMOUNT;
+ A.full = X << SHIFT_AMOUNT;
+ B.full = Y << SHIFT_AMOUNT;
- Quotient = fDivide(A, B);
+ Quotient = fDivide(A, B);
- return Quotient;
+ return Quotient;
}
int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
@@ -563,16 +561,13 @@ int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole intege
int i, scaledDecimal = 0, tmp = A.partial.decimal;
for (i = 0; i < PRECISION; i++) {
- dec[i] = tmp / (1 << SHIFT_AMOUNT);
-
- tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
-
- tmp *= 10;
-
- scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
- }
+ dec[i] = tmp / (1 << SHIFT_AMOUNT);
+ tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
+ tmp *= 10;
+ scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
+ }
- return scaledDecimal;
+ return scaledDecimal;
}
int uPow(int base, int power)
@@ -601,17 +596,17 @@ int uAbs(int X)
fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
{
- fInt solution;
+ fInt solution;
- solution = fDivide(A, fStepSize);
- solution.partial.decimal = 0; /*All fractional digits changes to 0 */
+ solution = fDivide(A, fStepSize);
+ solution.partial.decimal = 0; /*All fractional digits changes to 0 */
- if (error_term)
- solution.partial.real += 1; /*Error term of 1 added */
+ if (error_term)
+ solution.partial.real += 1; /*Error term of 1 added */
- solution = fMultiply(solution, fStepSize);
- solution = fAdd(solution, fStepSize);
+ solution = fMultiply(solution, fStepSize);
+ solution = fAdd(solution, fStepSize);
- return solution;
+ return solution;
}