diff options
author | Mauro Carvalho Chehab <mchehab@redhat.com> | 2012-08-14 00:13:22 -0300 |
---|---|---|
committer | Mauro Carvalho Chehab <mchehab@redhat.com> | 2012-08-15 16:25:07 -0300 |
commit | 0c0d06cac63ee327ceaab4b5ffe2206574ab86bd (patch) | |
tree | e759f0dc3185d97f2a0c6b5cd5e32ea6faa74d40 /drivers/media/usb/gspca/sonixb.c | |
parent | 84cfe9e79bd5ac11c963f4841158454fefa872f6 (diff) | |
download | linux-0c0d06cac63ee327ceaab4b5ffe2206574ab86bd.tar.gz linux-0c0d06cac63ee327ceaab4b5ffe2206574ab86bd.tar.bz2 linux-0c0d06cac63ee327ceaab4b5ffe2206574ab86bd.zip |
[media] rename most media/video usb drivers to media/usb
Rename all USB drivers with their own directory under
drivers/media/video into drivers/media/usb and update the
building system.
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Diffstat (limited to 'drivers/media/usb/gspca/sonixb.c')
-rw-r--r-- | drivers/media/usb/gspca/sonixb.c | 1493 |
1 files changed, 1493 insertions, 0 deletions
diff --git a/drivers/media/usb/gspca/sonixb.c b/drivers/media/usb/gspca/sonixb.c new file mode 100644 index 000000000000..fd1f8d2d3b0b --- /dev/null +++ b/drivers/media/usb/gspca/sonixb.c @@ -0,0 +1,1493 @@ +/* + * sonix sn9c102 (bayer) library + * + * Copyright (C) 2009-2011 Jean-François Moine <http://moinejf.free.fr> + * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr + * Add Pas106 Stefano Mozzi (C) 2004 + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +/* Some documentation on known sonixb registers: + +Reg Use +sn9c101 / sn9c102: +0x10 high nibble red gain low nibble blue gain +0x11 low nibble green gain +sn9c103: +0x05 red gain 0-127 +0x06 blue gain 0-127 +0x07 green gain 0-127 +all: +0x08-0x0f i2c / 3wire registers +0x12 hstart +0x13 vstart +0x15 hsize (hsize = register-value * 16) +0x16 vsize (vsize = register-value * 16) +0x17 bit 0 toggle compression quality (according to sn9c102 driver) +0x18 bit 7 enables compression, bit 4-5 set image down scaling: + 00 scale 1, 01 scale 1/2, 10, scale 1/4 +0x19 high-nibble is sensor clock divider, changes exposure on sensors which + use a clock generated by the bridge. Some sensors have their own clock. +0x1c auto_exposure area (for avg_lum) startx (startx = register-value * 32) +0x1d auto_exposure area (for avg_lum) starty (starty = register-value * 32) +0x1e auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32) +0x1f auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32) +*/ + +#define MODULE_NAME "sonixb" + +#include <linux/input.h> +#include "gspca.h" + +MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>"); +MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver"); +MODULE_LICENSE("GPL"); + +/* specific webcam descriptor */ +struct sd { + struct gspca_dev gspca_dev; /* !! must be the first item */ + + struct v4l2_ctrl *brightness; + struct v4l2_ctrl *plfreq; + + atomic_t avg_lum; + int prev_avg_lum; + int exposure_knee; + int header_read; + u8 header[12]; /* Header without sof marker */ + + unsigned char autogain_ignore_frames; + unsigned char frames_to_drop; + + __u8 bridge; /* Type of bridge */ +#define BRIDGE_101 0 +#define BRIDGE_102 0 /* We make no difference between 101 and 102 */ +#define BRIDGE_103 1 + + __u8 sensor; /* Type of image sensor chip */ +#define SENSOR_HV7131D 0 +#define SENSOR_HV7131R 1 +#define SENSOR_OV6650 2 +#define SENSOR_OV7630 3 +#define SENSOR_PAS106 4 +#define SENSOR_PAS202 5 +#define SENSOR_TAS5110C 6 +#define SENSOR_TAS5110D 7 +#define SENSOR_TAS5130CXX 8 + __u8 reg11; +}; + +typedef const __u8 sensor_init_t[8]; + +struct sensor_data { + const __u8 *bridge_init; + sensor_init_t *sensor_init; + int sensor_init_size; + int flags; + __u8 sensor_addr; +}; + +/* sensor_data flags */ +#define F_SIF 0x01 /* sif or vga */ + +/* priv field of struct v4l2_pix_format flags (do not use low nibble!) */ +#define MODE_RAW 0x10 /* raw bayer mode */ +#define MODE_REDUCED_SIF 0x20 /* vga mode (320x240 / 160x120) on sif cam */ + +#define COMP 0xc7 /* 0x87 //0x07 */ +#define COMP1 0xc9 /* 0x89 //0x09 */ + +#define MCK_INIT 0x63 +#define MCK_INIT1 0x20 /*fixme: Bayer - 0x50 for JPEG ??*/ + +#define SYS_CLK 0x04 + +#define SENS(bridge, sensor, _flags, _sensor_addr) \ +{ \ + .bridge_init = bridge, \ + .sensor_init = sensor, \ + .sensor_init_size = sizeof(sensor), \ + .flags = _flags, .sensor_addr = _sensor_addr \ +} + +/* We calculate the autogain at the end of the transfer of a frame, at this + moment a frame with the old settings is being captured and transmitted. So + if we adjust the gain or exposure we must ignore atleast the next frame for + the new settings to come into effect before doing any other adjustments. */ +#define AUTOGAIN_IGNORE_FRAMES 1 + +static const struct v4l2_pix_format vga_mode[] = { + {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, + .bytesperline = 160, + .sizeimage = 160 * 120, + .colorspace = V4L2_COLORSPACE_SRGB, + .priv = 2 | MODE_RAW}, + {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, + .bytesperline = 160, + .sizeimage = 160 * 120 * 5 / 4, + .colorspace = V4L2_COLORSPACE_SRGB, + .priv = 2}, + {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, + .bytesperline = 320, + .sizeimage = 320 * 240 * 5 / 4, + .colorspace = V4L2_COLORSPACE_SRGB, + .priv = 1}, + {640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, + .bytesperline = 640, + .sizeimage = 640 * 480 * 5 / 4, + .colorspace = V4L2_COLORSPACE_SRGB, + .priv = 0}, +}; +static const struct v4l2_pix_format sif_mode[] = { + {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, + .bytesperline = 160, + .sizeimage = 160 * 120, + .colorspace = V4L2_COLORSPACE_SRGB, + .priv = 1 | MODE_RAW | MODE_REDUCED_SIF}, + {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, + .bytesperline = 160, + .sizeimage = 160 * 120 * 5 / 4, + .colorspace = V4L2_COLORSPACE_SRGB, + .priv = 1 | MODE_REDUCED_SIF}, + {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, + .bytesperline = 176, + .sizeimage = 176 * 144, + .colorspace = V4L2_COLORSPACE_SRGB, + .priv = 1 | MODE_RAW}, + {176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, + .bytesperline = 176, + .sizeimage = 176 * 144 * 5 / 4, + .colorspace = V4L2_COLORSPACE_SRGB, + .priv = 1}, + {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, + .bytesperline = 320, + .sizeimage = 320 * 240 * 5 / 4, + .colorspace = V4L2_COLORSPACE_SRGB, + .priv = 0 | MODE_REDUCED_SIF}, + {352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, + .bytesperline = 352, + .sizeimage = 352 * 288 * 5 / 4, + .colorspace = V4L2_COLORSPACE_SRGB, + .priv = 0}, +}; + +static const __u8 initHv7131d[] = { + 0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00, + 0x00, 0x00, + 0x00, 0x00, 0x00, 0x02, 0x02, 0x00, + 0x28, 0x1e, 0x60, 0x8e, 0x42, +}; +static const __u8 hv7131d_sensor_init[][8] = { + {0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17}, + {0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17}, + {0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17}, + {0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */ + {0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */ +}; + +static const __u8 initHv7131r[] = { + 0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00, + 0x00, 0x00, + 0x00, 0x00, 0x00, 0x02, 0x01, 0x00, + 0x28, 0x1e, 0x60, 0x8a, 0x20, +}; +static const __u8 hv7131r_sensor_init[][8] = { + {0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10}, + {0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10}, + {0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10}, + {0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16}, + {0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15}, +}; +static const __u8 initOv6650[] = { + 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, + 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b, + 0x10, +}; +static const __u8 ov6650_sensor_init[][8] = { + /* Bright, contrast, etc are set through SCBB interface. + * AVCAP on win2 do not send any data on this controls. */ + /* Anyway, some registers appears to alter bright and constrat */ + + /* Reset sensor */ + {0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10}, + /* Set clock register 0x11 low nibble is clock divider */ + {0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10}, + /* Next some unknown stuff */ + {0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10}, +/* {0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10}, + * THIS SET GREEN SCREEN + * (pixels could be innverted in decode kind of "brg", + * but blue wont be there. Avoid this data ... */ + {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */ + {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, + {0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10}, + /* Enable rgb brightness control */ + {0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10}, + /* HDG: Note windows uses the line below, which sets both register 0x60 + and 0x61 I believe these registers of the ov6650 are identical as + those of the ov7630, because if this is true the windows settings + add a bit additional red gain and a lot additional blue gain, which + matches my findings that the windows settings make blue much too + blue and red a little too red. + {0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */ + /* Some more unknown stuff */ + {0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10}, + {0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */ +}; + +static const __u8 initOv7630[] = { + 0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, /* r01 .. r08 */ + 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */ + 0x00, 0x01, 0x01, 0x0a, /* r11 .. r14 */ + 0x28, 0x1e, /* H & V sizes r15 .. r16 */ + 0x68, 0x8f, MCK_INIT1, /* r17 .. r19 */ +}; +static const __u8 ov7630_sensor_init[][8] = { + {0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10}, + {0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10}, +/* {0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10}, jfm */ + {0xd0, 0x21, 0x12, 0x5c, 0x00, 0x80, 0x34, 0x10}, /* jfm */ + {0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10}, + {0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10}, + {0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10}, + {0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10}, + {0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10}, + {0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10}, + {0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10}, + {0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10}, +/* {0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10}, * jfm */ + {0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10}, + {0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10}, + {0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10}, + {0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10}, + {0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10}, + {0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10}, +}; + +static const __u8 initPas106[] = { + 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00, + 0x00, 0x00, + 0x00, 0x00, 0x00, 0x04, 0x01, 0x00, + 0x16, 0x12, 0x24, COMP1, MCK_INIT1, +}; +/* compression 0x86 mckinit1 0x2b */ + +/* "Known" PAS106B registers: + 0x02 clock divider + 0x03 Variable framerate bits 4-11 + 0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !! + The variable framerate control must never be set lower then 300, + which sets the framerate at 90 / reg02, otherwise vsync is lost. + 0x05 Shutter Time Line Offset, this can be used as an exposure control: + 0 = use full frame time, 255 = no exposure at all + Note this may never be larger then "var-framerate control" / 2 - 2. + When var-framerate control is < 514, no exposure is reached at the max + allowed value for the framerate control value, rather then at 255. + 0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but + only a very little bit, leave at 0xcd + 0x07 offset sign bit (bit0 1 > negative offset) + 0x08 offset + 0x09 Blue Gain + 0x0a Green1 Gain + 0x0b Green2 Gain + 0x0c Red Gain + 0x0e Global gain + 0x13 Write 1 to commit settings to sensor +*/ + +static const __u8 pas106_sensor_init[][8] = { + /* Pixel Clock Divider 6 */ + { 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 }, + /* Frame Time MSB (also seen as 0x12) */ + { 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 }, + /* Frame Time LSB (also seen as 0x05) */ + { 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 }, + /* Shutter Time Line Offset (also seen as 0x6d) */ + { 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 }, + /* Shutter Time Pixel Offset (also seen as 0xb1) */ + { 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 }, + /* Black Level Subtract Sign (also seen 0x00) */ + { 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 }, + /* Black Level Subtract Level (also seen 0x01) */ + { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 }, + { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 }, + /* Color Gain B Pixel 5 a */ + { 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 }, + /* Color Gain G1 Pixel 1 5 */ + { 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 }, + /* Color Gain G2 Pixel 1 0 5 */ + { 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 }, + /* Color Gain R Pixel 3 1 */ + { 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 }, + /* Color GainH Pixel */ + { 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 }, + /* Global Gain */ + { 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 }, + /* Contrast */ + { 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 }, + /* H&V synchro polarity */ + { 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 }, + /* ?default */ + { 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 }, + /* DAC scale */ + { 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 }, + /* ?default */ + { 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 }, + /* Validate Settings */ + { 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 }, +}; + +static const __u8 initPas202[] = { + 0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00, + 0x00, 0x00, + 0x00, 0x00, 0x00, 0x06, 0x03, 0x0a, + 0x28, 0x1e, 0x20, 0x89, 0x20, +}; + +/* "Known" PAS202BCB registers: + 0x02 clock divider + 0x04 Variable framerate bits 6-11 (*) + 0x05 Var framerate bits 0-5, one must leave the 2 msb's at 0 !! + 0x07 Blue Gain + 0x08 Green Gain + 0x09 Red Gain + 0x0b offset sign bit (bit0 1 > negative offset) + 0x0c offset + 0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too, + leave at 1 otherwise we get a jump in our exposure control + 0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all + 0x10 Master gain 0 - 31 + 0x11 write 1 to apply changes + (*) The variable framerate control must never be set lower then 500 + which sets the framerate at 30 / reg02, otherwise vsync is lost. +*/ +static const __u8 pas202_sensor_init[][8] = { + /* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like + to set it lower, but for some reason the bridge starts missing + vsync's then */ + {0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10}, + {0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10}, + {0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10}, + {0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10}, + {0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10}, + {0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10}, + {0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10}, + {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10}, + {0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10}, + {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10}, +}; + +static const __u8 initTas5110c[] = { + 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00, + 0x00, 0x00, + 0x00, 0x00, 0x00, 0x45, 0x09, 0x0a, + 0x16, 0x12, 0x60, 0x86, 0x2b, +}; +/* Same as above, except a different hstart */ +static const __u8 initTas5110d[] = { + 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00, + 0x00, 0x00, + 0x00, 0x00, 0x00, 0x41, 0x09, 0x0a, + 0x16, 0x12, 0x60, 0x86, 0x2b, +}; +/* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */ +static const __u8 tas5110c_sensor_init[][8] = { + {0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10}, + {0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10}, +}; +/* Known TAS5110D registers + * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain + * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted) + * Note: writing reg03 seems to only work when written together with 02 + */ +static const __u8 tas5110d_sensor_init[][8] = { + {0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */ +}; + +static const __u8 initTas5130[] = { + 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00, + 0x00, 0x00, + 0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a, + 0x28, 0x1e, 0x60, COMP, MCK_INIT, +}; +static const __u8 tas5130_sensor_init[][8] = { +/* {0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10}, + * shutter 0x47 short exposure? */ + {0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10}, + /* shutter 0x01 long exposure */ + {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10}, +}; + +static const struct sensor_data sensor_data[] = { + SENS(initHv7131d, hv7131d_sensor_init, 0, 0), + SENS(initHv7131r, hv7131r_sensor_init, 0, 0), + SENS(initOv6650, ov6650_sensor_init, F_SIF, 0x60), + SENS(initOv7630, ov7630_sensor_init, 0, 0x21), + SENS(initPas106, pas106_sensor_init, F_SIF, 0), + SENS(initPas202, pas202_sensor_init, 0, 0), + SENS(initTas5110c, tas5110c_sensor_init, F_SIF, 0), + SENS(initTas5110d, tas5110d_sensor_init, F_SIF, 0), + SENS(initTas5130, tas5130_sensor_init, 0, 0), +}; + +/* get one byte in gspca_dev->usb_buf */ +static void reg_r(struct gspca_dev *gspca_dev, + __u16 value) +{ + int res; + + if (gspca_dev->usb_err < 0) + return; + + res = usb_control_msg(gspca_dev->dev, + usb_rcvctrlpipe(gspca_dev->dev, 0), + 0, /* request */ + USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, + value, + 0, /* index */ + gspca_dev->usb_buf, 1, + 500); + + if (res < 0) { + dev_err(gspca_dev->v4l2_dev.dev, + "Error reading register %02x: %d\n", value, res); + gspca_dev->usb_err = res; + } +} + +static void reg_w(struct gspca_dev *gspca_dev, + __u16 value, + const __u8 *buffer, + int len) +{ + int res; + + if (gspca_dev->usb_err < 0) + return; + + memcpy(gspca_dev->usb_buf, buffer, len); + res = usb_control_msg(gspca_dev->dev, + usb_sndctrlpipe(gspca_dev->dev, 0), + 0x08, /* request */ + USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, + value, + 0, /* index */ + gspca_dev->usb_buf, len, + 500); + + if (res < 0) { + dev_err(gspca_dev->v4l2_dev.dev, + "Error writing register %02x: %d\n", value, res); + gspca_dev->usb_err = res; + } +} + +static void i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer) +{ + int retry = 60; + + if (gspca_dev->usb_err < 0) + return; + + /* is i2c ready */ + reg_w(gspca_dev, 0x08, buffer, 8); + while (retry--) { + if (gspca_dev->usb_err < 0) + return; + msleep(10); + reg_r(gspca_dev, 0x08); + if (gspca_dev->usb_buf[0] & 0x04) { + if (gspca_dev->usb_buf[0] & 0x08) { + dev_err(gspca_dev->v4l2_dev.dev, + "i2c write error\n"); + gspca_dev->usb_err = -EIO; + } + return; + } + } + + dev_err(gspca_dev->v4l2_dev.dev, "i2c write timeout\n"); + gspca_dev->usb_err = -EIO; +} + +static void i2c_w_vector(struct gspca_dev *gspca_dev, + const __u8 buffer[][8], int len) +{ + for (;;) { + if (gspca_dev->usb_err < 0) + return; + reg_w(gspca_dev, 0x08, *buffer, 8); + len -= 8; + if (len <= 0) + break; + buffer++; + } +} + +static void setbrightness(struct gspca_dev *gspca_dev) +{ + struct sd *sd = (struct sd *) gspca_dev; + + switch (sd->sensor) { + case SENSOR_OV6650: + case SENSOR_OV7630: { + __u8 i2cOV[] = + {0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10}; + + /* change reg 0x06 */ + i2cOV[1] = sensor_data[sd->sensor].sensor_addr; + i2cOV[3] = sd->brightness->val; + i2c_w(gspca_dev, i2cOV); + break; + } + case SENSOR_PAS106: + case SENSOR_PAS202: { + __u8 i2cpbright[] = + {0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16}; + __u8 i2cpdoit[] = + {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16}; + + /* PAS106 uses reg 7 and 8 instead of b and c */ + if (sd->sensor == SENSOR_PAS106) { + i2cpbright[2] = 7; + i2cpdoit[2] = 0x13; + } + + if (sd->brightness->val < 127) { + /* change reg 0x0b, signreg */ + i2cpbright[3] = 0x01; + /* set reg 0x0c, offset */ + i2cpbright[4] = 127 - sd->brightness->val; + } else + i2cpbright[4] = sd->brightness->val - 127; + + i2c_w(gspca_dev, i2cpbright); + i2c_w(gspca_dev, i2cpdoit); + break; + } + default: + break; + } +} + +static void setgain(struct gspca_dev *gspca_dev) +{ + struct sd *sd = (struct sd *) gspca_dev; + u8 gain = gspca_dev->gain->val; + + switch (sd->sensor) { + case SENSOR_HV7131D: { + __u8 i2c[] = + {0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17}; + + i2c[3] = 0x3f - gain; + i2c[4] = 0x3f - gain; + i2c[5] = 0x3f - gain; + + i2c_w(gspca_dev, i2c); + break; + } + case SENSOR_TAS5110C: + case SENSOR_TAS5130CXX: { + __u8 i2c[] = + {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10}; + + i2c[4] = 255 - gain; + i2c_w(gspca_dev, i2c); + break; + } + case SENSOR_TAS5110D: { + __u8 i2c[] = { + 0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 }; + gain = 255 - gain; + /* The bits in the register are the wrong way around!! */ + i2c[3] |= (gain & 0x80) >> 7; + i2c[3] |= (gain & 0x40) >> 5; + i2c[3] |= (gain & 0x20) >> 3; + i2c[3] |= (gain & 0x10) >> 1; + i2c[3] |= (gain & 0x08) << 1; + i2c[3] |= (gain & 0x04) << 3; + i2c[3] |= (gain & 0x02) << 5; + i2c[3] |= (gain & 0x01) << 7; + i2c_w(gspca_dev, i2c); + break; + } + case SENSOR_OV6650: + case SENSOR_OV7630: { + __u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10}; + + /* + * The ov7630's gain is weird, at 32 the gain drops to the + * same level as at 16, so skip 32-47 (of the 0-63 scale). + */ + if (sd->sensor == SENSOR_OV7630 && gain >= 32) + gain += 16; + + i2c[1] = sensor_data[sd->sensor].sensor_addr; + i2c[3] = gain; + i2c_w(gspca_dev, i2c); + break; + } + case SENSOR_PAS106: + case SENSOR_PAS202: { + __u8 i2cpgain[] = + {0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15}; + __u8 i2cpcolorgain[] = + {0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15}; + __u8 i2cpdoit[] = + {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16}; + + /* PAS106 uses different regs (and has split green gains) */ + if (sd->sensor == SENSOR_PAS106) { + i2cpgain[2] = 0x0e; + i2cpcolorgain[0] = 0xd0; + i2cpcolorgain[2] = 0x09; + i2cpdoit[2] = 0x13; + } + + i2cpgain[3] = gain; + i2cpcolorgain[3] = gain >> 1; + i2cpcolorgain[4] = gain >> 1; + i2cpcolorgain[5] = gain >> 1; + i2cpcolorgain[6] = gain >> 1; + + i2c_w(gspca_dev, i2cpgain); + i2c_w(gspca_dev, i2cpcolorgain); + i2c_w(gspca_dev, i2cpdoit); + break; + } + default: + if (sd->bridge == BRIDGE_103) { + u8 buf[3] = { gain, gain, gain }; /* R, G, B */ + reg_w(gspca_dev, 0x05, buf, 3); + } else { + u8 buf[2]; + buf[0] = gain << 4 | gain; /* Red and blue */ + buf[1] = gain; /* Green */ + reg_w(gspca_dev, 0x10, buf, 2); + } + } +} + +static void setexposure(struct gspca_dev *gspca_dev) +{ + struct sd *sd = (struct sd *) gspca_dev; + + switch (sd->sensor) { + case SENSOR_HV7131D: { + /* Note the datasheet wrongly says line mode exposure uses reg + 0x26 and 0x27, testing has shown 0x25 + 0x26 */ + __u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17}; + u16 reg = gspca_dev->exposure->val; + + i2c[3] = reg >> 8; + i2c[4] = reg & 0xff; + i2c_w(gspca_dev, i2c); + break; + } + case SENSOR_TAS5110C: + case SENSOR_TAS5110D: { + /* register 19's high nibble contains the sn9c10x clock divider + The high nibble configures the no fps according to the + formula: 60 / high_nibble. With a maximum of 30 fps */ + u8 reg = gspca_dev->exposure->val; + + reg = (reg << 4) | 0x0b; + reg_w(gspca_dev, 0x19, ®, 1); + break; + } + case SENSOR_OV6650: + case SENSOR_OV7630: { + /* The ov6650 / ov7630 have 2 registers which both influence + exposure, register 11, whose low nibble sets the nr off fps + according to: fps = 30 / (low_nibble + 1) + + The fps configures the maximum exposure setting, but it is + possible to use less exposure then what the fps maximum + allows by setting register 10. register 10 configures the + actual exposure as quotient of the full exposure, with 0 + being no exposure at all (not very useful) and reg10_max + being max exposure possible at that framerate. + + The code maps our 0 - 510 ms exposure ctrl to these 2 + registers, trying to keep fps as high as possible. + */ + __u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10}; + int reg10, reg11, reg10_max; + + /* ov6645 datasheet says reg10_max is 9a, but that uses + tline * 2 * reg10 as formula for calculating texpo, the + ov6650 probably uses the same formula as the 7730 which uses + tline * 4 * reg10, which explains why the reg10max we've + found experimentally for the ov6650 is exactly half that of + the ov6645. The ov7630 datasheet says the max is 0x41. */ + if (sd->sensor == SENSOR_OV6650) { + reg10_max = 0x4d; + i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */ + } else + reg10_max = 0x41; + + reg11 = (15 * gspca_dev->exposure->val + 999) / 1000; + if (reg11 < 1) + reg11 = 1; + else if (reg11 > 16) + reg11 = 16; + + /* In 640x480, if the reg11 has less than 4, the image is + unstable (the bridge goes into a higher compression mode + which we have not reverse engineered yet). */ + if (gspca_dev->width == 640 && reg11 < 4) + reg11 = 4; + + /* frame exposure time in ms = 1000 * reg11 / 30 -> + reg10 = (gspca_dev->exposure->val / 2) * reg10_max + / (1000 * reg11 / 30) */ + reg10 = (gspca_dev->exposure->val * 15 * reg10_max) + / (1000 * reg11); + + /* Don't allow this to get below 10 when using autogain, the + steps become very large (relatively) when below 10 causing + the image to oscilate from much too dark, to much too bright + and back again. */ + if (gspca_dev->autogain->val && reg10 < 10) + reg10 = 10; + else if (reg10 > reg10_max) + reg10 = reg10_max; + + /* Write reg 10 and reg11 low nibble */ + i2c[1] = sensor_data[sd->sensor].sensor_addr; + i2c[3] = reg10; + i2c[4] |= reg11 - 1; + + /* If register 11 didn't change, don't change it */ + if (sd->reg11 == reg11) + i2c[0] = 0xa0; + + i2c_w(gspca_dev, i2c); + if (gspca_dev->usb_err == 0) + sd->reg11 = reg11; + break; + } + case SENSOR_PAS202: { + __u8 i2cpframerate[] = + {0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16}; + __u8 i2cpexpo[] = + {0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16}; + const __u8 i2cpdoit[] = + {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16}; + int framerate_ctrl; + + /* The exposure knee for the autogain algorithm is 200 + (100 ms / 10 fps on other sensors), for values below this + use the control for setting the partial frame expose time, + above that use variable framerate. This way we run at max + framerate (640x480@7.5 fps, 320x240@10fps) until the knee + is reached. Using the variable framerate control above 200 + is better then playing around with both clockdiv + partial + frame exposure times (like we are doing with the ov chips), + as that sometimes leads to jumps in the exposure control, + which are bad for auto exposure. */ + if (gspca_dev->exposure->val < 200) { + i2cpexpo[3] = 255 - (gspca_dev->exposure->val * 255) + / 200; + framerate_ctrl = 500; + } else { + /* The PAS202's exposure control goes from 0 - 4095, + but anything below 500 causes vsync issues, so scale + our 200-1023 to 500-4095 */ + framerate_ctrl = (gspca_dev->exposure->val - 200) + * 1000 / 229 + 500; + } + + i2cpframerate[3] = framerate_ctrl >> 6; + i2cpframerate[4] = framerate_ctrl & 0x3f; + i2c_w(gspca_dev, i2cpframerate); + i2c_w(gspca_dev, i2cpexpo); + i2c_w(gspca_dev, i2cpdoit); + break; + } + case SENSOR_PAS106: { + __u8 i2cpframerate[] = + {0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14}; + __u8 i2cpexpo[] = + {0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14}; + const __u8 i2cpdoit[] = + {0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14}; + int framerate_ctrl; + + /* For values below 150 use partial frame exposure, above + that use framerate ctrl */ + if (gspca_dev->exposure->val < 150) { + i2cpexpo[3] = 150 - gspca_dev->exposure->val; + framerate_ctrl = 300; + } else { + /* The PAS106's exposure control goes from 0 - 4095, + but anything below 300 causes vsync issues, so scale + our 150-1023 to 300-4095 */ + framerate_ctrl = (gspca_dev->exposure->val - 150) + * 1000 / 230 + 300; + } + + i2cpframerate[3] = framerate_ctrl >> 4; + i2cpframerate[4] = framerate_ctrl & 0x0f; + i2c_w(gspca_dev, i2cpframerate); + i2c_w(gspca_dev, i2cpexpo); + i2c_w(gspca_dev, i2cpdoit); + break; + } + default: + break; + } +} + +static void setfreq(struct gspca_dev *gspca_dev) +{ + struct sd *sd = (struct sd *) gspca_dev; + + if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630) { + /* Framerate adjust register for artificial light 50 hz flicker + compensation, for the ov6650 this is identical to ov6630 + 0x2b register, see ov6630 datasheet. + 0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */ + __u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10}; + switch (sd->plfreq->val) { + default: +/* case 0: * no filter*/ +/* case 2: * 60 hz */ + i2c[3] = 0; + break; + case 1: /* 50 hz */ + i2c[3] = (sd->sensor == SENSOR_OV6650) + ? 0x4f : 0x8a; + break; + } + i2c[1] = sensor_data[sd->sensor].sensor_addr; + i2c_w(gspca_dev, i2c); + } +} + +static void do_autogain(struct gspca_dev *gspca_dev) +{ + struct sd *sd = (struct sd *) gspca_dev; + int deadzone, desired_avg_lum, avg_lum; + + avg_lum = atomic_read(&sd->avg_lum); + if (avg_lum == -1) + return; + + if (sd->autogain_ignore_frames > 0) { + sd->autogain_ignore_frames--; + return; + } + + /* SIF / VGA sensors have a different autoexposure area and thus + different avg_lum values for the same picture brightness */ + if (sensor_data[sd->sensor].flags & F_SIF) { + deadzone = 500; + /* SIF sensors tend to overexpose, so keep this small */ + desired_avg_lum = 5000; + } else { + deadzone = 1500; + desired_avg_lum = 13000; + } + + if (sd->brightness) + desired_avg_lum = sd->brightness->val * desired_avg_lum / 127; + + if (gspca_dev->exposure->maximum < 500) { + if (gspca_coarse_grained_expo_autogain(gspca_dev, avg_lum, + desired_avg_lum, deadzone)) + sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES; + } else { + int gain_knee = gspca_dev->gain->maximum * 9 / 10; + if (gspca_expo_autogain(gspca_dev, avg_lum, desired_avg_lum, + deadzone, gain_knee, sd->exposure_knee)) + sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES; + } +} + +/* this function is called at probe time */ +static int sd_config(struct gspca_dev *gspca_dev, + const struct usb_device_id *id) +{ + struct sd *sd = (struct sd *) gspca_dev; + struct cam *cam; + + reg_r(gspca_dev, 0x00); + if (gspca_dev->usb_buf[0] != 0x10) + return -ENODEV; + + /* copy the webcam info from the device id */ + sd->sensor = id->driver_info >> 8; + sd->bridge = id->driver_info & 0xff; + + cam = &gspca_dev->cam; + if (!(sensor_data[sd->sensor].flags & F_SIF)) { + cam->cam_mode = vga_mode; + cam->nmodes = ARRAY_SIZE(vga_mode); + } else { + cam->cam_mode = sif_mode; + cam->nmodes = ARRAY_SIZE(sif_mode); + } + cam->npkt = 36; /* 36 packets per ISOC message */ + + return 0; +} + +/* this function is called at probe and resume time */ +static int sd_init(struct gspca_dev *gspca_dev) +{ + const __u8 stop = 0x09; /* Disable stream turn of LED */ + + reg_w(gspca_dev, 0x01, &stop, 1); + + return gspca_dev->usb_err; +} + +static int sd_s_ctrl(struct v4l2_ctrl *ctrl) +{ + struct gspca_dev *gspca_dev = + container_of(ctrl->handler, struct gspca_dev, ctrl_handler); + struct sd *sd = (struct sd *)gspca_dev; + + gspca_dev->usb_err = 0; + + if (ctrl->id == V4L2_CID_AUTOGAIN && ctrl->is_new && ctrl->val) { + /* when switching to autogain set defaults to make sure + we are on a valid point of the autogain gain / + exposure knee graph, and give this change time to + take effect before doing autogain. */ + gspca_dev->gain->val = gspca_dev->gain->default_value; + gspca_dev->exposure->val = gspca_dev->exposure->default_value; + sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES; + } + + if (!gspca_dev->streaming) + return 0; + + switch (ctrl->id) { + case V4L2_CID_BRIGHTNESS: + setbrightness(gspca_dev); + break; + case V4L2_CID_AUTOGAIN: + if (gspca_dev->exposure->is_new || (ctrl->is_new && ctrl->val)) + setexposure(gspca_dev); + if (gspca_dev->gain->is_new || (ctrl->is_new && ctrl->val)) + setgain(gspca_dev); + break; + case V4L2_CID_POWER_LINE_FREQUENCY: + setfreq(gspca_dev); + break; + default: + return -EINVAL; + } + return gspca_dev->usb_err; +} + +static const struct v4l2_ctrl_ops sd_ctrl_ops = { + .s_ctrl = sd_s_ctrl, +}; + +/* this function is called at probe time */ +static int sd_init_controls(struct gspca_dev *gspca_dev) +{ + struct sd *sd = (struct sd *) gspca_dev; + struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler; + + gspca_dev->vdev.ctrl_handler = hdl; + v4l2_ctrl_handler_init(hdl, 5); + + if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630 || + sd->sensor == SENSOR_PAS106 || sd->sensor == SENSOR_PAS202) + sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_BRIGHTNESS, 0, 255, 1, 127); + + /* Gain range is sensor dependent */ + switch (sd->sensor) { + case SENSOR_OV6650: + case SENSOR_PAS106: + case SENSOR_PAS202: + gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_GAIN, 0, 31, 1, 15); + break; + case SENSOR_OV7630: + gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_GAIN, 0, 47, 1, 31); + break; + case SENSOR_HV7131D: + gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_GAIN, 0, 63, 1, 31); + break; + case SENSOR_TAS5110C: + case SENSOR_TAS5110D: + case SENSOR_TAS5130CXX: + gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_GAIN, 0, 255, 1, 127); + break; + default: + if (sd->bridge == BRIDGE_103) { + gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_GAIN, 0, 127, 1, 63); + } else { + gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_GAIN, 0, 15, 1, 7); + } + } + + /* Exposure range is sensor dependent, and not all have exposure */ + switch (sd->sensor) { + case SENSOR_HV7131D: + gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_EXPOSURE, 0, 8191, 1, 482); + sd->exposure_knee = 964; + break; + case SENSOR_OV6650: + case SENSOR_OV7630: + case SENSOR_PAS106: + case SENSOR_PAS202: + gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_EXPOSURE, 0, 1023, 1, 66); + sd->exposure_knee = 200; + break; + case SENSOR_TAS5110C: + case SENSOR_TAS5110D: + gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_EXPOSURE, 2, 15, 1, 2); + break; + } + + if (gspca_dev->exposure) { + gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, + V4L2_CID_AUTOGAIN, 0, 1, 1, 1); + } + + if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630) + sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops, + V4L2_CID_POWER_LINE_FREQUENCY, + V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, + V4L2_CID_POWER_LINE_FREQUENCY_DISABLED); + + if (hdl->error) { + pr_err("Could not initialize controls\n"); + return hdl->error; + } + + if (gspca_dev->autogain) + v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, false); + + return 0; +} + +/* -- start the camera -- */ +static int sd_start(struct gspca_dev *gspca_dev) +{ + struct sd *sd = (struct sd *) gspca_dev; + struct cam *cam = &gspca_dev->cam; + int i, mode; + __u8 regs[0x31]; + + mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07; + /* Copy registers 0x01 - 0x19 from the template */ + memcpy(®s[0x01], sensor_data[sd->sensor].bridge_init, 0x19); + /* Set the mode */ + regs[0x18] |= mode << 4; + + /* Set bridge gain to 1.0 */ + if (sd->bridge == BRIDGE_103) { + regs[0x05] = 0x20; /* Red */ + regs[0x06] = 0x20; /* Green */ + regs[0x07] = 0x20; /* Blue */ + } else { + regs[0x10] = 0x00; /* Red and blue */ + regs[0x11] = 0x00; /* Green */ + } + + /* Setup pixel numbers and auto exposure window */ + if (sensor_data[sd->sensor].flags & F_SIF) { + regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */ + regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */ + regs[0x1c] = 0x02; /* AE H-start 64 */ + regs[0x1d] = 0x02; /* AE V-start 64 */ + regs[0x1e] = 0x09; /* AE H-end 288 */ + regs[0x1f] = 0x07; /* AE V-end 224 */ + } else { + regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */ + regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */ + regs[0x1c] = 0x05; /* AE H-start 160 */ + regs[0x1d] = 0x03; /* AE V-start 96 */ + regs[0x1e] = 0x0f; /* AE H-end 480 */ + regs[0x1f] = 0x0c; /* AE V-end 384 */ + } + + /* Setup the gamma table (only used with the sn9c103 bridge) */ + for (i = 0; i < 16; i++) + regs[0x20 + i] = i * 16; + regs[0x20 + i] = 255; + + /* Special cases where some regs depend on mode or bridge */ + switch (sd->sensor) { + case SENSOR_TAS5130CXX: + /* FIXME / TESTME + probably not mode specific at all most likely the upper + nibble of 0x19 is exposure (clock divider) just as with + the tas5110, we need someone to test this. */ + regs[0x19] = mode ? 0x23 : 0x43; + break; + case SENSOR_OV7630: + /* FIXME / TESTME for some reason with the 101/102 bridge the + clock is set to 12 Mhz (reg1 == 0x04), rather then 24. + Also the hstart needs to go from 1 to 2 when using a 103, + which is likely related. This does not seem right. */ + if (sd->bridge == BRIDGE_103) { + regs[0x01] = 0x44; /* Select 24 Mhz clock */ + regs[0x12] = 0x02; /* Set hstart to 2 */ + } + } + /* Disable compression when the raw bayer format has been selected */ + if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) + regs[0x18] &= ~0x80; + + /* Vga mode emulation on SIF sensor? */ + if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) { + regs[0x12] += 16; /* hstart adjust */ + regs[0x13] += 24; /* vstart adjust */ + regs[0x15] = 320 / 16; /* hsize */ + regs[0x16] = 240 / 16; /* vsize */ + } + + /* reg 0x01 bit 2 video transfert on */ + reg_w(gspca_dev, 0x01, ®s[0x01], 1); + /* reg 0x17 SensorClk enable inv Clk 0x60 */ + reg_w(gspca_dev, 0x17, ®s[0x17], 1); + /* Set the registers from the template */ + reg_w(gspca_dev, 0x01, ®s[0x01], + (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f); + + /* Init the sensor */ + i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init, + sensor_data[sd->sensor].sensor_init_size); + + /* Mode / bridge specific sensor setup */ + switch (sd->sensor) { + case SENSOR_PAS202: { + const __u8 i2cpclockdiv[] = + {0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10}; + /* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */ + if (mode) + i2c_w(gspca_dev, i2cpclockdiv); + break; + } + case SENSOR_OV7630: + /* FIXME / TESTME We should be able to handle this identical + for the 101/102 and the 103 case */ + if (sd->bridge == BRIDGE_103) { + const __u8 i2c[] = { 0xa0, 0x21, 0x13, + 0x80, 0x00, 0x00, 0x00, 0x10 }; + i2c_w(gspca_dev, i2c); + } + break; + } + /* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */ + reg_w(gspca_dev, 0x15, ®s[0x15], 2); + /* compression register */ + reg_w(gspca_dev, 0x18, ®s[0x18], 1); + /* H_start */ + reg_w(gspca_dev, 0x12, ®s[0x12], 1); + /* V_START */ + reg_w(gspca_dev, 0x13, ®s[0x13], 1); + /* reset 0x17 SensorClk enable inv Clk 0x60 */ + /*fixme: ov7630 [17]=68 8f (+20 if 102)*/ + reg_w(gspca_dev, 0x17, ®s[0x17], 1); + /*MCKSIZE ->3 */ /*fixme: not ov7630*/ + reg_w(gspca_dev, 0x19, ®s[0x19], 1); + /* AE_STRX AE_STRY AE_ENDX AE_ENDY */ + reg_w(gspca_dev, 0x1c, ®s[0x1c], 4); + /* Enable video transfert */ + reg_w(gspca_dev, 0x01, ®s[0x01], 1); + /* Compression */ + reg_w(gspca_dev, 0x18, ®s[0x18], 2); + msleep(20); + + sd->reg11 = -1; + + setgain(gspca_dev); + setbrightness(gspca_dev); + setexposure(gspca_dev); + setfreq(gspca_dev); + + sd->frames_to_drop = 0; + sd->autogain_ignore_frames = 0; + gspca_dev->exp_too_high_cnt = 0; + gspca_dev->exp_too_low_cnt = 0; + atomic_set(&sd->avg_lum, -1); + return gspca_dev->usb_err; +} + +static void sd_stopN(struct gspca_dev *gspca_dev) +{ + sd_init(gspca_dev); +} + +static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len) +{ + struct sd *sd = (struct sd *) gspca_dev; + int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12; + + /* frames start with: + * ff ff 00 c4 c4 96 synchro + * 00 (unknown) + * xx (frame sequence / size / compression) + * (xx) (idem - extra byte for sn9c103) + * ll mm brightness sum inside auto exposure + * ll mm brightness sum outside auto exposure + * (xx xx xx xx xx) audio values for snc103 + */ + for (i = 0; i < len; i++) { + switch (sd->header_read) { + case 0: + if (data[i] == 0xff) + sd->header_read++; + break; + case 1: + if (data[i] == 0xff) + sd->header_read++; + else + sd->header_read = 0; + break; + case 2: + if (data[i] == 0x00) + sd->header_read++; + else if (data[i] != 0xff) + sd->header_read = 0; + break; + case 3: + if (data[i] == 0xc4) + sd->header_read++; + else if (data[i] == 0xff) + sd->header_read = 1; + else + sd->header_read = 0; + break; + case 4: + if (data[i] == 0xc4) + sd->header_read++; + else if (data[i] == 0xff) + sd->header_read = 1; + else + sd->header_read = 0; + break; + case 5: + if (data[i] == 0x96) + sd->header_read++; + else if (data[i] == 0xff) + sd->header_read = 1; + else + sd->header_read = 0; + break; + default: + sd->header[sd->header_read - 6] = data[i]; + sd->header_read++; + if (sd->header_read == header_size) { + sd->header_read = 0; + return data + i + 1; + } + } + } + return NULL; +} + +static void sd_pkt_scan(struct gspca_dev *gspca_dev, + u8 *data, /* isoc packet */ + int len) /* iso packet length */ +{ + int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0; + struct sd *sd = (struct sd *) gspca_dev; + struct cam *cam = &gspca_dev->cam; + u8 *sof; + + sof = find_sof(gspca_dev, data, len); + if (sof) { + if (sd->bridge == BRIDGE_103) { + fr_h_sz = 18; + lum_offset = 3; + } else { + fr_h_sz = 12; + lum_offset = 2; + } + + len_after_sof = len - (sof - data); + len = (sof - data) - fr_h_sz; + if (len < 0) + len = 0; + } + + if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) { + /* In raw mode we sometimes get some garbage after the frame + ignore this */ + int used; + int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage; + + used = gspca_dev->image_len; + if (used + len > size) + len = size - used; + } + + gspca_frame_add(gspca_dev, INTER_PACKET, data, len); + + if (sof) { + int lum = sd->header[lum_offset] + + (sd->header[lum_offset + 1] << 8); + + /* When exposure changes midway a frame we + get a lum of 0 in this case drop 2 frames + as the frames directly after an exposure + change have an unstable image. Sometimes lum + *really* is 0 (cam used in low light with + low exposure setting), so do not drop frames + if the previous lum was 0 too. */ + if (lum == 0 && sd->prev_avg_lum != 0) { + lum = -1; + sd->frames_to_drop = 2; + sd->prev_avg_lum = 0; + } else + sd->prev_avg_lum = lum; + atomic_set(&sd->avg_lum, lum); + + if (sd->frames_to_drop) + sd->frames_to_drop--; + else + gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0); + + gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof); + } +} + +static int sd_querymenu(struct gspca_dev *gspca_dev, + struct v4l2_querymenu *menu) +{ + switch (menu->id) { + case V4L2_CID_POWER_LINE_FREQUENCY: + switch (menu->index) { + case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */ + strcpy((char *) menu->name, "NoFliker"); + return 0; + case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */ + strcpy((char *) menu->name, "50 Hz"); + return 0; + case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */ + strcpy((char *) menu->name, "60 Hz"); + return 0; + } + break; + } + return -EINVAL; +} + +#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE) +static int sd_int_pkt_scan(struct gspca_dev *gspca_dev, + u8 *data, /* interrupt packet data */ + int len) /* interrupt packet length */ +{ + int ret = -EINVAL; + + if (len == 1 && data[0] == 1) { + input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1); + input_sync(gspca_dev->input_dev); + input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0); + input_sync(gspca_dev->input_dev); + ret = 0; + } + + return ret; +} +#endif + +/* sub-driver description */ +static const struct sd_desc sd_desc = { + .name = MODULE_NAME, + .config = sd_config, + .init = sd_init, + .init_controls = sd_init_controls, + .start = sd_start, + .stopN = sd_stopN, + .pkt_scan = sd_pkt_scan, + .querymenu = sd_querymenu, + .dq_callback = do_autogain, +#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE) + .int_pkt_scan = sd_int_pkt_scan, +#endif +}; + +/* -- module initialisation -- */ +#define SB(sensor, bridge) \ + .driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge + + +static const struct usb_device_id device_table[] = { + {USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */ + {USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */ + {USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */ + {USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)}, + {USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)}, + {USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)}, + {USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)}, +#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE + {USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)}, + {USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)}, +#endif + {USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)}, + {USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)}, + {USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)}, + /* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */ + {USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)}, + {USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)}, + {USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)}, + /* {USB_DEVICE(0x0c45, 0x6030), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */ + /* {USB_DEVICE(0x0c45, 0x6082), SB(MI03XX, 103)}, */ /* MI0343 MI0360 */ + {USB_DEVICE(0x0c45, 0x6083), SB(HV7131D, 103)}, + {USB_DEVICE(0x0c45, 0x608c), SB(HV7131R, 103)}, + /* {USB_DEVICE(0x0c45, 0x608e), SB(CISVF10, 103)}, */ + {USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)}, + {USB_DEVICE(0x0c45, 0x60a8), SB(PAS106, 103)}, + {USB_DEVICE(0x0c45, 0x60aa), SB(TAS5130CXX, 103)}, + {USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)}, + {USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)}, + {} +}; +MODULE_DEVICE_TABLE(usb, device_table); + +/* -- device connect -- */ +static int sd_probe(struct usb_interface *intf, + const struct usb_device_id *id) +{ + return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), + THIS_MODULE); +} + +static struct usb_driver sd_driver = { + .name = MODULE_NAME, + .id_table = device_table, + .probe = sd_probe, + .disconnect = gspca_disconnect, +#ifdef CONFIG_PM + .suspend = gspca_suspend, + .resume = gspca_resume, + .reset_resume = gspca_resume, +#endif +}; + +module_usb_driver(sd_driver); |