diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2011-10-25 13:25:22 +0200 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2011-10-25 13:25:22 +0200 |
commit | 8a9ea3237e7eb5c25f09e429ad242ae5a3d5ea22 (patch) | |
tree | a0a63398a9983667d52cbbbf4e2405b4f22b1d83 /drivers/net/ethernet/intel/igb/e1000_mac.c | |
parent | 1be025d3cb40cd295123af2c394f7229ef9b30ca (diff) | |
parent | 8b3408f8ee994973869d8ba32c5bf482bc4ddca4 (diff) | |
download | linux-8a9ea3237e7eb5c25f09e429ad242ae5a3d5ea22.tar.gz linux-8a9ea3237e7eb5c25f09e429ad242ae5a3d5ea22.tar.bz2 linux-8a9ea3237e7eb5c25f09e429ad242ae5a3d5ea22.zip |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1745 commits)
dp83640: free packet queues on remove
dp83640: use proper function to free transmit time stamping packets
ipv6: Do not use routes from locally generated RAs
|PATCH net-next] tg3: add tx_dropped counter
be2net: don't create multiple RX/TX rings in multi channel mode
be2net: don't create multiple TXQs in BE2
be2net: refactor VF setup/teardown code into be_vf_setup/clear()
be2net: add vlan/rx-mode/flow-control config to be_setup()
net_sched: cls_flow: use skb_header_pointer()
ipv4: avoid useless call of the function check_peer_pmtu
TCP: remove TCP_DEBUG
net: Fix driver name for mdio-gpio.c
ipv4: tcp: fix TOS value in ACK messages sent from TIME_WAIT
rtnetlink: Add missing manual netlink notification in dev_change_net_namespaces
ipv4: fix ipsec forward performance regression
jme: fix irq storm after suspend/resume
route: fix ICMP redirect validation
net: hold sock reference while processing tx timestamps
tcp: md5: add more const attributes
Add ethtool -g support to virtio_net
...
Fix up conflicts in:
- drivers/net/Kconfig:
The split-up generated a trivial conflict with removal of a
stale reference to Documentation/networking/net-modules.txt.
Remove it from the new location instead.
- fs/sysfs/dir.c:
Fairly nasty conflicts with the sysfs rb-tree usage, conflicting
with Eric Biederman's changes for tagged directories.
Diffstat (limited to 'drivers/net/ethernet/intel/igb/e1000_mac.c')
-rw-r--r-- | drivers/net/ethernet/intel/igb/e1000_mac.c | 1483 |
1 files changed, 1483 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/igb/e1000_mac.c b/drivers/net/ethernet/intel/igb/e1000_mac.c new file mode 100644 index 000000000000..73aac082c44d --- /dev/null +++ b/drivers/net/ethernet/intel/igb/e1000_mac.c @@ -0,0 +1,1483 @@ +/******************************************************************************* + + Intel(R) Gigabit Ethernet Linux driver + Copyright(c) 2007-2011 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include <linux/if_ether.h> +#include <linux/delay.h> +#include <linux/pci.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> + +#include "e1000_mac.h" + +#include "igb.h" + +static s32 igb_set_default_fc(struct e1000_hw *hw); +static s32 igb_set_fc_watermarks(struct e1000_hw *hw); + +/** + * igb_get_bus_info_pcie - Get PCIe bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCIe), and PCIe function. + **/ +s32 igb_get_bus_info_pcie(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val; + u32 reg; + u16 pcie_link_status; + + bus->type = e1000_bus_type_pci_express; + + ret_val = igb_read_pcie_cap_reg(hw, + PCI_EXP_LNKSTA, + &pcie_link_status); + if (ret_val) { + bus->width = e1000_bus_width_unknown; + bus->speed = e1000_bus_speed_unknown; + } else { + switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { + case PCI_EXP_LNKSTA_CLS_2_5GB: + bus->speed = e1000_bus_speed_2500; + break; + case PCI_EXP_LNKSTA_CLS_5_0GB: + bus->speed = e1000_bus_speed_5000; + break; + default: + bus->speed = e1000_bus_speed_unknown; + break; + } + + bus->width = (enum e1000_bus_width)((pcie_link_status & + PCI_EXP_LNKSTA_NLW) >> + PCI_EXP_LNKSTA_NLW_SHIFT); + } + + reg = rd32(E1000_STATUS); + bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; + + return 0; +} + +/** + * igb_clear_vfta - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void igb_clear_vfta(struct e1000_hw *hw) +{ + u32 offset; + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + array_wr32(E1000_VFTA, offset, 0); + wrfl(); + } +} + +/** + * igb_write_vfta - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) +{ + array_wr32(E1000_VFTA, offset, value); + wrfl(); +} + +/* Due to a hw errata, if the host tries to configure the VFTA register + * while performing queries from the BMC or DMA, then the VFTA in some + * cases won't be written. + */ + +/** + * igb_clear_vfta_i350 - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void igb_clear_vfta_i350(struct e1000_hw *hw) +{ + u32 offset; + int i; + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + for (i = 0; i < 10; i++) + array_wr32(E1000_VFTA, offset, 0); + + wrfl(); + } +} + +/** + * igb_write_vfta_i350 - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) +{ + int i; + + for (i = 0; i < 10; i++) + array_wr32(E1000_VFTA, offset, value); + + wrfl(); +} + +/** + * igb_init_rx_addrs - Initialize receive address's + * @hw: pointer to the HW structure + * @rar_count: receive address registers + * + * Setups the receive address registers by setting the base receive address + * register to the devices MAC address and clearing all the other receive + * address registers to 0. + **/ +void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) +{ + u32 i; + u8 mac_addr[ETH_ALEN] = {0}; + + /* Setup the receive address */ + hw_dbg("Programming MAC Address into RAR[0]\n"); + + hw->mac.ops.rar_set(hw, hw->mac.addr, 0); + + /* Zero out the other (rar_entry_count - 1) receive addresses */ + hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); + for (i = 1; i < rar_count; i++) + hw->mac.ops.rar_set(hw, mac_addr, i); +} + +/** + * igb_vfta_set - enable or disable vlan in VLAN filter table + * @hw: pointer to the HW structure + * @vid: VLAN id to add or remove + * @add: if true add filter, if false remove + * + * Sets or clears a bit in the VLAN filter table array based on VLAN id + * and if we are adding or removing the filter + **/ +s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add) +{ + u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; + u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); + u32 vfta; + struct igb_adapter *adapter = hw->back; + s32 ret_val = 0; + + vfta = adapter->shadow_vfta[index]; + + /* bit was set/cleared before we started */ + if ((!!(vfta & mask)) == add) { + ret_val = -E1000_ERR_CONFIG; + } else { + if (add) + vfta |= mask; + else + vfta &= ~mask; + } + if (hw->mac.type == e1000_i350) + igb_write_vfta_i350(hw, index, vfta); + else + igb_write_vfta(hw, index, vfta); + adapter->shadow_vfta[index] = vfta; + + return ret_val; +} + +/** + * igb_check_alt_mac_addr - Check for alternate MAC addr + * @hw: pointer to the HW structure + * + * Checks the nvm for an alternate MAC address. An alternate MAC address + * can be setup by pre-boot software and must be treated like a permanent + * address and must override the actual permanent MAC address. If an + * alternate MAC address is fopund it is saved in the hw struct and + * prgrammed into RAR0 and the cuntion returns success, otherwise the + * function returns an error. + **/ +s32 igb_check_alt_mac_addr(struct e1000_hw *hw) +{ + u32 i; + s32 ret_val = 0; + u16 offset, nvm_alt_mac_addr_offset, nvm_data; + u8 alt_mac_addr[ETH_ALEN]; + + /* + * Alternate MAC address is handled by the option ROM for 82580 + * and newer. SW support not required. + */ + if (hw->mac.type >= e1000_82580) + goto out; + + ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, + &nvm_alt_mac_addr_offset); + if (ret_val) { + hw_dbg("NVM Read Error\n"); + goto out; + } + + if ((nvm_alt_mac_addr_offset == 0xFFFF) || + (nvm_alt_mac_addr_offset == 0x0000)) + /* There is no Alternate MAC Address */ + goto out; + + if (hw->bus.func == E1000_FUNC_1) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; + if (hw->bus.func == E1000_FUNC_2) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; + + if (hw->bus.func == E1000_FUNC_3) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; + for (i = 0; i < ETH_ALEN; i += 2) { + offset = nvm_alt_mac_addr_offset + (i >> 1); + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + hw_dbg("NVM Read Error\n"); + goto out; + } + + alt_mac_addr[i] = (u8)(nvm_data & 0xFF); + alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); + } + + /* if multicast bit is set, the alternate address will not be used */ + if (is_multicast_ether_addr(alt_mac_addr)) { + hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); + goto out; + } + + /* + * We have a valid alternate MAC address, and we want to treat it the + * same as the normal permanent MAC address stored by the HW into the + * RAR. Do this by mapping this address into RAR0. + */ + hw->mac.ops.rar_set(hw, alt_mac_addr, 0); + +out: + return ret_val; +} + +/** + * igb_rar_set - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + /* + * HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | + ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + /* + * Some bridges will combine consecutive 32-bit writes into + * a single burst write, which will malfunction on some parts. + * The flushes avoid this. + */ + wr32(E1000_RAL(index), rar_low); + wrfl(); + wr32(E1000_RAH(index), rar_high); + wrfl(); +} + +/** + * igb_mta_set - Set multicast filter table address + * @hw: pointer to the HW structure + * @hash_value: determines the MTA register and bit to set + * + * The multicast table address is a register array of 32-bit registers. + * The hash_value is used to determine what register the bit is in, the + * current value is read, the new bit is OR'd in and the new value is + * written back into the register. + **/ +void igb_mta_set(struct e1000_hw *hw, u32 hash_value) +{ + u32 hash_bit, hash_reg, mta; + + /* + * The MTA is a register array of 32-bit registers. It is + * treated like an array of (32*mta_reg_count) bits. We want to + * set bit BitArray[hash_value]. So we figure out what register + * the bit is in, read it, OR in the new bit, then write + * back the new value. The (hw->mac.mta_reg_count - 1) serves as a + * mask to bits 31:5 of the hash value which gives us the + * register we're modifying. The hash bit within that register + * is determined by the lower 5 bits of the hash value. + */ + hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + + mta = array_rd32(E1000_MTA, hash_reg); + + mta |= (1 << hash_bit); + + array_wr32(E1000_MTA, hash_reg, mta); + wrfl(); +} + +/** + * igb_hash_mc_addr - Generate a multicast hash value + * @hw: pointer to the HW structure + * @mc_addr: pointer to a multicast address + * + * Generates a multicast address hash value which is used to determine + * the multicast filter table array address and new table value. See + * igb_mta_set() + **/ +static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value, hash_mask; + u8 bit_shift = 0; + + /* Register count multiplied by bits per register */ + hash_mask = (hw->mac.mta_reg_count * 32) - 1; + + /* + * For a mc_filter_type of 0, bit_shift is the number of left-shifts + * where 0xFF would still fall within the hash mask. + */ + while (hash_mask >> bit_shift != 0xFF) + bit_shift++; + + /* + * The portion of the address that is used for the hash table + * is determined by the mc_filter_type setting. + * The algorithm is such that there is a total of 8 bits of shifting. + * The bit_shift for a mc_filter_type of 0 represents the number of + * left-shifts where the MSB of mc_addr[5] would still fall within + * the hash_mask. Case 0 does this exactly. Since there are a total + * of 8 bits of shifting, then mc_addr[4] will shift right the + * remaining number of bits. Thus 8 - bit_shift. The rest of the + * cases are a variation of this algorithm...essentially raising the + * number of bits to shift mc_addr[5] left, while still keeping the + * 8-bit shifting total. + * + * For example, given the following Destination MAC Address and an + * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), + * we can see that the bit_shift for case 0 is 4. These are the hash + * values resulting from each mc_filter_type... + * [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + * + * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 + * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 + * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 + * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 + */ + switch (hw->mac.mc_filter_type) { + default: + case 0: + break; + case 1: + bit_shift += 1; + break; + case 2: + bit_shift += 2; + break; + case 3: + bit_shift += 4; + break; + } + + hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | + (((u16) mc_addr[5]) << bit_shift))); + + return hash_value; +} + +/** + * igb_update_mc_addr_list - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates entire Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void igb_update_mc_addr_list(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count) +{ + u32 hash_value, hash_bit, hash_reg; + int i; + + /* clear mta_shadow */ + memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); + + /* update mta_shadow from mc_addr_list */ + for (i = 0; (u32) i < mc_addr_count; i++) { + hash_value = igb_hash_mc_addr(hw, mc_addr_list); + + hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + + hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); + mc_addr_list += (ETH_ALEN); + } + + /* replace the entire MTA table */ + for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) + array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); + wrfl(); +} + +/** + * igb_clear_hw_cntrs_base - Clear base hardware counters + * @hw: pointer to the HW structure + * + * Clears the base hardware counters by reading the counter registers. + **/ +void igb_clear_hw_cntrs_base(struct e1000_hw *hw) +{ + rd32(E1000_CRCERRS); + rd32(E1000_SYMERRS); + rd32(E1000_MPC); + rd32(E1000_SCC); + rd32(E1000_ECOL); + rd32(E1000_MCC); + rd32(E1000_LATECOL); + rd32(E1000_COLC); + rd32(E1000_DC); + rd32(E1000_SEC); + rd32(E1000_RLEC); + rd32(E1000_XONRXC); + rd32(E1000_XONTXC); + rd32(E1000_XOFFRXC); + rd32(E1000_XOFFTXC); + rd32(E1000_FCRUC); + rd32(E1000_GPRC); + rd32(E1000_BPRC); + rd32(E1000_MPRC); + rd32(E1000_GPTC); + rd32(E1000_GORCL); + rd32(E1000_GORCH); + rd32(E1000_GOTCL); + rd32(E1000_GOTCH); + rd32(E1000_RNBC); + rd32(E1000_RUC); + rd32(E1000_RFC); + rd32(E1000_ROC); + rd32(E1000_RJC); + rd32(E1000_TORL); + rd32(E1000_TORH); + rd32(E1000_TOTL); + rd32(E1000_TOTH); + rd32(E1000_TPR); + rd32(E1000_TPT); + rd32(E1000_MPTC); + rd32(E1000_BPTC); +} + +/** + * igb_check_for_copper_link - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +s32 igb_check_for_copper_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + /* + * We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) { + ret_val = 0; + goto out; + } + + /* + * First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = igb_phy_has_link(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) + goto out; /* No link detected */ + + mac->get_link_status = false; + + /* + * Check if there was DownShift, must be checked + * immediately after link-up + */ + igb_check_downshift(hw); + + /* + * If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) { + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + igb_config_collision_dist(hw); + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = igb_config_fc_after_link_up(hw); + if (ret_val) + hw_dbg("Error configuring flow control\n"); + +out: + return ret_val; +} + +/** + * igb_setup_link - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +s32 igb_setup_link(struct e1000_hw *hw) +{ + s32 ret_val = 0; + + /* + * In the case of the phy reset being blocked, we already have a link. + * We do not need to set it up again. + */ + if (igb_check_reset_block(hw)) + goto out; + + /* + * If requested flow control is set to default, set flow control + * based on the EEPROM flow control settings. + */ + if (hw->fc.requested_mode == e1000_fc_default) { + ret_val = igb_set_default_fc(hw); + if (ret_val) + goto out; + } + + /* + * We want to save off the original Flow Control configuration just + * in case we get disconnected and then reconnected into a different + * hub or switch with different Flow Control capabilities. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); + + /* Call the necessary media_type subroutine to configure the link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + goto out; + + /* + * Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + hw_dbg("Initializing the Flow Control address, type and timer regs\n"); + wr32(E1000_FCT, FLOW_CONTROL_TYPE); + wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); + wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + + wr32(E1000_FCTTV, hw->fc.pause_time); + + ret_val = igb_set_fc_watermarks(hw); + +out: + return ret_val; +} + +/** + * igb_config_collision_dist - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void igb_config_collision_dist(struct e1000_hw *hw) +{ + u32 tctl; + + tctl = rd32(E1000_TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + + wr32(E1000_TCTL, tctl); + wrfl(); +} + +/** + * igb_set_fc_watermarks - Set flow control high/low watermarks + * @hw: pointer to the HW structure + * + * Sets the flow control high/low threshold (watermark) registers. If + * flow control XON frame transmission is enabled, then set XON frame + * tansmission as well. + **/ +static s32 igb_set_fc_watermarks(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u32 fcrtl = 0, fcrth = 0; + + /* + * Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames is not enabled, then these + * registers will be set to 0. + */ + if (hw->fc.current_mode & e1000_fc_tx_pause) { + /* + * We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of + * XON frames. + */ + fcrtl = hw->fc.low_water; + if (hw->fc.send_xon) + fcrtl |= E1000_FCRTL_XONE; + + fcrth = hw->fc.high_water; + } + wr32(E1000_FCRTL, fcrtl); + wr32(E1000_FCRTH, fcrth); + + return ret_val; +} + +/** + * igb_set_default_fc - Set flow control default values + * @hw: pointer to the HW structure + * + * Read the EEPROM for the default values for flow control and store the + * values. + **/ +static s32 igb_set_default_fc(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u16 nvm_data; + + /* + * Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); + + if (ret_val) { + hw_dbg("NVM Read Error\n"); + goto out; + } + + if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) + hw->fc.requested_mode = e1000_fc_none; + else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == + NVM_WORD0F_ASM_DIR) + hw->fc.requested_mode = e1000_fc_tx_pause; + else + hw->fc.requested_mode = e1000_fc_full; + +out: + return ret_val; +} + +/** + * igb_force_mac_fc - Force the MAC's flow control settings + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the + * device control register to reflect the adapter settings. TFCE and RFCE + * need to be explicitly set by software when a copper PHY is used because + * autonegotiation is managed by the PHY rather than the MAC. Software must + * also configure these bits when link is forced on a fiber connection. + **/ +s32 igb_force_mac_fc(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = 0; + + ctrl = rd32(E1000_CTRL); + + /* + * Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc.current_mode" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and TX flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); + + switch (hw->fc.current_mode) { + case e1000_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case e1000_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case e1000_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case e1000_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + hw_dbg("Flow control param set incorrectly\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + wr32(E1000_CTRL, ctrl); + +out: + return ret_val; +} + +/** + * igb_config_fc_after_link_up - Configures flow control after link + * @hw: pointer to the HW structure + * + * Checks the status of auto-negotiation after link up to ensure that the + * speed and duplex were not forced. If the link needed to be forced, then + * flow control needs to be forced also. If auto-negotiation is enabled + * and did not fail, then we configure flow control based on our link + * partner. + **/ +s32 igb_config_fc_after_link_up(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = 0; + u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; + u16 speed, duplex; + + /* + * Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (mac->autoneg_failed) { + if (hw->phy.media_type == e1000_media_type_internal_serdes) + ret_val = igb_force_mac_fc(hw); + } else { + if (hw->phy.media_type == e1000_media_type_copper) + ret_val = igb_force_mac_fc(hw); + } + + if (ret_val) { + hw_dbg("Error forcing flow control settings\n"); + goto out; + } + + /* + * Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { + /* + * Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, + &mii_status_reg); + if (ret_val) + goto out; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, + &mii_status_reg); + if (ret_val) + goto out; + + if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { + hw_dbg("Copper PHY and Auto Neg " + "has not completed.\n"); + goto out; + } + + /* + * The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (Address 4) and the Auto_Negotiation Base + * Page Ability Register (Address 5) to determine how + * flow control was negotiated. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, + &mii_nway_adv_reg); + if (ret_val) + goto out; + ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, + &mii_nway_lp_ability_reg); + if (ret_val) + goto out; + + /* + * Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | E1000_fc_full + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* + * Now we need to check if the user selected RX ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise RX + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.requested_mode == e1000_fc_full) { + hw->fc.current_mode = e1000_fc_full; + hw_dbg("Flow Control = FULL.\r\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + hw_dbg("Flow Control = " + "RX PAUSE frames only.\r\n"); + } + } + /* + * For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_tx_pause; + hw_dbg("Flow Control = TX PAUSE frames only.\r\n"); + } + /* + * For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_rx_pause; + hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); + } + /* + * Per the IEEE spec, at this point flow control should be + * disabled. However, we want to consider that we could + * be connected to a legacy switch that doesn't advertise + * desired flow control, but can be forced on the link + * partner. So if we advertised no flow control, that is + * what we will resolve to. If we advertised some kind of + * receive capability (Rx Pause Only or Full Flow Control) + * and the link partner advertised none, we will configure + * ourselves to enable Rx Flow Control only. We can do + * this safely for two reasons: If the link partner really + * didn't want flow control enabled, and we enable Rx, no + * harm done since we won't be receiving any PAUSE frames + * anyway. If the intent on the link partner was to have + * flow control enabled, then by us enabling RX only, we + * can at least receive pause frames and process them. + * This is a good idea because in most cases, since we are + * predominantly a server NIC, more times than not we will + * be asked to delay transmission of packets than asking + * our link partner to pause transmission of frames. + */ + else if ((hw->fc.requested_mode == e1000_fc_none || + hw->fc.requested_mode == e1000_fc_tx_pause) || + hw->fc.strict_ieee) { + hw->fc.current_mode = e1000_fc_none; + hw_dbg("Flow Control = NONE.\r\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); + } + + /* + * Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + hw_dbg("Error getting link speed and duplex\n"); + goto out; + } + + if (duplex == HALF_DUPLEX) + hw->fc.current_mode = e1000_fc_none; + + /* + * Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = igb_force_mac_fc(hw); + if (ret_val) { + hw_dbg("Error forcing flow control settings\n"); + goto out; + } + } + +out: + return ret_val; +} + +/** + * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Read the status register for the current speed/duplex and store the current + * speed and duplex for copper connections. + **/ +s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + u32 status; + + status = rd32(E1000_STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + hw_dbg("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + hw_dbg("100 Mbs, "); + } else { + *speed = SPEED_10; + hw_dbg("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + hw_dbg("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + hw_dbg("Half Duplex\n"); + } + + return 0; +} + +/** + * igb_get_hw_semaphore - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +s32 igb_get_hw_semaphore(struct e1000_hw *hw) +{ + u32 swsm; + s32 ret_val = 0; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + /* Get the SW semaphore */ + while (i < timeout) { + swsm = rd32(E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + udelay(50); + i++; + } + + if (i == timeout) { + hw_dbg("Driver can't access device - SMBI bit is set.\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = rd32(E1000_SWSM); + wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) + break; + + udelay(50); + } + + if (i == timeout) { + /* Release semaphores */ + igb_put_hw_semaphore(hw); + hw_dbg("Driver can't access the NVM\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * igb_put_hw_semaphore - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +void igb_put_hw_semaphore(struct e1000_hw *hw) +{ + u32 swsm; + + swsm = rd32(E1000_SWSM); + + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + + wr32(E1000_SWSM, swsm); +} + +/** + * igb_get_auto_rd_done - Check for auto read completion + * @hw: pointer to the HW structure + * + * Check EEPROM for Auto Read done bit. + **/ +s32 igb_get_auto_rd_done(struct e1000_hw *hw) +{ + s32 i = 0; + s32 ret_val = 0; + + + while (i < AUTO_READ_DONE_TIMEOUT) { + if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) + break; + msleep(1); + i++; + } + + if (i == AUTO_READ_DONE_TIMEOUT) { + hw_dbg("Auto read by HW from NVM has not completed.\n"); + ret_val = -E1000_ERR_RESET; + goto out; + } + +out: + return ret_val; +} + +/** + * igb_valid_led_default - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + hw_dbg("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { + switch(hw->phy.media_type) { + case e1000_media_type_internal_serdes: + *data = ID_LED_DEFAULT_82575_SERDES; + break; + case e1000_media_type_copper: + default: + *data = ID_LED_DEFAULT; + break; + } + } +out: + return ret_val; +} + +/** + * igb_id_led_init - + * @hw: pointer to the HW structure + * + **/ +s32 igb_id_led_init(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_mask = 0x000000FF; + const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + u16 data, i, temp; + const u16 led_mask = 0x0F; + + ret_val = igb_valid_led_default(hw, &data); + if (ret_val) + goto out; + + mac->ledctl_default = rd32(E1000_LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + +out: + return ret_val; +} + +/** + * igb_cleanup_led - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +s32 igb_cleanup_led(struct e1000_hw *hw) +{ + wr32(E1000_LEDCTL, hw->mac.ledctl_default); + return 0; +} + +/** + * igb_blink_led - Blink LED + * @hw: pointer to the HW structure + * + * Blink the led's which are set to be on. + **/ +s32 igb_blink_led(struct e1000_hw *hw) +{ + u32 ledctl_blink = 0; + u32 i; + + /* + * set the blink bit for each LED that's "on" (0x0E) + * in ledctl_mode2 + */ + ledctl_blink = hw->mac.ledctl_mode2; + for (i = 0; i < 4; i++) + if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << + (i * 8)); + + wr32(E1000_LEDCTL, ledctl_blink); + + return 0; +} + +/** + * igb_led_off - Turn LED off + * @hw: pointer to the HW structure + * + * Turn LED off. + **/ +s32 igb_led_off(struct e1000_hw *hw) +{ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); + break; + default: + break; + } + + return 0; +} + +/** + * igb_disable_pcie_master - Disables PCI-express master access + * @hw: pointer to the HW structure + * + * Returns 0 (0) if successful, else returns -10 + * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued + * the master requests to be disabled. + * + * Disables PCI-Express master access and verifies there are no pending + * requests. + **/ +s32 igb_disable_pcie_master(struct e1000_hw *hw) +{ + u32 ctrl; + s32 timeout = MASTER_DISABLE_TIMEOUT; + s32 ret_val = 0; + + if (hw->bus.type != e1000_bus_type_pci_express) + goto out; + + ctrl = rd32(E1000_CTRL); + ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; + wr32(E1000_CTRL, ctrl); + + while (timeout) { + if (!(rd32(E1000_STATUS) & + E1000_STATUS_GIO_MASTER_ENABLE)) + break; + udelay(100); + timeout--; + } + + if (!timeout) { + hw_dbg("Master requests are pending.\n"); + ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; + goto out; + } + +out: + return ret_val; +} + +/** + * igb_validate_mdi_setting - Verify MDI/MDIx settings + * @hw: pointer to the HW structure + * + * Verify that when not using auto-negotitation that MDI/MDIx is correctly + * set, which is forced to MDI mode only. + **/ +s32 igb_validate_mdi_setting(struct e1000_hw *hw) +{ + s32 ret_val = 0; + + if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { + hw_dbg("Invalid MDI setting detected\n"); + hw->phy.mdix = 1; + ret_val = -E1000_ERR_CONFIG; + goto out; + } + +out: + return ret_val; +} + +/** + * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register + * @hw: pointer to the HW structure + * @reg: 32bit register offset such as E1000_SCTL + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes an address/data control type register. There are several of these + * and they all have the format address << 8 | data and bit 31 is polled for + * completion. + **/ +s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, + u32 offset, u8 data) +{ + u32 i, regvalue = 0; + s32 ret_val = 0; + + /* Set up the address and data */ + regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); + wr32(reg, regvalue); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { + udelay(5); + regvalue = rd32(reg); + if (regvalue & E1000_GEN_CTL_READY) + break; + } + if (!(regvalue & E1000_GEN_CTL_READY)) { + hw_dbg("Reg %08x did not indicate ready\n", reg); + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * igb_enable_mng_pass_thru - Enable processing of ARP's + * @hw: pointer to the HW structure + * + * Verifies the hardware needs to leave interface enabled so that frames can + * be directed to and from the management interface. + **/ +bool igb_enable_mng_pass_thru(struct e1000_hw *hw) +{ + u32 manc; + u32 fwsm, factps; + bool ret_val = false; + + if (!hw->mac.asf_firmware_present) + goto out; + + manc = rd32(E1000_MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN)) + goto out; + + if (hw->mac.arc_subsystem_valid) { + fwsm = rd32(E1000_FWSM); + factps = rd32(E1000_FACTPS); + + if (!(factps & E1000_FACTPS_MNGCG) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { + ret_val = true; + goto out; + } + } else { + if ((manc & E1000_MANC_SMBUS_EN) && + !(manc & E1000_MANC_ASF_EN)) { + ret_val = true; + goto out; + } + } + +out: + return ret_val; +} |