diff options
author | David Howells <dhowells@redhat.com> | 2023-11-08 13:57:42 +0000 |
---|---|---|
committer | David Howells <dhowells@redhat.com> | 2024-01-01 16:37:27 +0000 |
commit | 453924de6212ac159f946b75c6b59918e2e30944 (patch) | |
tree | 5ce08d7d0216e4473ffc19733be849a3d5778eaf /fs/afs/dir.c | |
parent | 16069e1349a0c5535e189f9dc5d937bfd7631a06 (diff) | |
download | linux-453924de6212ac159f946b75c6b59918e2e30944.tar.gz linux-453924de6212ac159f946b75c6b59918e2e30944.tar.bz2 linux-453924de6212ac159f946b75c6b59918e2e30944.zip |
afs: Overhaul invalidation handling to better support RO volumes
Overhaul the third party-induced invalidation handling, making use of the
previously added volume-level event counters (cb_scrub and cb_ro_snapshot)
that are now being parsed out of the VolSync record returned by the
fileserver in many of its replies.
This allows better handling of RO (and Backup) volumes. Since these are
snapshot of a RW volume that are updated atomically simultantanously across
all servers that host them, they only require a single callback promise for
the entire volume. The currently upstream code assumes that RO volumes
operate in the same manner as RW volumes, and that each file has its own
individual callback - which means that it does a status fetch for *every*
file in a RO volume, whether or not the volume got "released" (volume
callback breaks can occur for other reasons too, such as the volumeserver
taking ownership of a volume from a fileserver).
To this end, make the following changes:
(1) Change the meaning of the volume's cb_v_break counter so that it is
now a hint that we need to issue a status fetch to work out the state
of a volume. cb_v_break is incremented by volume break callbacks and
by server initialisation callbacks.
(2) Add a second counter, cb_v_check, to the afs_volume struct such that
if this differs from cb_v_break, we need to do a check. When the
check is complete, cb_v_check is advanced to what cb_v_break was at
the start of the status fetch.
(3) Move the list of mmap'd vnodes to the volume and trigger removal of
PTEs that map to files on a volume break rather than on a server
break.
(4) When a server reinitialisation callback comes in, use the
server-to-volume reverse mapping added in a preceding patch to iterate
over all the volumes using that server and clear the volume callback
promises for that server and the general volume promise as a whole to
trigger reanalysis.
(5) Replace the AFS_VNODE_CB_PROMISED flag with an AFS_NO_CB_PROMISE
(TIME64_MIN) value in the cb_expires_at field, reducing the number of
checks we need to make.
(6) Change afs_check_validity() to quickly see if various event counters
have been incremented or if the vnode or volume callback promise is
due to expire/has expired without making any changes to the state.
That is now left to afs_validate() as this may get more complicated in
future as we may have to examine server records too.
(7) Overhaul afs_validate() so that it does a single status fetch if we
need to check the state of either the vnode or the volume - and do so
under appropriate locking. The function does the following steps:
(A) If the vnode/volume is no longer seen as valid, then we take the
vnode validation lock and, if the volume promise has expired, the
volume check lock also. The latter prevents redundant checks being
made to find out if a new version of the volume got released.
(B) If a previous RPC call found that the volsync changed unexpectedly
or that a RO volume was updated, then we unmap all PTEs pointing to
the file to stop mmap being used for access.
(C) If the vnode is still seen to be of uncertain validity, then we
perform an FS.FetchStatus RPC op to jointly update the volume status
and the vnode status. This assessment is done as part of parsing the
reply:
If the RO volume creation timestamp advances, cb_ro_snapshot is
incremented; if either the creation or update timestamps changes in
an unexpected way, the cb_scrub counter is incremented
If the Data Version returned doesn't match the copy we have
locally, then we ask for the pagecache to be zapped. This takes
care of handling RO update.
(D) If cb_scrub differs between volume and vnode, the vnode's
pagecache is zapped and the vnode's cb_scrub is updated unless the
file is marked as having been deleted.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Diffstat (limited to 'fs/afs/dir.c')
-rw-r--r-- | fs/afs/dir.c | 10 |
1 files changed, 8 insertions, 2 deletions
diff --git a/fs/afs/dir.c b/fs/afs/dir.c index e232f713ece1..c14533ef108f 100644 --- a/fs/afs/dir.c +++ b/fs/afs/dir.c @@ -1118,7 +1118,12 @@ static int afs_d_revalidate(struct dentry *dentry, unsigned int flags) dir = AFS_FS_I(d_inode(parent)); /* validate the parent directory */ - afs_validate(dir, key); + ret = afs_validate(dir, key); + if (ret == -ERESTARTSYS) { + dput(parent); + key_put(key); + return ret; + } if (test_bit(AFS_VNODE_DELETED, &dir->flags)) { _debug("%pd: parent dir deleted", dentry); @@ -1260,6 +1265,7 @@ void afs_check_for_remote_deletion(struct afs_operation *op) switch (afs_op_abort_code(op)) { case VNOVNODE: set_bit(AFS_VNODE_DELETED, &vnode->flags); + clear_nlink(&vnode->netfs.inode); afs_break_callback(vnode, afs_cb_break_for_deleted); } } @@ -1375,7 +1381,7 @@ static void afs_dir_remove_subdir(struct dentry *dentry) clear_nlink(&vnode->netfs.inode); set_bit(AFS_VNODE_DELETED, &vnode->flags); - clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags); + atomic64_set(&vnode->cb_expires_at, AFS_NO_CB_PROMISE); clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags); } } |