summaryrefslogtreecommitdiffstats
path: root/fs/crypto/fname.c
diff options
context:
space:
mode:
authorEric Biggers <ebiggers@google.com>2018-01-05 10:45:01 -0800
committerTheodore Ts'o <tytso@mit.edu>2018-01-11 22:06:19 -0500
commit76e81d6d50481144824237e6843122824b0a55c0 (patch)
treea0db01898ef78dce8778c83b3a729861d96e089a /fs/crypto/fname.c
parenta575784c6c13b8f1bae05fbba873e326ec73e289 (diff)
downloadlinux-76e81d6d50481144824237e6843122824b0a55c0.tar.gz
linux-76e81d6d50481144824237e6843122824b0a55c0.tar.bz2
linux-76e81d6d50481144824237e6843122824b0a55c0.zip
fscrypt: new helper functions for ->symlink()
Currently, filesystems supporting fscrypt need to implement some tricky logic when creating encrypted symlinks, including handling a peculiar on-disk format (struct fscrypt_symlink_data) and correctly calculating the size of the encrypted symlink. Introduce helper functions to make things a bit easier: - fscrypt_prepare_symlink() computes and validates the size the symlink target will require on-disk. - fscrypt_encrypt_symlink() creates the encrypted target if needed. The new helpers actually fix some subtle bugs. First, when checking whether the symlink target was too long, filesystems didn't account for the fact that the NUL padding is meant to be truncated if it would cause the maximum length to be exceeded, as is done for filenames in directories. Consequently users would receive ENAMETOOLONG when creating symlinks close to what is supposed to be the maximum length. For example, with EXT4 with a 4K block size, the maximum symlink target length in an encrypted directory is supposed to be 4093 bytes (in comparison to 4095 in an unencrypted directory), but in FS_POLICY_FLAGS_PAD_32-mode only up to 4064 bytes were accepted. Second, symlink targets of "." and ".." were not being encrypted, even though they should be, as these names are special in *directory entries* but not in symlink targets. Fortunately, we can fix this simply by starting to encrypt them, as old kernels already accept them in encrypted form. Third, the output string length the filesystems were providing when doing the actual encryption was incorrect, as it was forgotten to exclude 'sizeof(struct fscrypt_symlink_data)'. Fortunately though, this bug didn't make a difference. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Diffstat (limited to 'fs/crypto/fname.c')
-rw-r--r--fs/crypto/fname.c8
1 files changed, 5 insertions, 3 deletions
diff --git a/fs/crypto/fname.c b/fs/crypto/fname.c
index 52d4dbe1e8e7..62f13d533439 100644
--- a/fs/crypto/fname.c
+++ b/fs/crypto/fname.c
@@ -34,8 +34,8 @@ static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
*
* Return: 0 on success, -errno on failure
*/
-static int fname_encrypt(struct inode *inode,
- const struct qstr *iname, struct fscrypt_str *oname)
+int fname_encrypt(struct inode *inode,
+ const struct qstr *iname, struct fscrypt_str *oname)
{
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
@@ -56,9 +56,11 @@ static int fname_encrypt(struct inode *inode,
* Copy the filename to the output buffer for encrypting in-place and
* pad it with the needed number of NUL bytes.
*/
+ if (WARN_ON(oname->len < iname->len))
+ return -ENOBUFS;
cryptlen = max_t(unsigned int, iname->len, FS_CRYPTO_BLOCK_SIZE);
cryptlen = round_up(cryptlen, padding);
- cryptlen = min(cryptlen, lim);
+ cryptlen = min3(cryptlen, lim, oname->len);
memcpy(oname->name, iname->name, iname->len);
memset(oname->name + iname->len, 0, cryptlen - iname->len);