summaryrefslogtreecommitdiffstats
path: root/fs/ext4/resize.c
diff options
context:
space:
mode:
authorAndreas Dilger <adilger@clusterfs.com>2007-10-16 18:38:25 -0400
committerTheodore Ts'o <tytso@mit.edu>2007-10-17 18:50:00 -0400
commit717d50e4971b81b96c0199c91cdf0039a8cb181a (patch)
treea8d68edbc1f064c76cbfee206e093d2c86c80ba0 /fs/ext4/resize.c
parent4074fe3736b1a43431dff870bf9055ac5dcf3f03 (diff)
downloadlinux-717d50e4971b81b96c0199c91cdf0039a8cb181a.tar.gz
linux-717d50e4971b81b96c0199c91cdf0039a8cb181a.tar.bz2
linux-717d50e4971b81b96c0199c91cdf0039a8cb181a.zip
Ext4: Uninitialized Block Groups
In pass1 of e2fsck, every inode table in the fileystem is scanned and checked, regardless of whether it is in use. This is this the most time consuming part of the filesystem check. The unintialized block group feature can greatly reduce e2fsck time by eliminating checking of uninitialized inodes. With this feature, there is a a high water mark of used inodes for each block group. Block and inode bitmaps can be uninitialized on disk via a flag in the group descriptor to avoid reading or scanning them at e2fsck time. A checksum of each group descriptor is used to ensure that corruption in the group descriptor's bit flags does not cause incorrect operation. The feature is enabled through a mkfs option mke2fs /dev/ -O uninit_groups A patch adding support for uninitialized block groups to e2fsprogs tools has been posted to the linux-ext4 mailing list. The patches have been stress tested with fsstress and fsx. In performance tests testing e2fsck time, we have seen that e2fsck time on ext3 grows linearly with the total number of inodes in the filesytem. In ext4 with the uninitialized block groups feature, the e2fsck time is constant, based solely on the number of used inodes rather than the total inode count. Since typical ext4 filesystems only use 1-10% of their inodes, this feature can greatly reduce e2fsck time for users. With performance improvement of 2-20 times, depending on how full the filesystem is. The attached graph shows the major improvements in e2fsck times in filesystems with a large total inode count, but few inodes in use. In each group descriptor if we have EXT4_BG_INODE_UNINIT set in bg_flags: Inode table is not initialized/used in this group. So we can skip the consistency check during fsck. EXT4_BG_BLOCK_UNINIT set in bg_flags: No block in the group is used. So we can skip the block bitmap verification for this group. We also add two new fields to group descriptor as a part of uninitialized group patch. __le16 bg_itable_unused; /* Unused inodes count */ __le16 bg_checksum; /* crc16(sb_uuid+group+desc) */ bg_itable_unused: If we have EXT4_BG_INODE_UNINIT not set in bg_flags then bg_itable_unused will give the offset within the inode table till the inodes are used. This can be used by fsck to skip list of inodes that are marked unused. bg_checksum: Now that we depend on bg_flags and bg_itable_unused to determine the block and inode usage, we need to make sure group descriptor is not corrupt. We add checksum to group descriptor to detect corruption. If the descriptor is found to be corrupt, we mark all the blocks and inodes in the group used. Signed-off-by: Avantika Mathur <mathur@us.ibm.com> Signed-off-by: Andreas Dilger <adilger@clusterfs.com> Signed-off-by: Mingming Cao <cmm@us.ibm.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Diffstat (limited to 'fs/ext4/resize.c')
-rw-r--r--fs/ext4/resize.c21
1 files changed, 2 insertions, 19 deletions
diff --git a/fs/ext4/resize.c b/fs/ext4/resize.c
index 472fc0d3e1c0..0a7e914c495a 100644
--- a/fs/ext4/resize.c
+++ b/fs/ext4/resize.c
@@ -16,6 +16,7 @@
#include <linux/errno.h>
#include <linux/slab.h>
+#include "group.h"
#define outside(b, first, last) ((b) < (first) || (b) >= (last))
#define inside(b, first, last) ((b) >= (first) && (b) < (last))
@@ -140,25 +141,6 @@ static struct buffer_head *bclean(handle_t *handle, struct super_block *sb,
}
/*
- * To avoid calling the atomic setbit hundreds or thousands of times, we only
- * need to use it within a single byte (to ensure we get endianness right).
- * We can use memset for the rest of the bitmap as there are no other users.
- */
-static void mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
-{
- int i;
-
- if (start_bit >= end_bit)
- return;
-
- ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
- for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
- ext4_set_bit(i, bitmap);
- if (i < end_bit)
- memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
-}
-
-/*
* Set up the block and inode bitmaps, and the inode table for the new group.
* This doesn't need to be part of the main transaction, since we are only
* changing blocks outside the actual filesystem. We still do journaling to
@@ -842,6 +824,7 @@ int ext4_group_add(struct super_block *sb, struct ext4_new_group_data *input)
ext4_inode_table_set(sb, gdp, input->inode_table); /* LV FIXME */
gdp->bg_free_blocks_count = cpu_to_le16(input->free_blocks_count);
gdp->bg_free_inodes_count = cpu_to_le16(EXT4_INODES_PER_GROUP(sb));
+ gdp->bg_checksum = ext4_group_desc_csum(sbi, input->group, gdp);
/*
* Make the new blocks and inodes valid next. We do this before